J. Semicond. > Volume 39 > Issue 12 > Article Number: 123004

The effect of oxygen on the epitaxial growth of diamond

Meng Gong 1, 2, , Yanan Chen 1, 2, , Wancheng Yu 1, , Peng Jin 1, 2, , , Zhanguo Wang 1, , Zhimin Wang 3, , Shenjin Zhang 3, , Feng Yang 3, , Fengfeng Zhang 3, , Qinjun Peng 3, and Zuyan Xu 3,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: We studied the effect of oxygen on the growth quality of diamond epitaxial layers. After oxygen is added during the growth of the diamond epitaxial layer, as the thickness of the epitaxial layer increases, the full width at half maximum of the rocking curve of the (004) plane of diamond epitaxial layer increases continuously, and, in addition, the intensities of both the Raman peaks and the free exciton emission peaks of the diamond epitaxial layer decrease continuously. These experimental results demonstrate that as the thickness of the diamond epitaxial layer increases, the quality of the diamond epitaxial layer degrades. The strong etching effect of the OH radical groups in the plasma on the diamond epilayers leads to the degradation of their crystallinity.

Key words: diamondultra-wide bandgap semiconductorMPCVDoxygen effect

Abstract: We studied the effect of oxygen on the growth quality of diamond epitaxial layers. After oxygen is added during the growth of the diamond epitaxial layer, as the thickness of the epitaxial layer increases, the full width at half maximum of the rocking curve of the (004) plane of diamond epitaxial layer increases continuously, and, in addition, the intensities of both the Raman peaks and the free exciton emission peaks of the diamond epitaxial layer decrease continuously. These experimental results demonstrate that as the thickness of the diamond epitaxial layer increases, the quality of the diamond epitaxial layer degrades. The strong etching effect of the OH radical groups in the plasma on the diamond epilayers leads to the degradation of their crystallinity.

Key words: diamondultra-wide bandgap semiconductorMPCVDoxygen effect



References:

[1]

Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297(5587): 1670

[2]

Landstrass M I, Plano M A, Moreno M A, et al. Device properties of homoepitaxially grown diamond. Diamond Relat Mater, 1993, 2(5): 1033

[3]

Mer‐Calfati C, Habka N, Ben‐Younes A, et al. High surface smoothening of diamond HPHT (100) substrates. Phys Status Solidi A, 2009, 206(9): 1955

[4]

Wang Z G, Zheng Y L, et al. Research progress of semiconductor materials (Volume I). Beijing: High Education Press, 2012

[5]

Kuwabara D, Makino T, Takeuchi D, et al. Unique temperature dependence of deep ultraviolet emission intensity for diamond light emitting diodes. Jpn J Appl Phys, 2014, 53: 05FP02

[6]

Chang X H, Wang Y F, Zhang X F, et al. UV-photodetector based on NiO/diamond film. Appl Phys Lett, 2018, 112(3): 032103

[7]

Ozawa N, Makino T, Kato H, et al. Temperature dependence of electrical characteristics for diamond Schottky-pn diode in forward bias. Diamond Relat Mater, 2018, 85: 49

[8]

Zhou J J, Bai S, Kong C, et al. Research on the diamond MISFET. J Semicond, 2013, 34(3): 034006

[9]

Zhang J F, Ren Z Y, Zhang C F, et al. Characterization and mobility analysis of MoO3-gated diamond MOSFET. Jpn J Appl Phys, 2017, 56(10): 100

[10]

Zhang Y, Chen Y N, Liu Y L, et al. Research on band-edge emission properties and mechanism of high-quality single-crystal diamond. Carbon, 2018, 132: 651

[11]

Ohmagari S, Teraji T, Koide Y. Non-destructive detection of killer defects of diamond Schottky barrier diodes. J Appl Phys, 2011, 110: 056105

[12]

Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Silicon incorporation into chemical vapor deposition diamond: a role of oxygen. Appl Phys Lett, 1997, 71(5): 629

[13]

Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Effect of oxygen addition on boron incorporation on semiconductive diamond CVD. Diamond Relat Mater, 1998, 7(8): 1144

[14]

Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Suppression of surface cracks on (111) homoepitaxial diamond through impurity limitation by oxygen addition. Appl Phys Lett, 1998, 73(18): 2675

