J. Semicond. > Volume 38 > Issue 5 > Article Number: 053001

Analysis of morphological, structural and electrical properties of annealed TiO2 nanowires deposited by GLAD technique

B. Shougaijam 1, , , R. Swain 2, , C. Ngangbam 3, and T.R. Lenka 1, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The effect of annealing on vertically aligned TiO2 NWs deposited by glancing angle deposition (GLAD) method on Si substrate using pressed and sintered TiO2 pellets as source material is studied.The FE-SEM images reveal the retention of vertically aligned NWs on Si substrate after annealing process.The EDS analysis of TiO2 NWs sample annealed at 600 ℃ in air for 1 h shows the higher weight percentage ratio of ~2.6(i.e., 72.27% oxygen and 27.73% titanium).The XRD pattern reveals that the polycrystalline nature of anatase TiO2 dominates the annealed NWs sample.The electrical characteristics of Al/TiO2-NWs/TiO2-TF/p-Si (NW device) and Al/TiO2-TF/p-Si (TF device) based on annealed samples are compared.It is riveting to observe a lower leakage current of ~1.32×10-7 A/cm2 at+1 V with interface trap density of ~6.71×1011 eV-1cm-2 in NW device compared to ~2.23×10-7 A/cm2 in TF device.The dominant leakage mechanism is investigated to be generally Schottky emission; however Poole-Frenkel emission also takes place during high reverse bias beyond 4 V for NWs and 3 V for TF device.

Key words: annealingGLADmorphologynanowiresstructuralTiO2

Abstract: The effect of annealing on vertically aligned TiO2 NWs deposited by glancing angle deposition (GLAD) method on Si substrate using pressed and sintered TiO2 pellets as source material is studied.The FE-SEM images reveal the retention of vertically aligned NWs on Si substrate after annealing process.The EDS analysis of TiO2 NWs sample annealed at 600 ℃ in air for 1 h shows the higher weight percentage ratio of ~2.6(i.e., 72.27% oxygen and 27.73% titanium).The XRD pattern reveals that the polycrystalline nature of anatase TiO2 dominates the annealed NWs sample.The electrical characteristics of Al/TiO2-NWs/TiO2-TF/p-Si (NW device) and Al/TiO2-TF/p-Si (TF device) based on annealed samples are compared.It is riveting to observe a lower leakage current of ~1.32×10-7 A/cm2 at+1 V with interface trap density of ~6.71×1011 eV-1cm-2 in NW device compared to ~2.23×10-7 A/cm2 in TF device.The dominant leakage mechanism is investigated to be generally Schottky emission; however Poole-Frenkel emission also takes place during high reverse bias beyond 4 V for NWs and 3 V for TF device.

Key words: annealingGLADmorphologynanowiresstructuralTiO2



References:

[1]

San S R. Analysis of optoelectronic properties of TIO2 nanowires/Si heterojunction arrays[J]. Chin Phys B, 2014, 23: 107302. doi: 10.1088/1674-1056/23/10/107302

[2]

Li H L, Yu Q J, Huang Y W. Ultralong rutile TIO2 nanowire arrays for highly efficient dye-sensitized solar cells[J]. Appl Mater Interfaces, 2016, 8: 13384. doi: 10.1021/acsami.6b01508

[3]

Tian W, Ho Y, Chen C. Sensing performance of precisely ordered TIO2 nanowire gas sensors fabricated by electron-beam lithography[J]. Sensors, 2013, 13: 865. doi: 10.3390/s130100865

[4]

Xie Y, Wei L, Wei G. A self-powered UV photodetector based on TIO2 nanorod arrays[J]. Nanoscale Res Lett, 2013, 8: 188. doi: 10.1186/1556-276X-8-188

[5]

Yu Y, Yin X, Kvit A. Evolution of hollow TIO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance[J]. Nano Lett, 2014, 14: 2528. doi: 10.1021/nl5002907

[6]

Zhang W, Cunningham B T. Biosensors with porous dielectric surface for fluorescence enhancement and methods of manufacture. US Patent, 7869032B2, 2011

[7]

Wilka G D, Wallace R M, Anthony J M. High-k gate dielectrics: current status and materials properties considerations[J]. J Appl Phys, 2001, 89: 5243. doi: 10.1063/1.1361065

[8]

Luisier M, Schenk A. Two-dimensional tunneling effects on the leakage current of MOSFETs with single dielectric and high-k gate stacks[J]. IEEE Trans Electron Dev, 2008, 55: 6.

