J. Semicond. > Volume 38 > Issue 5 > Article Number: 054007

A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide

Rongrui Liu , Yubing Wang , Dongdong Yin , Han Ye , Xiaohong Yang and Qin Han ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75% coupling efficiency (CE) between single-mode fiber and silicon-on-insulator (SOI) waveguide through 2D finite-different time-domain (FDTD) simulation. The proposed architecture has a uniform structure with no bottom reflection element or silicon overlay. The structure, including grating couplers, adiabatic tapers and interconnection waveguides can be fabricated on the SOI waveguide with only a single electron-beam lithography (ICP) step, which is CMOS-compatible. A relatively high coupling efficiency of 47.2% was obtained at a wavelength of 1562 nm.

Key words: grating couplercoupling efficiencysilicon-on-insulator waveguidesingle-mode fiberintegrated optics

Abstract: We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75% coupling efficiency (CE) between single-mode fiber and silicon-on-insulator (SOI) waveguide through 2D finite-different time-domain (FDTD) simulation. The proposed architecture has a uniform structure with no bottom reflection element or silicon overlay. The structure, including grating couplers, adiabatic tapers and interconnection waveguides can be fabricated on the SOI waveguide with only a single electron-beam lithography (ICP) step, which is CMOS-compatible. A relatively high coupling efficiency of 47.2% was obtained at a wavelength of 1562 nm.

Key words: grating couplercoupling efficiencysilicon-on-insulator waveguidesingle-mode fiberintegrated optics



References:

[1]

Sun C, Wade M T, Lee Y. Single-chip microprocessor that communicates directly using light[J]. Nature, 2015, 528: 534. doi: 10.1038/nature16454

[2]

Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors[J]. Nat Photon, 2010, 4: 527. doi: 10.1038/nphoton.2010.157

[3]

Streshinsky M, Ding R, Liu Y. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm[J]. Opt Express, 2013, 21: 30350. doi: 10.1364/OE.21.030350

[4]

Li G, Yao J, Thacker H. Ultralow-loss, high-density SOI optical waveguide routing for macro-chip interconnects[J]. Opt Express, 2012, 20: 12035. doi: 10.1364/OE.20.012035

[5]

Van Laere F, Roelkens G, Ayre M. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides[J]. J Lightwave Technol, 2007, 25: 151. doi: 10.1109/JLT.2006.888164

[6]

Taillaert D, Van Laere F, Ayre M. Grating couplers for coupling between optical fibers and nanophotonic waveguides[J]. Jpn J Appl Phys, 2006, 45: 6071. doi: 10.1143/JJAP.45.6071

[7]

Roelkens G, Dumon P, Bogaerts W. Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography[J]. IEEE PTL, 2005, 17: 2613. doi: 10.1109/LPT.2005.859132

[8]

Tsuchizawa T, Yamada K, Fukuda H. Microphotonics devices based on silicon microfabrication technology[J]. IEEE JSTQE, 2005, 11: 232.

[9]

Roelkens G, Van Thourhout D, Baets R. High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay[J]. Opt Express, 2006, 14: 11622. doi: 10.1364/OE.14.011622

[10]

Vermeulen D, Selvaraja S, Verheyen P. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS compatible silicon-on-insulator platform[J]. Opt Express, 2014, 18: 18278.

[11]

Yang S, Zhang Y, Baehr-Jones T. High efficiency germanium-assisted grating coupler[J]. Opt Express, 2014, 22: 30607. doi: 10.1364/OE.22.030607

[12]

Ding Y, Ou H, Peucheret C. Fully-etched apodized fiber-tochip grating coupler on the SOI platform with-0.78 dB coupling efficiency using photonic crystals and bonded Al mirror[J]. European Conference on Optical Communications, 2014: P.2.4.

[13]

Ding Y, Peucheret C, Ou H. Fully etched apodized grating coupler on the SOI platform with 0.58 dB coupling efficiency[J]. Opt Lett, 2014, 39: 5348. doi: 10.1364/OL.39.005348

[14]

Zaoui W S, Kunze A, Vogel W. Bridging the gap between optical fibers and silicon photonic integrated circuits[J]. Opt Express, 2014, 22: 1277. doi: 10.1364/OE.22.001277

[15]

Zaoui W S, Kunze A, Vogel W. CMOS-compatible polarization splitting grating couplers with a backside metal mirror[J]. IEEE Photon Technol Lett, 2013, 25: 1395. doi: 10.1109/LPT.2013.2266132

[16]

Benedikovic D, Cheben P, Schmid J H. High-efficiency single etch step apodized surface grating coupler using subwavelength structure[J]. Laser Photonics Rev, 2014, 8: L93. doi: 10.1002/lpor.v8.6

[17]

He L, Liu Y, Galland C. A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography[J]. IEEE Photon Technol Lett, 2013, 25: 1358. doi: 10.1109/LPT.2013.2265911

[18]

Jin Y J, Xue C Y, Chou X J. Highly efficient grating coupler between optical fiber and silicon-on-insulator waveguide[J]. International Conference on Electronics and Optoelectronics (ICEOE), 2011, 2: 382.