[15]

Das D, Singh R N, Barney I T, et al. Effect of oxygen on growth and properties of diamond thin film deposited at low surface temperature. J Vac Sci Technol A, 2008, 26(6): 1487

[16]

Tallaire A, Achard J, Silva F, et al. Oxygen plasma pre-treatments for high quality homoepitaxial CVD diamond deposition. Phys Status Solidi A, 2004, 201(11): 2419

[17]

Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett, 2013, 103(15): 151905

[18]

Widmann C J, Müller-Sebert W, Lang N, et al. Homoepitaxial growth of single crystalline CVD-diamond. Diamond Relat Mater, 2016, 64: 1

[19]

Tsubouchi N, Mokuno Y, Shikata S. Characterizations of etch pits formed on single crystal diamond surface using oxygen/hydrogen plasma surface treatment. Diamond Relat Mater, 2016, 63: 43

[20]

Ichikawa K, Kodama H, Suzuki K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching. Thin Solid Films, 2016, 600: 142

[21]

Romanov A E, Pompe W, Beltz G, et al. Modeling of threading dislocation density reduction in heteroepitaxial layers. Phys Status Solidi B, 1997, 199(1): 33

[22]

Speck J S, Brewer M A, Beltz G, et al. Scaling laws for the reduction of threading dislocation densities in homogeneous buffer layers. J Appl Phys, 1996, 80(7): 3808

[23]

Achard J, Tallaire A, Mille V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates. Phys Status Solidi A, 2014, 211(10): 2264

[24]

Naamoun M, Tallaire A, Doppelt P, et al. Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks. Diamond Relat Mater, 2015, 58: 62

[25]

Long R, Dai Y, Yu L. Structural and electronic properties of oxygen-adsorbed diamond (100) surface. J Phys Chem C, 2007, 111(2): 855

[26]

Long R, Dai Y, Guo M. Characterization of diamond (100) surface with oxygen termination. Appl Surf Sci, 2008, 254(9): 2851

[1]

Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297(5587): 1670

[2]

Landstrass M I, Plano M A, Moreno M A, et al. Device properties of homoepitaxially grown diamond. Diamond Relat Mater, 1993, 2(5): 1033

[3]

Mer‐Calfati C, Habka N, Ben‐Younes A, et al. High surface smoothening of diamond HPHT (100) substrates. Phys Status Solidi A, 2009, 206(9): 1955

[4]

Wang Z G, Zheng Y L, et al. Research progress of semiconductor materials (Volume I). Beijing: High Education Press, 2012

[5]

Kuwabara D, Makino T, Takeuchi D, et al. Unique temperature dependence of deep ultraviolet emission intensity for diamond light emitting diodes. Jpn J Appl Phys, 2014, 53: 05FP02

[6]

Chang X H, Wang Y F, Zhang X F, et al. UV-photodetector based on NiO/diamond film. Appl Phys Lett, 2018, 112(3): 032103

[7]

Ozawa N, Makino T, Kato H, et al. Temperature dependence of electrical characteristics for diamond Schottky-pn diode in forward bias. Diamond Relat Mater, 2018, 85: 49

[8]

Zhou J J, Bai S, Kong C, et al. Research on the diamond MISFET. J Semicond, 2013, 34(3): 034006

[9]

Zhang J F, Ren Z Y, Zhang C F, et al. Characterization and mobility analysis of MoO3-gated diamond MOSFET. Jpn J Appl Phys, 2017, 56(10): 100

[10]

Zhang Y, Chen Y N, Liu Y L, et al. Research on band-edge emission properties and mechanism of high-quality single-crystal diamond. Carbon, 2018, 132: 651

[11]

Ohmagari S, Teraji T, Koide Y. Non-destructive detection of killer defects of diamond Schottky barrier diodes. J Appl Phys, 2011, 110: 056105

[12]

Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Silicon incorporation into chemical vapor deposition diamond: a role of oxygen. Appl Phys Lett, 1997, 71(5): 629

[13]

Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Effect of oxygen addition on boron incorporation on semiconductive diamond CVD. Diamond Relat Mater, 1998, 7(8): 1144

[14]

