J. Semicond. > Volume 38 > Issue 5 > Article Number: 054001

Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques

Evangelos I. Dimitriadis 1, , and Nikolaos Georgoulas 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A parametric study for a series of technological and geometrical parameters affecting rise time of Al/a-SiC/c-Si (p)/c-Si (n+)/Al thyristor-like switches, is presented here for the first time, using two-dimensional simulation techniques.By varying anode current values in simulation procedure we achieved very good agreement between simulation and experimental results for the rising time characteristics of the switch.A series of factors affecting the rising time of the switches are studied here.Two factors among all others studied here, exerting most significant influence, of more than one order of magnitude on the rising time, are a-SiC and c-Si (p) region widths, validating our earlier presented model for device operation.The above widths can be easily varied on device manufacture procedure.We also successfully simulated the rising time characteristics of our earlier presented simulated improved switch, with forward breakover voltage VBF=11 V and forward voltage drop VF=9.5 V at the ON state, exhibiting an ultra low rise time value of less than 10 ps, which in conjunction with its high anode current density values of 12 A/mm2 and also cheap and easy fabrication techniques, makes this switch appropriate for ESD protection as well as RF MEMS and NEMS applications.

Key words: simulationamorphous SiCswitchesrise timeESD protection

Abstract: A parametric study for a series of technological and geometrical parameters affecting rise time of Al/a-SiC/c-Si (p)/c-Si (n+)/Al thyristor-like switches, is presented here for the first time, using two-dimensional simulation techniques.By varying anode current values in simulation procedure we achieved very good agreement between simulation and experimental results for the rising time characteristics of the switch.A series of factors affecting the rising time of the switches are studied here.Two factors among all others studied here, exerting most significant influence, of more than one order of magnitude on the rising time, are a-SiC and c-Si (p) region widths, validating our earlier presented model for device operation.The above widths can be easily varied on device manufacture procedure.We also successfully simulated the rising time characteristics of our earlier presented simulated improved switch, with forward breakover voltage VBF=11 V and forward voltage drop VF=9.5 V at the ON state, exhibiting an ultra low rise time value of less than 10 ps, which in conjunction with its high anode current density values of 12 A/mm2 and also cheap and easy fabrication techniques, makes this switch appropriate for ESD protection as well as RF MEMS and NEMS applications.

Key words: simulationamorphous SiCswitchesrise timeESD protection



References:

[1]

Powell M J, Nicholls D H. Stability of amorphous silicon thin film transistors[J]. IEE Proc I, 1983, 130: 2.

[2]

Wang Y S, Zhang X M, Sheng W W. Amorphous silicon emitter heterojunction UHF power transistors for handy transmitter[J]. IEEE Electron Device Lett, 1990, 11: 187. doi: 10.1109/55.55245

[3]

Matsuoka T, Kuwano Y. Quality improvement in a-Si films and their application to a-Si solar cells[J]. IEEE Trans Electron Devices, 1990, 37: 397. doi: 10.1109/16.46373

[4]

Louro P, Fernandes M, Fantoni A. An amorphous SiC/Si photodetector with voltage selectable spectral response[J]. Thin Solid Films, 2006, 511: 167.

[5]

Dimitriadis E I, Georgoulas H, Thanailakis A. New a-SiC, optically controlled, thyristor-like switch[J]. Electron Lett, 1992, 28, 17: 1622.

[6]

Dimitriadis E I, Girginoudi D, Thanailakis A. New a-Si/c-Si and a-SiC/c-Si based optically controlled switching devices[J]. Semicond Sci Technol, 1995, 10: 523. doi: 10.1088/0268-1242/10/4/024

[7]

Dimitriadis E I, Girginoudi D, Georgoulas N. New highspeed a-Si/c-Si and a-SiC/c-Si based switches[J]. Active and Passive Electronic Components, 1996, 19: 59. doi: 10.1155/1996/56983

[8]

Dimitriadis E I, Georgoulas N, Thanailakis A. Reversible and irreversible effects on the electrical characteristics of new highspeed a-Si and a-SiC switches[J]. Microelectron J, 1998, 29: 5. doi: 10.1016/S0026-2692(97)00017-7

[9]

Costa A K, Camargo S S. Properties of amorphous SiC coatings deposited on WC-Co substrates[J]. Mater Res, 2003, 6: 39.