[9]

Rajwali K, Zulfiqar , Simbarashe F. Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles[J]. J Mater Sci: Mater Electron, 2016, 27: 5960. doi: 10.1007/s10854-016-4517-2

[10]

Kumar A, Mondal S, Kumar S G. High performance solgel spin-coated titanium dioxide dielectric based MOS structures[J]. Mat Sci Semicond Proc, 2015, 40: 77. doi: 10.1016/j.mssp.2015.06.073

[11]

Negara M A, Kitano M, Long R D. Oxide charge engineering of atomic layer deposited AlOxNy/Al2O3 gate dielectrics: a path to enhancement mode GaN devices[J]. Appl Mater Interfaces, 2016, 8: 21089. doi: 10.1021/acsami.6b03862

[12]

Mahajan A M, Anil G K, Thibeault B J. High dielectric constant ZrO2 films by atomic layer deposition technique on germanium substrates[J]. Silicon, 2016, 8: 345. doi: 10.1007/s12633-015-9322-7

[13]

Jiro Y, Hong S, Ravi R. Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal-insulator-metal capacitor dielectric for GaAs HBT technology[J]. J Vac Sci Technol, 2013, 31: 01A.

[14]

Dervos C T, Thirios E, Novacovich J. Permittivity properties of thermally treated TIO2[J]. Mater Lett, 2004, 58: 1502. doi: 10.1016/j.matlet.2003.10.012

[15]

Yang Y, Qu L, Dai L. Coating of titanium dioxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials[J]. Adv Mater, 2007, 19: 1239. doi: 10.1002/(ISSN)1521-4095

[16]

Sönmezoglu S, Akin S. Current transport mechanism of antimony-doped TIO2 nanoparticles based on MOS device[J]. Sensors Actuat A, 2013, 199: 18. doi: 10.1016/j.sna.2013.04.037

[17]

Yang W, Marino J, Monson A. An investigation of annealing on the dielectric performance of TIO2 thin films[J]. Semicond Sci Technol, 2006, 21: 1573. doi: 10.1088/0268-1242/21/12/012

[18]

Vishwas M, Narasimha R K, Chakradhar R P S. Effect of film thickness and annealing on optical properties of TIO2 thin films and electrical characterization of MOS capacitors[J]. J Mater Sci: Mater Electron, 2014, 25: 4495. doi: 10.1007/s10854-014-2193-7

[19]

Frank M M, Kim S, Brown S L, Bruley J. Scaling the MOSFET gate dielectric: from high-k to higher-k[J]. Microelectron Eng, 2009, 86: 1603. doi: 10.1016/j.mee.2009.03.063

[20]

Perego M, Seguini G, Scarel G. Energy band alignment at TIO2/Si interface with various interlayers[J]. J Appl Phys, 2008, 103: 043509. doi: 10.1063/1.2885109

[21]

Bae G, Song Y, Jung D. Significant reduction of leakage current in the TIO2/Si structure by the insertion of the CeO2 intermediate layer[J]. Appl Phys Lett, 2000, 77: 729. doi: 10.1063/1.127100

[22]

Chinnamuthu P, Mondal A, Singh N K. Band gap enhancement of glancing angle deposited TIO2 nanowire array[J]. J Appl Phys, 2012, 112: 054315. doi: 10.1063/1.4749801

[23]

Aniruddha M, Jay C D, Chinnamuthu P. Electrical properties of vertically oriented TIO2 nanowire arrays synthesized by glancing angle deposition technique[J]. Electron Mater Lett, 2013, 9: 213. doi: 10.1007/s13391-012-2136-5

[24]

Li Z C, Zhu Y, Zhou Q. Photocatalytic properties of TIO2 thin films obtained by glancing angle deposition[J]. Appl Surf Sci, 2012, 258: 2766. doi: 10.1016/j.apsusc.2011.10.129

[25]

Viktor L, Matthew H, Andriy K. Omnidirectional reflection from nanocolumnar TIO2 films[J]. J Appl Phys, 2012, 112: 084317. doi: 10.1063/1.4759138

[26]