[1]

Sun C, Wade M T, Lee Y. Single-chip microprocessor that communicates directly using light[J]. Nature, 2015, 528: 534. doi: 10.1038/nature16454

[2]

Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors[J]. Nat Photon, 2010, 4: 527. doi: 10.1038/nphoton.2010.157

[3]

Streshinsky M, Ding R, Liu Y. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm[J]. Opt Express, 2013, 21: 30350. doi: 10.1364/OE.21.030350

[4]

Li G, Yao J, Thacker H. Ultralow-loss, high-density SOI optical waveguide routing for macro-chip interconnects[J]. Opt Express, 2012, 20: 12035. doi: 10.1364/OE.20.012035

[5]

Van Laere F, Roelkens G, Ayre M. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides[J]. J Lightwave Technol, 2007, 25: 151. doi: 10.1109/JLT.2006.888164

[6]

Taillaert D, Van Laere F, Ayre M. Grating couplers for coupling between optical fibers and nanophotonic waveguides[J]. Jpn J Appl Phys, 2006, 45: 6071. doi: 10.1143/JJAP.45.6071

[7]

Roelkens G, Dumon P, Bogaerts W. Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography[J]. IEEE PTL, 2005, 17: 2613. doi: 10.1109/LPT.2005.859132

[8]

Tsuchizawa T, Yamada K, Fukuda H. Microphotonics devices based on silicon microfabrication technology[J]. IEEE JSTQE, 2005, 11: 232.

[9]

Roelkens G, Van Thourhout D, Baets R. High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay[J]. Opt Express, 2006, 14: 11622. doi: 10.1364/OE.14.011622

[10]

Vermeulen D, Selvaraja S, Verheyen P. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS compatible silicon-on-insulator platform[J]. Opt Express, 2014, 18: 18278.

[11]

Yang S, Zhang Y, Baehr-Jones T. High efficiency germanium-assisted grating coupler[J]. Opt Express, 2014, 22: 30607. doi: 10.1364/OE.22.030607

[12]

Ding Y, Ou H, Peucheret C. Fully-etched apodized fiber-tochip grating coupler on the SOI platform with-0.78 dB coupling efficiency using photonic crystals and bonded Al mirror[J]. European Conference on Optical Communications, 2014: P.2.4.

[13]

Ding Y, Peucheret C, Ou H. Fully etched apodized grating coupler on the SOI platform with 0.58 dB coupling efficiency[J]. Opt Lett, 2014, 39: 5348. doi: 10.1364/OL.39.005348

[14]

Zaoui W S, Kunze A, Vogel W. Bridging the gap between optical fibers and silicon photonic integrated circuits[J]. Opt Express, 2014, 22: 1277. doi: 10.1364/OE.22.001277

[15]

Zaoui W S, Kunze A, Vogel W. CMOS-compatible polarization splitting grating couplers with a backside metal mirror[J]. IEEE Photon Technol Lett, 2013, 25: 1395. doi: 10.1109/LPT.2013.2266132

[16]

Benedikovic D, Cheben P, Schmid J H. High-efficiency single etch step apodized surface grating coupler using subwavelength structure[J]. Laser Photonics Rev, 2014, 8: L93. doi: 10.1002/lpor.v8.6

[17]

He L, Liu Y, Galland C. A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography[J]. IEEE Photon Technol Lett, 2013, 25: 1358. doi: 10.1109/LPT.2013.2265911

[18]

Jin Y J, Xue C Y, Chou X J. Highly efficient grating coupler between optical fiber and silicon-on-insulator waveguide[J]. International Conference on Electronics and Optoelectronics (ICEOE), 2011, 2: 382.

[1]

Niu Gang, Fan Zhongwei, Wang Peifeng, Cui Jianfeng, Shi Zhaohui, Zhang Jing. A Single Fiber Coupling Technique for High Power Diode Laser Arrays. J. Semicond., 2007, 28(10): 1607.

[2]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[3]

Lang Tingting, He Jianjun, He Sailing. A Novel Triplexer Design Based on Arrayed Waveguide Grating. J. Semicond., 2006, 27(2): 368.

