J. Semicond. > Volume 39 > Issue 8 > Article Number: 083003

Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method

Shengnan Zhang , Xiaozheng Lian , Yanchao Ma , Weidan Liu , Yingwu Zhang , Yongkuan Xu and Hongjuan Cheng ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: β-Ga2O3 is an ultra-wide band-gap semiconductor with promising applications in UV optical detectors, Schottky barrier diodes, field-effect transistors and substrates for light-emitting diodes. However, the preparation of large β-Ga2O3 crystals is undeveloped and many properties of this material have not been discovered yet. In this work, 2-inch β-Ga2O3 single crystals were grown by using an edge-defined film-fed growth method. The high quality of the crystal has been proved by high-resolution X-ray diffraction with 19.06 arcsec of the full width at half maximum. The electrical properties and optical properties of both the unintentionally doped and Si-doped β-Ga2O3 crystals were investigated systematically.

Key words: β-Ga2O3 single crystalhigh qualitydopingelectrical propertiesoptical properties

Abstract: β-Ga2O3 is an ultra-wide band-gap semiconductor with promising applications in UV optical detectors, Schottky barrier diodes, field-effect transistors and substrates for light-emitting diodes. However, the preparation of large β-Ga2O3 crystals is undeveloped and many properties of this material have not been discovered yet. In this work, 2-inch β-Ga2O3 single crystals were grown by using an edge-defined film-fed growth method. The high quality of the crystal has been proved by high-resolution X-ray diffraction with 19.06 arcsec of the full width at half maximum. The electrical properties and optical properties of both the unintentionally doped and Si-doped β-Ga2O3 crystals were investigated systematically.

Key words: β-Ga2O3 single crystalhigh qualitydopingelectrical propertiesoptical properties



References:

[1]

Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Appl Phys Lett, 2016, 55(12): 1202A2

[2]

Onuma T, Fujioka S, Yamaguchi T, et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 2013, 103(4): 3561

[3]

Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol, 2010, 45(12): 1229

[4]

Higashiwaki M, Murakami H, Kumagai Y, et al. Current status of Ga2O3 power devices. Jpn J Appl Phys, 2016, 55(12): 1202A1

[5]

Suzuki R, Nakagomi S, Kokubun Y, et al. Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. Appl Phys Lett, 2009, 94(22): A316

[6]

Shimamura K, Villora E G, Domen K, et al. Epitaxial growth of GaN on (100) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 2005, 44: L7

[7]

Higashiwaki M, Konishi K, Sasaki K, et al. Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/ Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 2016, 108(13): 1759

[8]

Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2015, 37(2): 212

[9]

Galazka Z, Irmscher K, Uecker R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 2014, 404(6): 184

[10]

Liu X, Qiu G, Zhao Y, et al. Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods. J Alloys Compd, 2007, 439(1): 275

[11]

Filippo E, Tepore M, Baldassarre F, et al. Synthesis of β-Ga2O3 microstructures with efficient photocatalytic activity by annealing of GaSe single crystal. Appl Surf Sci, 2015, 338: 69

[12]

Onuma T, Fujiok S. Polarized Raman spectra in β-Ga2O3 single crystals. J Cryst Growth, 2014, 401: 330

[13]

Zhang Z, Farzana E, Arehart A, et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl Phys Lett, 2016, 108(7): 052105

[14]

Víllora E, Shimamura K, Yoshikawa Y, et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl Phys Lett, 2008, 92(20): A316

[15]

Wang X, Zhang F, Saito K, et al. Electrical properties and emission mechanisms of Zn-doped β-Ga2O3 films. J Phys Chem Solids, 2014, 75(11): 1201

[16]

Harwig T, Kellendonk F, and Slappendel S. The ultraviolet luminescence of β-galliumsesquioxide. J Phys Chem Solids, 1978, 39(6): 675

[17]

Takakura K, Koga D, Ohyama H, et al. Evaluation of the crystalline quality of β-Ga2O3, films by optical absorption measurements. Physica B, 2009, 404(23/24): 4854

[18]

Zhang Y J, Yan J L, Zhao G, et al. First principles calculation and experimental research of Si-doped β-Ga2O3. Acta Phys Sin, 2011, 60(3): 037103

[1]

Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Appl Phys Lett, 2016, 55(12): 1202A2

[2]

Onuma T, Fujioka S, Yamaguchi T, et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 2013, 103(4): 3561

[3]

Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol, 2010, 45(12): 1229

[4]

Higashiwaki M, Murakami H, Kumagai Y, et al. Current status of Ga2O3 power devices. Jpn J Appl Phys, 2016, 55(12): 1202A1

[5]

Suzuki R, Nakagomi S, Kokubun Y, et al. Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. Appl Phys Lett, 2009, 94(22): A316

[6]

Shimamura K, Villora E G, Domen K, et al. Epitaxial growth of GaN on (100) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 2005, 44: L7

[7]

Higashiwaki M, Konishi K, Sasaki K, et al. Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/ Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 2016, 108(13): 1759

[8]

Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2015, 37(2): 212

[9]

Galazka Z, Irmscher K, Uecker R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 2014, 404(6): 184

[10]

Liu X, Qiu G, Zhao Y, et al. Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods. J Alloys Compd, 2007, 439(1): 275

[11]

Filippo E, Tepore M, Baldassarre F, et al. Synthesis of β-Ga2O3 microstructures with efficient photocatalytic activity by annealing of GaSe single crystal. Appl Surf Sci, 2015, 338: 69

[12]

Onuma T, Fujiok S. Polarized Raman spectra in β-Ga2O3 single crystals. J Cryst Growth, 2014, 401: 330

[13]

Zhang Z, Farzana E, Arehart A, et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl Phys Lett, 2016, 108(7): 052105

[14]

Víllora E, Shimamura K, Yoshikawa Y, et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl Phys Lett, 2008, 92(20): A316

[15]

Wang X, Zhang F, Saito K, et al. Electrical properties and emission mechanisms of Zn-doped β-Ga2O3 films. J Phys Chem Solids, 2014, 75(11): 1201

[16]

Harwig T, Kellendonk F, and Slappendel S. The ultraviolet luminescence of β-galliumsesquioxide. J Phys Chem Solids, 1978, 39(6): 675

[17]

Takakura K, Koga D, Ohyama H, et al. Evaluation of the crystalline quality of β-Ga2O3, films by optical absorption measurements. Physica B, 2009, 404(23/24): 4854

[18]

Zhang Y J, Yan J L, Zhao G, et al. First principles calculation and experimental research of Si-doped β-Ga2O3. Acta Phys Sin, 2011, 60(3): 037103

[1]

Mihir M. Vora, Aditya M. Vora. Effect of rhenium doping on various physical properties of single crystals of MoSe2. J. Semicond., 2012, 33(1): 012001. doi: 10.1088/1674-4926/33/1/012001

[2]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[3]

Zhao Youwen, Sun Wenrong, Duan Manlong, Dong Zhiyuan, Yang Zixiang, Lü Xuru, Wang Yingli. Growth and Properties of High Quality InAs Single Crystals. J. Semicond., 2006, 27(8): 1391.

[4]

Liu Wei, Cheng Shuying. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering. J. Semicond., 2011, 32(1): 013002. doi: 10.1088/1674-4926/32/1/013002

[5]

Wanjun Yan, Chunhong Zhang, Zhongzheng Zhang, Quan Xie, Benhua Guo, Shiyun Zhou. The optical-electrical properties of doped β-FeSi2. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003

[6]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[7]

Rahul Kumar, Parag Bhargava, Ritu Srivastava, Priyanka Tyagi. Synthesis and electroluminescence properties of tris-[5-choloro-8-hydroxyquinoline] aluminum Al(5-Clq)3. J. Semicond., 2015, 36(6): 064001. doi: 10.1088/1674-4926/36/6/064001

[8]

Zhang Fan, Zhao Youwen, Dong Zhiyuan, Zhang Rui, Yang Jun. Bulk Single Crystal Growth and Properties of In-Doped ZnO. J. Semicond., 2008, 29(8): 1540.

[9]

Zhang Rui, Zhang Fan, Zhao Youwen, Dong Zhiyuan, Yang Jun. Defects and Properties of Antimony-Doped ZnO Single Crystal. J. Semicond., 2008, 29(10): 1988.

[10]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[11]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[12]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[13]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[14]

Zhang Baoping, Kang Junyong, Yu Jinzhong, Wang Qiming, Segawa Yusaburo. Growth and Optical Properties of ZnO Films and Quantum Wells. J. Semicond., 2006, 27(4): 613.

[15]

Pengfei Wang, Ruihua Nan, Zengyun Jian. The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals. J. Semicond., 2017, 38(6): 062002. doi: 10.1088/1674-4926/38/6/062002

[16]

Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors. J. Semicond., 2019, 40(4): 042801. doi: 10.1088/1674-4926/40/4/042801

[17]

G. Nagaraju, K. Ravindranatha Reddy, V. Rajagopal Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures. J. Semicond., 2017, 38(11): 114001. doi: 10.1088/1674-4926/38/11/114001

[18]

Jiaming Luo, Min Guan, Yang Zhang, Liqiang Chen, Yiping Zeng. The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors. J. Semicond., 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007

[19]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

[20]

Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001

Search

Advanced Search >>

GET CITATION

S N Zhang, X Z Lian, Y C Ma, W D Liu, Y W Zhang, Y K Xu, H J Cheng, Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method[J]. J. Semicond., 2018, 39(8): 083003. doi: 10.1088/1674-4926/39/8/083003.

Export: BibTex EndNote

Article Metrics

Article views: 2285 Times PDF downloads: 49 Times Cited by: 0 Times

History

Manuscript received: 01 December 2017 Manuscript revised: 28 February 2018 Online: Accepted Manuscript: 26 April 2018 Uncorrected proof: 05 July 2018 Published: 09 August 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误