Biraj S, Swain R, Ngangbam C. Enhanced photodetection by glancing angle deposited vertically aligned TIO2 nanowires[J]. IEEE Trans Nanotechnol, 2016, 15: 389. doi: 10.1109/TNANO.2016.2536162

[27]

Zhou C M, Gall D. Growth competition during glancing angle deposition of nanorod honeycomb arrays[J]. Appl Phys Lett, 2007, 90: 093103. doi: 10.1063/1.2709929

[28]

Jang H K, Whangbo S W, Kim H B. Titanium oxide films on Si (100) deposited by electron-beam evaporation at 250℃[J]. J Vac Sci Technol A, 2000, 18: 917. doi: 10.1116/1.582275

[29]

Wang B, Qi H J, Wang H. Morphology, structure and optical properties in TIO2 nanostructured films annealed at various temperatures[J]. Opt Mater Express, 2015, 5: 1410. doi: 10.1364/OME.5.001410

[30]

Khan A F, Mehmood M, Durrani S K. Structural and optoelectronic properties of nanostructured TIO2 thin films with annealing[J]. Mat Sci Semicond Proc, 2015, 29: 161. doi: 10.1016/j.mssp.2014.02.009

[31]

Chakraborty S, Bera M K, Bhattacharya S. Current conduction mechanism in TIO2 gate dielectrics[J]. Microelectron Eng, 2005, 81: 188. doi: 10.1016/j.mee.2005.03.005

[32]

Lee M K, Huang J J, Wu T S. Electrical characteristics improvement of oxygen-annealed MOCVD-TIO2 films[J]. Semicond SciTechnol, 2005, 20: 519.

[33]

Liu Z H, Ng G I, Arulkumaran S. Temperaturedependent forward gate current transport in atomic-layer deposited Al2O3/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor[J]. Appl Phys Lett, 2011, 98: 63501. doi: 10.1063/1.3554364

[34]

Perera R, Ikeda A, Hattori R. Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation[J]. Microelectron Eng, 2003, 65: 357. doi: 10.1016/S0167-9317(02)01025-0

[35]

Kwa K S K, Chattopadhyay S, Jankovic N D. A model for capacitance reconstruction from measured lossy MOS capacitance-voltage characteristics[J]. Semicond Sci Technol, 2003, 18: 82. doi: 10.1088/0268-1242/18/2/303

[36]

Hill W A, Coleman C C. A single-frequency approximation for interface-state density determination[J]. Solid State Electron, 1989, 23: 987.

[37]

Pakma O, Serin N, Serin T. On the energy distribution profile of interface states obtained by taking into account of series resistance in Al/TIO2/p-Si (MIS) structures[J]. Physica B, 2011, 406: 771. doi: 10.1016/j.physb.2010.11.078

[1]

San S R. Analysis of optoelectronic properties of TIO2 nanowires/Si heterojunction arrays[J]. Chin Phys B, 2014, 23: 107302. doi: 10.1088/1674-1056/23/10/107302

[2]

Li H L, Yu Q J, Huang Y W. Ultralong rutile TIO2 nanowire arrays for highly efficient dye-sensitized solar cells[J]. Appl Mater Interfaces, 2016, 8: 13384. doi: 10.1021/acsami.6b01508

[3]

Tian W, Ho Y, Chen C. Sensing performance of precisely ordered TIO2 nanowire gas sensors fabricated by electron-beam lithography[J]. Sensors, 2013, 13: 865. doi: 10.3390/s130100865

[4]

Xie Y, Wei L, Wei G. A self-powered UV photodetector based on TIO2 nanorod arrays[J]. Nanoscale Res Lett, 2013, 8: 188. doi: 10.1186/1556-276X-8-188

[5]

Yu Y, Yin X, Kvit A. Evolution of hollow TIO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance[J]. Nano Lett, 2014, 14: 2528. doi: 10.1021/nl5002907

[6]

Zhang W, Cunningham B T. Biosensors with porous dielectric surface for fluorescence enhancement and methods of manufacture. US Patent, 7869032B2, 2011

[7]

Wilka G D, Wallace R M, Anthony J M. High-k gate dielectrics: current status and materials properties considerations[J]. J Appl Phys, 2001, 89: 5243. doi: 10.1063/1.1361065

[8]

Luisier M, Schenk A. Two-dimensional tunneling effects on the leakage current of MOSFETs with single dielectric and high-k gate stacks[J]. IEEE Trans Electron Dev, 2008, 55: 6.