[10]

Xu J, Mei J, Chen D. All amorphous SiC based luminescent microcavity[J]. Diamond Relat Mater, 2005, 14: 1999. doi: 10.1016/j.diamond.2005.08.005

[11]

Wang W Q, Kalia R, Nakano A. Nanoscale thermal property of amorphous SiC: a molecular dynamics study[J]. MRS Proc, 2007: 1022E.

[12]

Schmidt H, Borchardt G, Geckle U. Comparative study of trap-limited hydrogen diffusion in amorphous SiC, Si0.66C0.33N1.33, and SiN1.33 films[J]. J Phys, 2006, 18: 5363.

[13]

Park M G, Choi W S, Boo J H. Characterization of amorphous SiC:H thin films grown by RF plasma enhanced CVD on annealing temperature[J]. Journal de Physique Ⅳ (Proceedings), 2002, 12: 155.

[14]

Sungtae K, Perepezko J H, Dong Z. Interface reaction between Ni and amorphous SiC[J]. J Electron Mater, 2004, 33: 1064. doi: 10.1007/s11664-004-0106-x

[15]

Iliescu C, Poenar D P. PECVD amorphous silicon carbide (α-SiC) layers for MEMS applications[J]. Physics and Technology of Silicon Carbide Devices, InTech, 2012.

[16]

Avram A, Bragaru A, Bangtao C. Low stress PECVD amorphous silicon carbide for MEMS applications[J]. Semiconductor Conference (CAS), 2010: 239.

[17]

Zorman C A, Barnes A C. Silicon carbide BioMEMS, silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications[J]. Elsevier, 2012.

[18]

Daves W, Krauss A, Behnel N. Amorphous silicon carbidethin films (a-SiC:H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications[J]. Thin Solid Films, 2011, 519(18): 5892. doi: 10.1016/j.tsf.2011.02.089

[19]

Shoji Y, Nakanishi K, Sakakibara Y. Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications[J]. Appl Phys Express, 2010, 3: 122201. doi: 10.1143/APEX.3.122201

[20]

Dimitriadis E I, Archontas N, Girginoudi D. Two dimensional simulation and modeling of the electrical characteristics of the a-SiC/c-Si (p) based, thyristor like switches[J]. Microelectron Eng, 2015, 133: 120. doi: 10.1016/j.mee.2014.11.006

[21]

Dimitriadis E I, Farmakis F, Girginoudi D. Parametric study and improvement of the electrical characteristics of a-SiC/c-Si (p) based, thyristor like switches, using two dimensional simulation techniques[J]. J Active Passive Electron Devices, 2015, 10: 283.

[22]

Parro R J, Scardelletti M C, Varaljay N. Amorphous SiC as a structural layer in microbridge-based RF MEMS switches for use in software-defined radio[J]. Solid State Electron, 2008, 52(10): 1647. doi: 10.1016/j.sse.2008.06.004

[23]

ATLAS Users Manual, SILVACO, Inc. , Santa Clara, CA, 2003

[24]

Hatzopoulos A T, Arpatzanis N, Tassis D H. Electrical and noise characterization of bottom-gated nanocrystalline silicon thin-film transistors[J]. J Appl Phys, 2006, 100: 114311. doi: 10.1063/1.2396795

[25]

Blicher A. Thyristor physics[J]. Springer, 1976.

[26]

Kuhl J, Gobel E O, Pfeiffer T. Subpicosecond carrier trapping in high defect density amorphous Si and GaAs[J]. Appl Phys A, 1984, 34(2): 105. doi: 10.1007/BF00614761

[27]

Wraback M, Chen L, Tauc J. Picosecond photomodulation study of nanocrystalline hydrogenated silicon[J]. Mater Res Soc Symp Proc, 1990, 164: 223.

[28]

Esser A, Seibert K, Kurz H. Ultrafast recombination and trapping in amorphous silicon[J]. J Non-Crystal Solids, 1989, 114(2): 573.

[1]

Powell M J, Nicholls D H. Stability of amorphous silicon thin film transistors[J]. IEE Proc I, 1983, 130: 2.