[4]

Yao Fei, Tianshu Yang, Zhaofeng Li, Wen Liu, Xiaodong Wang, Wanhua Zheng, Fuhua Yang. Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes. J. Semicond., 2017, 38(4): 044009. doi: 10.1088/1674-4926/38/4/044009

[5]

Zhao Lei, An Junming, Zhang Jiashun, Song Shijiao, Wu Yuanda, Hu Xiongwei. 16 channel 200 GHz arrayed waveguide grating based on Si nanowire waveguides. J. Semicond., 2011, 32(2): 024010. doi: 10.1088/1674-4926/32/2/024010

[6]

Chen Yuanyuan, Yu Jinzhong, Yan Qingfeng, Chen Shaowu. Analysis on Influencing Factors of Bend Loss of Silicon-on-Insulator Waveguides. J. Semicond., 2005, 26(S1): 216.

[7]

Wu Zhigang, Zhang Weigang, Wang Zhi, Kai Guiyun, Yuan Shuzhong, Dong Xiaoyi, Utaka K, Wada Y. Fabrication and Evaluation of Bragg Gratings on Optimally Designed Silicon-on-Insulator Rib Waveguides Using Electron-Beam Lithography. J. Semicond., 2006, 27(8): 1347.

[8]

Liu Chao, Wang Xin, Yuan Haiqing, Zhong Baoxuan, Zhu Ninghua. Analysis of Coupling Efficiency of TO-Packaged VCSELs. J. Semicond., 2006, 27(4): 751.

[9]

Zhong Xin, Huang Yidong, Zhao Han, Zhang Wei, Peng Jiangde. Optimization Design of Superluminescent Diodes with RWGStructure for High Efficiency Coupling with SMFs. J. Semicond., 2006, 27(4): 683.

[10]

Yangjie Zhang, Wentao Guo, Di Xiong, Xiaofeng Guo, Wenyuan Liao, Haifeng Liu, Weihua Liu, Manqing Tan. Simulation of structural design with high coupling efficiency in external cavity semiconductor laser. J. Semicond., 2019, 40(10): 102302. doi: 10.1088/1674-4926/40/10/102302

[11]

Qin Zhengkun, Ma Chunsheng. Fabrication of a 17×17 Polymer Arrayed Waveguide Gratingwith Flat Spectral Response. J. Semicond., 2008, 29(9): 1804.

[12]

Yu Zhou, Xinxing Li, Renbing Tan, Wei Xue, Yongdan Huang, Shitao Lou, Baoshun Zhang, Hua Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor. J. Semicond., 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002

[13]

Chen Zhiwen, Li Zhangjian, Zhu Qile, Zhao Yuzhou, Lin Xubin, Li Jing, Cai Zhigang, Wang Gang, Li Baojun. Theoretical Analysis and Design of Si-based Micro- and Nano- Integrated Optical Waveguides. J. Semicond., 2005, 26(S1): 229.

[14]

Huang Qingzhong, Yu Jinzhong. Recent Progress on SOI-Based High-Speed Electro-Optic Modulators. J. Semicond., 2006, 27(12): 2069.

[15]

Tang Yi, Zhang Hao, Yang Jianyi, Wang Minghua, Jiang Xiaoqing. A 1×4 Polymeric Digital Optical Switch Basedon the Thermo-Optic Effect. J. Semicond., 2006, 27(4): 692.

[16]

Wu Zhigang, Zhang Weigang, Wang Zhi, Kai Guiyun, Yuan Shuzhong, Dong Xiaoyi, Utaka Katsuyuki, Wada Yasuo. Tapered Multimode Interference Combiners for Coherent Receivers. J. Semicond., 2006, 27(2): 328.

[17]

Sun Yiling, Jiang Xiaoqing, Yang Jianyi, Wang Minghua. Analysis of Phase Relations in MMI Couplers with a Positional Number of 2. J. Semicond., 2005, 26(11): 2236.

[18]

Liu Chao, Zhang Yali, Xu Guizhi, Zhang Tao, Hou Guanghui, Zhu Ninghua. Analysis of Operation Errors of TO-Packaged VCSELs. J. Semicond., 2006, 27(8): 1480.

[19]

Chen Shaowu, Yu Jinzhong, Liu Jingwei, Wang Zhangtao, Xia Jinsong, Fan Zhongchao. Silicon-on-Insulator Based Optical Waveguide and Integrated Switch Matrix. J. Semicond., 2005, 26(S1): 212.

[20]

An Junming, Wu Yuanda, Li Jian, Wang Hongjie, Li Jianguang, Li Junyi, Hu Xiongwei. Triplexers Based on SOI Flattop AWGs. J. Semicond., 2008, 29(8): 1504.

Search

Advanced Search >>

GET CITATION

R R Liu, Y B Wang, D D Yin, H Ye, X H Yang, Q Han. A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide[J]. J. Semicond., 2017, 38(5): 054007. doi: 10.1088/1674-4926/38/5/054007.

Export: BibTex EndNote

Article Metrics

Article views: 1934 Times PDF downloads: 19 Times Cited by: 0 Times

History

Manuscript received: 02 September 2016 Manuscript revised: 02 November 2016 Online: Published: 01 May 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误