[9]

Rajwali K, Zulfiqar , Simbarashe F. Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles[J]. J Mater Sci: Mater Electron, 2016, 27: 5960. doi: 10.1007/s10854-016-4517-2

[10]

Kumar A, Mondal S, Kumar S G. High performance solgel spin-coated titanium dioxide dielectric based MOS structures[J]. Mat Sci Semicond Proc, 2015, 40: 77. doi: 10.1016/j.mssp.2015.06.073

[11]

Negara M A, Kitano M, Long R D. Oxide charge engineering of atomic layer deposited AlOxNy/Al2O3 gate dielectrics: a path to enhancement mode GaN devices[J]. Appl Mater Interfaces, 2016, 8: 21089. doi: 10.1021/acsami.6b03862

[12]

Mahajan A M, Anil G K, Thibeault B J. High dielectric constant ZrO2 films by atomic layer deposition technique on germanium substrates[J]. Silicon, 2016, 8: 345. doi: 10.1007/s12633-015-9322-7

[13]

Jiro Y, Hong S, Ravi R. Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal-insulator-metal capacitor dielectric for GaAs HBT technology[J]. J Vac Sci Technol, 2013, 31: 01A.

[14]

Dervos C T, Thirios E, Novacovich J. Permittivity properties of thermally treated TIO2[J]. Mater Lett, 2004, 58: 1502. doi: 10.1016/j.matlet.2003.10.012

[15]

Yang Y, Qu L, Dai L. Coating of titanium dioxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials[J]. Adv Mater, 2007, 19: 1239. doi: 10.1002/(ISSN)1521-4095

[16]

Sönmezoglu S, Akin S. Current transport mechanism of antimony-doped TIO2 nanoparticles based on MOS device[J]. Sensors Actuat A, 2013, 199: 18. doi: 10.1016/j.sna.2013.04.037

[17]

Yang W, Marino J, Monson A. An investigation of annealing on the dielectric performance of TIO2 thin films[J]. Semicond Sci Technol, 2006, 21: 1573. doi: 10.1088/0268-1242/21/12/012

[18]

Vishwas M, Narasimha R K, Chakradhar R P S. Effect of film thickness and annealing on optical properties of TIO2 thin films and electrical characterization of MOS capacitors[J]. J Mater Sci: Mater Electron, 2014, 25: 4495. doi: 10.1007/s10854-014-2193-7

[19]

Frank M M, Kim S, Brown S L, Bruley J. Scaling the MOSFET gate dielectric: from high-k to higher-k[J]. Microelectron Eng, 2009, 86: 1603. doi: 10.1016/j.mee.2009.03.063

[20]

Perego M, Seguini G, Scarel G. Energy band alignment at TIO2/Si interface with various interlayers[J]. J Appl Phys, 2008, 103: 043509. doi: 10.1063/1.2885109

[21]

Bae G, Song Y, Jung D. Significant reduction of leakage current in the TIO2/Si structure by the insertion of the CeO2 intermediate layer[J]. Appl Phys Lett, 2000, 77: 729. doi: 10.1063/1.127100

[22]

Chinnamuthu P, Mondal A, Singh N K. Band gap enhancement of glancing angle deposited TIO2 nanowire array[J]. J Appl Phys, 2012, 112: 054315. doi: 10.1063/1.4749801

[23]

Aniruddha M, Jay C D, Chinnamuthu P. Electrical properties of vertically oriented TIO2 nanowire arrays synthesized by glancing angle deposition technique[J]. Electron Mater Lett, 2013, 9: 213. doi: 10.1007/s13391-012-2136-5

[24]

Li Z C, Zhu Y, Zhou Q. Photocatalytic properties of TIO2 thin films obtained by glancing angle deposition[J]. Appl Surf Sci, 2012, 258: 2766. doi: 10.1016/j.apsusc.2011.10.129

[25]

Viktor L, Matthew H, Andriy K. Omnidirectional reflection from nanocolumnar TIO2 films[J]. J Appl Phys, 2012, 112: 084317. doi: 10.1063/1.4759138

[26]

Biraj S, Swain R, Ngangbam C. Enhanced photodetection by glancing angle deposited vertically aligned TIO2 nanowires[J]. IEEE Trans Nanotechnol, 2016, 15: 389. doi: 10.1109/TNANO.2016.2536162