Sakaguchi I, Nishitani-Gamo M, Loh K P, et al. Suppression of surface cracks on (111) homoepitaxial diamond through impurity limitation by oxygen addition. Appl Phys Lett, 1998, 73(18): 2675

[15]

Das D, Singh R N, Barney I T, et al. Effect of oxygen on growth and properties of diamond thin film deposited at low surface temperature. J Vac Sci Technol A, 2008, 26(6): 1487

[16]

Tallaire A, Achard J, Silva F, et al. Oxygen plasma pre-treatments for high quality homoepitaxial CVD diamond deposition. Phys Status Solidi A, 2004, 201(11): 2419

[17]

Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett, 2013, 103(15): 151905

[18]

Widmann C J, Müller-Sebert W, Lang N, et al. Homoepitaxial growth of single crystalline CVD-diamond. Diamond Relat Mater, 2016, 64: 1

[19]

Tsubouchi N, Mokuno Y, Shikata S. Characterizations of etch pits formed on single crystal diamond surface using oxygen/hydrogen plasma surface treatment. Diamond Relat Mater, 2016, 63: 43

[20]

Ichikawa K, Kodama H, Suzuki K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching. Thin Solid Films, 2016, 600: 142

[21]

Romanov A E, Pompe W, Beltz G, et al. Modeling of threading dislocation density reduction in heteroepitaxial layers. Phys Status Solidi B, 1997, 199(1): 33

[22]

Speck J S, Brewer M A, Beltz G, et al. Scaling laws for the reduction of threading dislocation densities in homogeneous buffer layers. J Appl Phys, 1996, 80(7): 3808

[23]

Achard J, Tallaire A, Mille V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates. Phys Status Solidi A, 2014, 211(10): 2264

[24]

Naamoun M, Tallaire A, Doppelt P, et al. Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks. Diamond Relat Mater, 2015, 58: 62

[25]

Long R, Dai Y, Yu L. Structural and electronic properties of oxygen-adsorbed diamond (100) surface. J Phys Chem C, 2007, 111(2): 855

[26]

Long R, Dai Y, Guo M. Characterization of diamond (100) surface with oxygen termination. Appl Surf Sci, 2008, 254(9): 2851

[1]

Hang Dong, Huiwen Xue, Qiming He, Yuan Qin, Guangzhong Jian, Shibing Long, Ming Liu. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J. Semicond., 2019, 40(1): 011802. doi: 10.1088/1674-4926/40/1/011802

[2]

Jianjun Zhou, Song Bai, Cen Kong, Xijiao Geng, Haiyan Lu, Yuechan Kong, Tangsheng Chen. Research on the diamond MISFET. J. Semicond., 2013, 34(3): 034006. doi: 10.1088/1674-4926/34/3/034006

[3]

Chen Guangchao, Lan Hao, Li Bin, Dai Fengwei, Askari J, Hei Lifu, Song Jianhua, Li Chengming, Tang Weizhong, Tong Yumei, Lü Fanxiu. Influence of Deposition Parameters on Diamond Grain Size in DC Arc Plasma Jet CVD. J. Semicond., 2007, 28(S1): 348.

[4]

Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng, Jiandong Ye. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804

[5]

Xutang Tao, Jiandong Ye, Shibing Long, Zhitai Jia. Preface to the Special Issue on Ultra-Wide Bandgap Semiconductor Gallium Oxide: from Materials to Devices. J. Semicond., 2019, 40(1): 010101. doi: 10.1088/1674-4926/40/1/010101

[6]

Sun Shilong, , Liu Caichi, Hao Qiuyan, Teng Xiaoyun, Zhao Liwei, Zhao Yanqiao, Wang Lijian. Effect of Rapid Thermal Process on Oxygen Precipitatesin Heavily As-Doped Wafer. J. Semicond., 2006, 27(S1): 165.

