Citation: |
Wei Yuan, Xinzhou Wu, Weibing Gu, Jian Lin, Zheng Cui. Printed stretchable circuit on soft elastic substrate for wearable application[J]. Journal of Semiconductors, 2018, 39(1): 015002. doi: 10.1088/1674-4926/39/1/015002
****
W Yuan, X Z Wu, W B Gu, J Lin, Z Cui, Printed stretchable circuit on soft elastic substrate for wearable application[J]. J. Semicond., 2018, 39(1): 015002. doi: 10.1088/1674-4926/39/1/015002.
|
Printed stretchable circuit on soft elastic substrate for wearable application
DOI: 10.1088/1674-4926/39/1/015002
More Information
-
Abstract
In this paper, a flexible and stretchable circuit has been fabricated by the printing method based on Ag NWs/PDMS composite. The randomly oriented Ag NWs were buried in PDMS to form a conductive and stretchable electrode. Stable conductivity was achieved with a large range of tensile strain (0–50%) after the initial stretching/releasing cycle. The stable electrical response is due to the buckling of the Ag NWs/PDMS composite layer. Furthermore, printed stretchable circuits integrated with commercial ICs have been demonstrated for wearable applications. -
References
[1] Suo Z. Mechanics of stretchable electronics and soft machines. MRS Bull, 2012, 37(3): 218 doi: 10.1557/mrs.2012.32[2] Kim D H, Kim Y S, W J, et al. ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv Mater, 2009, 21: 3703 doi: 10.1002/adma.v21:36[3] Cheng T, Zhang Y, Lai W Y, et al. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv Mater, 2015, 27(22): 3349 doi: 10.1002/adma.v27.22[4] Cheng T, Zhang Y, Zhang J D, et al. High-performance free-standing PEDOT:pss electrodes for flexible and transparent all-solid-state supercapacitors. J Mater Chem A, 2016, 4: 10493 doi: 10.1039/C6TA03537J[5] Kim D H, Xiao J, Song J, et al. Stretchable, curvilinear electronics based on inorganic material. Adv Mater, 2010, 22: 2108 doi: 10.1002/adma.v22:19[6] Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9: 511 doi: 10.1038/nmat2745[7] Gao L, Zhang Y, Malyarchuk V, et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun, 2014, 5: 4938 doi: 10.1038/ncomms5938[8] Bandodkar A J, Nuñez-Flores R, Jia W, et al. All-printed stretchable electrochemical devices. Adv Mater, 2015, 27: 3060 doi: 10.1002/adma.201500768[9] Larmagnac A, Eggenberger S, Janossy H, et al. Stretchable electronics based on Ag-PDMS composites. Sci Rep, 2014, 4: 7254[10] Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat Commun, 2015, 6: 7461 doi: 10.1038/ncomms8461[11] Matsuhisa N, Inoue D, Zalar P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater, 2017, 16: 834 doi: 10.1038/nmat4904[12] Zhang R, Lin W, Moon K S, et al. Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles. ACS Appl Mater Interfaces, 2010, 2(9): 2637 doi: 10.1021/am100456m[13] Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater, 2012, 24: 5117 doi: 10.1002/adma.201201886[14] Amjadi M, Pichitpajongkit A, Lee S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire elastomer nanocomposite. ACS NANO, 2014, 8: 5154 doi: 10.1021/nn501204t[15] Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv Mater, 2016, 28(28): 5986 doi: 10.1002/adma.201600772[16] Liang J, Li L, Chen D, et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat Commun, 2015, 6: 7647 doi: 10.1038/ncomms8647[17] Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6(4): 2345 doi: 10.1039/c3nr05496a[18] Cheng T, Zhang Y Z, Yi J P, et al. Inkjet-printed flexible, transparent and aesthetic energy storage devices based on PEDOT:PSS/Ag grid electrodes. J Mater Chem A, 2016, 4: 13754 doi: 10.1039/C6TA05319J[19] Cheng T, Zhang Y Z, Lai W Y, et al. High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free method. J Mater Chem C, 2014, 2: 10369 doi: 10.1039/C4TC01959H[20] Liang J, Li L, Niu X, et al. Elastomeric polymer light-emitting devices and displays. Nat Photon, 2013, 7(10): 817 doi: 10.1038/nphoton.2013.242[21] Madaria A R, Kumar A, Ishikawa F N, et al. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res, 2010, 3(8): 564 doi: 10.1007/s12274-010-0017-5[22] Yan C, Wang J, Wang X, et al. An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv Mater, 2014, 26(6): 943 doi: 10.1002/adma.v26.6[23] Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotech, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36[24] Lee P, Lee J, Lee H, et al. Flexible electronics: highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater, 2012, 24(25): 3326 doi: 10.1002/adma.v24.25[25] Martinez V, Stauffer F, Adagunodo M O, et al. Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties. ACS Appl Mater Interfaces, 2015, 7(24): 13467 doi: 10.1021/acsami.5b02508[26] Henley S J, Cann M, Jurewicz I, et al. Laser patterning of transparent conductive metal nanowire coatings: simulation and experiment. Nanoscale, 2014, 6(2): 946 doi: 10.1039/C3NR05504C[27] Madaria A R, Kumar A, Ishikawa F N, et al. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res, 2010, 3(8): 564 doi: 10.1007/s12274-010-0017-5[28] Liang J, Li L, Chen D, et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat Commun, 2015, 6: 7647 doi: 10.1038/ncomms8647[29] Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv Mater, 2016, 28(28): 5986 doi: 10.1002/adma.201600772[30] Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat Commun, 2015, 6: 7461 doi: 10.1038/ncomms8461 -
Proportional views