[2]

Wang Y S, Zhang X M, Sheng W W. Amorphous silicon emitter heterojunction UHF power transistors for handy transmitter[J]. IEEE Electron Device Lett, 1990, 11: 187. doi: 10.1109/55.55245

[3]

Matsuoka T, Kuwano Y. Quality improvement in a-Si films and their application to a-Si solar cells[J]. IEEE Trans Electron Devices, 1990, 37: 397. doi: 10.1109/16.46373

[4]

Louro P, Fernandes M, Fantoni A. An amorphous SiC/Si photodetector with voltage selectable spectral response[J]. Thin Solid Films, 2006, 511: 167.

[5]

Dimitriadis E I, Georgoulas H, Thanailakis A. New a-SiC, optically controlled, thyristor-like switch[J]. Electron Lett, 1992, 28, 17: 1622.

[6]

Dimitriadis E I, Girginoudi D, Thanailakis A. New a-Si/c-Si and a-SiC/c-Si based optically controlled switching devices[J]. Semicond Sci Technol, 1995, 10: 523. doi: 10.1088/0268-1242/10/4/024

[7]

Dimitriadis E I, Girginoudi D, Georgoulas N. New highspeed a-Si/c-Si and a-SiC/c-Si based switches[J]. Active and Passive Electronic Components, 1996, 19: 59. doi: 10.1155/1996/56983

[8]

Dimitriadis E I, Georgoulas N, Thanailakis A. Reversible and irreversible effects on the electrical characteristics of new highspeed a-Si and a-SiC switches[J]. Microelectron J, 1998, 29: 5. doi: 10.1016/S0026-2692(97)00017-7

[9]

Costa A K, Camargo S S. Properties of amorphous SiC coatings deposited on WC-Co substrates[J]. Mater Res, 2003, 6: 39.

[10]

Xu J, Mei J, Chen D. All amorphous SiC based luminescent microcavity[J]. Diamond Relat Mater, 2005, 14: 1999. doi: 10.1016/j.diamond.2005.08.005

[11]

Wang W Q, Kalia R, Nakano A. Nanoscale thermal property of amorphous SiC: a molecular dynamics study[J]. MRS Proc, 2007: 1022E.

[12]

Schmidt H, Borchardt G, Geckle U. Comparative study of trap-limited hydrogen diffusion in amorphous SiC, Si0.66C0.33N1.33, and SiN1.33 films[J]. J Phys, 2006, 18: 5363.

[13]

Park M G, Choi W S, Boo J H. Characterization of amorphous SiC:H thin films grown by RF plasma enhanced CVD on annealing temperature[J]. Journal de Physique Ⅳ (Proceedings), 2002, 12: 155.

[14]

Sungtae K, Perepezko J H, Dong Z. Interface reaction between Ni and amorphous SiC[J]. J Electron Mater, 2004, 33: 1064. doi: 10.1007/s11664-004-0106-x

[15]

Iliescu C, Poenar D P. PECVD amorphous silicon carbide (α-SiC) layers for MEMS applications[J]. Physics and Technology of Silicon Carbide Devices, InTech, 2012.

[16]

Avram A, Bragaru A, Bangtao C. Low stress PECVD amorphous silicon carbide for MEMS applications[J]. Semiconductor Conference (CAS), 2010: 239.

[17]

Zorman C A, Barnes A C. Silicon carbide BioMEMS, silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications[J]. Elsevier, 2012.

[18]

Daves W, Krauss A, Behnel N. Amorphous silicon carbidethin films (a-SiC:H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications[J]. Thin Solid Films, 2011, 519(18): 5892. doi: 10.1016/j.tsf.2011.02.089

[19]

Shoji Y, Nakanishi K, Sakakibara Y. Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications[J]. Appl Phys Express, 2010, 3: 122201. doi: 10.1143/APEX.3.122201

[20]

Dimitriadis E I, Archontas N, Girginoudi D. Two dimensional simulation and modeling of the electrical characteristics of the a-SiC/c-Si (p) based, thyristor like switches[J]. Microelectron Eng, 2015, 133: 120. doi: 10.1016/j.mee.2014.11.006

[21]

Dimitriadis E I, Farmakis F, Girginoudi D. Parametric study and improvement of the electrical characteristics of a-SiC/c-Si (p) based, thyristor like switches, using two dimensional simulation techniques[J]. J Active Passive Electron Devices, 2015, 10: 283.