[27]

Zhou C M, Gall D. Growth competition during glancing angle deposition of nanorod honeycomb arrays[J]. Appl Phys Lett, 2007, 90: 093103. doi: 10.1063/1.2709929

[28]

Jang H K, Whangbo S W, Kim H B. Titanium oxide films on Si (100) deposited by electron-beam evaporation at 250℃[J]. J Vac Sci Technol A, 2000, 18: 917. doi: 10.1116/1.582275

[29]

Wang B, Qi H J, Wang H. Morphology, structure and optical properties in TIO2 nanostructured films annealed at various temperatures[J]. Opt Mater Express, 2015, 5: 1410. doi: 10.1364/OME.5.001410

[30]

Khan A F, Mehmood M, Durrani S K. Structural and optoelectronic properties of nanostructured TIO2 thin films with annealing[J]. Mat Sci Semicond Proc, 2015, 29: 161. doi: 10.1016/j.mssp.2014.02.009

[31]

Chakraborty S, Bera M K, Bhattacharya S. Current conduction mechanism in TIO2 gate dielectrics[J]. Microelectron Eng, 2005, 81: 188. doi: 10.1016/j.mee.2005.03.005

[32]

Lee M K, Huang J J, Wu T S. Electrical characteristics improvement of oxygen-annealed MOCVD-TIO2 films[J]. Semicond SciTechnol, 2005, 20: 519.

[33]

Liu Z H, Ng G I, Arulkumaran S. Temperaturedependent forward gate current transport in atomic-layer deposited Al2O3/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor[J]. Appl Phys Lett, 2011, 98: 63501. doi: 10.1063/1.3554364

[34]

Perera R, Ikeda A, Hattori R. Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation[J]. Microelectron Eng, 2003, 65: 357. doi: 10.1016/S0167-9317(02)01025-0

[35]

Kwa K S K, Chattopadhyay S, Jankovic N D. A model for capacitance reconstruction from measured lossy MOS capacitance-voltage characteristics[J]. Semicond Sci Technol, 2003, 18: 82. doi: 10.1088/0268-1242/18/2/303

[36]

Hill W A, Coleman C C. A single-frequency approximation for interface-state density determination[J]. Solid State Electron, 1989, 23: 987.

[37]

Pakma O, Serin N, Serin T. On the energy distribution profile of interface states obtained by taking into account of series resistance in Al/TIO2/p-Si (MIS) structures[J]. Physica B, 2011, 406: 771. doi: 10.1016/j.physb.2010.11.078

[1]

V. M. Nikale, S. S. Shinde, C. H. Bhosale, K.Y. Rajpure. Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond., 2011, 32(3): 033001. doi: 10.1088/1674-4926/32/3/033001

[2]

Dipak L Gapale, Sandeep A Arote, Balasaheb M Palve, Ratan Y Borse. Influence of precursor solution concentration on the structural, optical and humidity sensing properties of spray-deposited TiO2 thin films. J. Semicond., 2018, 39(12): 122003. doi: 10.1088/1674-4926/39/12/122003

[3]

Wang Bing, Xu Ping, Yang Guowei. Low-Temperature Growth and Photoluminescence of SnO2 Nanowires. J. Semicond., 2008, 29(8): 1469.

[4]

Xie Zili, Zhang Rong, Gao Chao, Liu Bin, Li Liang, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Han Ping, Jiang Ruolian, Shi Yi, Zheng Youdou. Fabrication and Characteristics of In2O3 Nanowires. J. Semicond., 2006, 27(3): 536.

[5]

Li Yuguo, Yang Aichun, Zhuo Boshi, Peng Ruiqin, Zheng Xuelei. Growth of SiO2 nanowires on different substrates using Au as a catalyst. J. Semicond., 2011, 32(2): 023002. doi: 10.1088/1674-4926/32/2/023002

[6]

Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002

[7]

Meilin He, Jingping Xu, Jianxiong Chen, Lu Liu. Improved memory performance of metal-oxide-nitride-oxide-silicon by annealing the SiO2 tunnel layer in different nitridation atmospheres. J. Semicond., 2013, 34(11): 114005. doi: 10.1088/1674-4926/34/11/114005

[8]