[7]

Da Chen, Shihua Huang, Lü He. Effect of oxygen concentration on resistive switching behavior in silicon oxynitride film. J. Semicond., 2017, 38(4): 043002. doi: 10.1088/1674-4926/38/4/043002

[8]

Xiaodan Zhao, Yibiao Yang, Zhihui Chen, Yuncai Wang, Hongming Fei, Xiao Deng. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity. J. Semicond., 2017, 38(2): 023004. doi: 10.1088/1674-4926/38/2/023004

[9]

Lu Bo, Mei Niansong, Chen Hu, Hong Zhiliang. Design and optimization of an ultra-wide frequency range CMOS divide-by-two circuit. J. Semicond., 2010, 31(11): 115011. doi: 10.1088/1674-4926/31/11/115011

[10]

Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, Youdou Zheng. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J. Semicond., 2019, 40(1): 011805. doi: 10.1088/1674-4926/40/1/011805

[11]

Li Mingji, Yang Baohe, Sun Dazhi, Lü Xianyi, Jin Zengsun. Growth Characteristics of Nitrogen-Doped Diamond Films. J. Semicond., 2008, 29(6): 1152.

[12]

Zhang Ruijuan, Yin Haiqing, Wen Jing, Cao Wenbin. Calculation and Fabrication of Photonic Crystal with Diamond Structure. J. Semicond., 2007, 28(S1): 20.

[13]

Wen Jing, Yin Haiqing, Zhang Ruijuan, Cao Wenbin. Fabrication of Three-Dimensional Photonic Crystals with Diamond Structure by SLA Technique. J. Semicond., 2007, 28(S1): 357.

[14]

Zhang Jianxin, Liu Yuling, Tan Baimei, Niu Xinhuan, Bian Yongchao, Gao Baohong, Huang Yanyan. A Diamond Electrochemical Cleaning Technique for Organic Contaminants on Silicon Wafer Surfaces. J. Semicond., 2008, 29(3): 473.

[15]

Xudong Chen, Wenbo Zhai, Jingwen Zhang, Renan Bu, Hongxing Wang, Xun Hou. FEM thermal analysis of high power GaN-on-diamond HEMTs. J. Semicond., 2018, 39(10): 104005. doi: 10.1088/1674-4926/39/10/104005

[16]

Feng Quanlin, Shi Xunda, Liu Bin, Liu Zuoxing, Wang Jing, Zhou Qigang. Effect of Rapid Thermal Annealing Ambient on Denuded Zone and Oxygen Precipitates in a 300mm Silicon Wafer. J. Semicond., 2006, 27(1): 68.

[17]

Jiang Hanqin, Ma Xiangyang, Yang Deren, Que Duanlin. Effect of Vacancy on Nucleation for Oxygen Precipitation in Conventional and Nitrogen-Doped Czochralski Silicon. J. Semicond., 2008, 29(10): 1984.

[18]

Zeyang Ren, Jinfeng Zhang, Jincheng Zhang, Chunfu Zhang, Pengzhi Yang, Dazheng Chen, Yao Li, Yue Hao. Research on the hydrogen terminated single crystal diamond MOSFET with MoO3 dielectric and gold gate metal. J. Semicond., 2018, 39(7): 074003. doi: 10.1088/1674-4926/39/7/074003

[19]

Gao Baohong, Zhu Yadong, Liu Yuling, Wang Shengli, Zhou Qiang, Liu Xiaoyan. A new cleaning process combining non-ionic surfactant with diamond film electrochemical oxidation for polished silicon wafers. J. Semicond., 2010, 31(7): 076002. doi: 10.1088/1674-4926/31/7/076002

[20]

Li Hongjian, Yan Lingling, Huang Baiyun, Yi Danqing, Hu Jin, He Yingxuan, Peng Jingcui. Electron Injection Enhancement by Diamond-Like Carbon Film in Polymer Electroluminescence Devices. J. Semicond., 2006, 27(1): 30.

Search

Advanced Search >>

GET CITATION

M Gong, Y N Chen, W C Yu, P Jin, Z G Wang, Z M Wang, S J Zhang, F Yang, F F Zhang, Q J Peng, Z Y Xu, The effect of oxygen on the epitaxial growth of diamond[J]. J. Semicond., 2018, 39(12): 123004. doi: 10.1088/1674-4926/39/12/123004.

Export: BibTex EndNote

Article Metrics

Article views: 1187 Times PDF downloads: 72 Times Cited by: 0 Times

History

Manuscript received: 08 May 2018 Manuscript revised: 21 May 2018 Online: Accepted Manuscript: 06 September 2018 Uncorrected proof: 19 September 2018 Published: 13 December 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误