[22]

Parro R J, Scardelletti M C, Varaljay N. Amorphous SiC as a structural layer in microbridge-based RF MEMS switches for use in software-defined radio[J]. Solid State Electron, 2008, 52(10): 1647. doi: 10.1016/j.sse.2008.06.004

[23]

ATLAS Users Manual, SILVACO, Inc. , Santa Clara, CA, 2003

[24]

Hatzopoulos A T, Arpatzanis N, Tassis D H. Electrical and noise characterization of bottom-gated nanocrystalline silicon thin-film transistors[J]. J Appl Phys, 2006, 100: 114311. doi: 10.1063/1.2396795

[25]

Blicher A. Thyristor physics[J]. Springer, 1976.

[26]

Kuhl J, Gobel E O, Pfeiffer T. Subpicosecond carrier trapping in high defect density amorphous Si and GaAs[J]. Appl Phys A, 1984, 34(2): 105. doi: 10.1007/BF00614761

[27]

Wraback M, Chen L, Tauc J. Picosecond photomodulation study of nanocrystalline hydrogenated silicon[J]. Mater Res Soc Symp Proc, 1990, 164: 223.

[28]

Esser A, Seibert K, Kurz H. Ultrafast recombination and trapping in amorphous silicon[J]. J Non-Crystal Solids, 1989, 114(2): 573.

[1]

Wang Albert, Lin Lin, Wang Xin, Liu Hainan, Zhou Yumei. Emerging Challenges in ESD Protection for RF ICs in CMOS. J. Semicond., 2008, 29(4): 628.

[2]

Hongwei Pan, Siyang Liu, Weifeng Sun. A novel latch-up free SCR-LDMOS with high holding voltage for a power-rail ESD clamp. J. Semicond., 2013, 34(1): 014007. doi: 10.1088/1674-4926/34/1/014007

[3]

Jiang Shouzhen, Xu Xian'gang, Li Juan, Chen Xiufang, Wang Yingmin, Ning Li'na, Hu Xiaobo, Wang Jiyang, Jiang Minhua. Recent Progress in SiC Monocrystal Growth and Wafer Machining. J. Semicond., 2007, 28(5): 810.

[4]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[5]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[6]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[7]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[8]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[9]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[10]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[11]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[12]

Wu Rufei, Yin Junjian, Liu Huidong, Zhang Haiying. An 8~20GHz Monolithic SPDT GaAs pin Diode Switch. J. Semicond., 2008, 29(10): 1864.

[13]

Wu Rufei, Zhang Jian, Yin Junjian, Zhang Haiying. A C-Band Monolithic GaAs PIN Diode SPST Switch. J. Semicond., 2008, 29(5): 879.

[14]

Jian Liu, Shihua Huang, Lü He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010

[15]

Zhao Yan, Wu Lihua, Han Xiaowei, Li Yan, Zhang Qianli, Chen Liang, Zhang Guoquan, Li Jianzhong, Yang Bo, Gao Jiantou, Wang Jian, Li Ming, Liu Guizhai, Zhang Feng, Guo Xufeng, Zhao Kai, Stanley L. Chen, Yu Fang, Liu Zhongli. An IO block array in a radiation-hardened SOI SRAM-based FPGA. J. Semicond., 2012, 33(1): 015010. doi: 10.1088/1674-4926/33/1/015010

[16]

Jia Cheng, Linhong Ji, Kesheng Wang, Chuankun Han, Yixiang Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004

[17]

Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008

[18]

Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou, Tailiang Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005

[19]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[20]

Changyong Zheng, Wei Zhang, Tailong Xu, Yuehua Dai, Junning Chen. A compact model for single material double work function gate MOSFET. J. Semicond., 2013, 34(9): 094006. doi: 10.1088/1674-4926/34/9/094006

Search

Advanced Search >>

GET CITATION

E I Dimitriadis, N Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques[J]. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001.

Export: BibTex EndNote

Article Metrics

Article views: 748 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 22 June 2016 Manuscript revised: 27 November 2016 Online: Published: 01 May 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误