Fengyu Xie, Jiacheng Gao, Ning Wang. Photoelectrochemical performance of La3+-doped TiO2. J. Semicond., 2017, 38(7): 073002. doi: 10.1088/1674-4926/38/7/073002

[9]

Xuefen Cai, Peng Zhang, Su-Huai Wei. Revisit of the band gaps of rutile SnO2 and TiO2: a first-principles study. J. Semicond., 2019, 40(9): 092101. doi: 10.1088/1674-4926/40/9/092101

[10]

Gao Pan, Zhang Xuejun, Zhou Wenfang, Wu Jing, Liu Qingju. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium. J. Semicond., 2010, 31(3): 032001. doi: 10.1088/1674-4926/31/3/032001

[11]

Wenhui Xu, Xinguo Ma, Tong Wu, Zhiqi He, Huihu Wang, Chuyun Huang. First-principles study on the synergistic effects of codoped anatase TiO2 photocatalysts codoped with N/V or C/Cr. J. Semicond., 2014, 35(10): 102002. doi: 10.1088/1674-4926/35/10/102002

[12]

Wen Xin, Cao Meng, Wu Jie, Tao Junchao, Sun Yan, Dai Ning. Morphology dependence of TiO2 nanotube arrays on anodization variables and buffer medium. J. Semicond., 2010, 31(6): 063003. doi: 10.1088/1674-4926/31/6/063003

[13]

Duofa Wang, Haizheng Tao, Xiujian Zhao, Meiyan Ji, Tianjin Zhang. Enhanced photovoltaic performance in TiO2/P3HT hybrid solar cell by interface modification. J. Semicond., 2015, 36(2): 023006. doi: 10.1088/1674-4926/36/2/023006

[14]

I. B. Kherchachi, A. Attaf, H. Saidi, A. Bouhdjer, H. Bendjedidi, Y. Benkhetta, R. Azizi. Structural, optical and electrical properties of SnxSy thin films grown by spray ultrasonic. J. Semicond., 2016, 37(3): 032001. doi: 10.1088/1674-4926/37/3/032001

[15]

S. P. Yadav, S. S. Shinde, A. A. Kadam, K. Y. Rajpure. Structural, morphological, dielectrical and magnetic properties of Mn substituted cobalt ferrite. J. Semicond., 2013, 34(9): 093002. doi: 10.1088/1674-4926/34/9/093002

[16]

Chang Peng, Liu Su, Chen Rongbo, Tang Ying, Han Genliang. Low Temperature Synthesis and Optical Properties of ZnO Nanowires. J. Semicond., 2007, 28(10): 1503.

[17]

B. Hamawandi, M. Noroozi, G. Jayakumar, A. Ergül, K. Zahmatkesh, M. S. Toprak, H. H. Radamson. Electrical properties of sub-100 nm SiGe nanowires. J. Semicond., 2016, 37(10): 102001. doi: 10.1088/1674-4926/37/10/102001

[18]

S. S. Shinde, T. D. Dongle. Modelling of nanostructured TiO2-based memristors. J. Semicond., 2015, 36(3): 034001. doi: 10.1088/1674-4926/36/3/034001

[19]

Zhitao Han, Sisi Li, Junjun Li, Jinkui Chu, Yong Chen. Facile synthesis of ZnO nanowires on FTO glass for dye-sensitized solar cells. J. Semicond., 2013, 34(7): 074002. doi: 10.1088/1674-4926/34/7/074002

[20]

Xie Zili, Zhang Rong, Xiu Xiangqian, Bi Zhaoxia, Liu Bin, Pu Lin, Chen Dunjun, Han Ping, Gu Shulin, Jiang Ruoliang, Zhu Shunming, , Zhao Hong, Shi Yi. Characteristics of Annealing of InN Films. J. Semicond., 2006, 27(2): 340.

Search

Advanced Search >>

GET CITATION

B Shougaijam, R Swain, C Ngangbam, T R Lenka. Analysis of morphological, structural and electrical properties of annealed TiO2 nanowires deposited by GLAD technique[J]. J. Semicond., 2017, 38(5): 053001. doi: 10.1088/1674-4926/38/5/053001.

Export: BibTex EndNote

Article Metrics

Article views: 682 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 07 June 2016 Manuscript revised: 07 October 2016 Online: Published: 01 May 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误