J. Semicond. > Volume 40 > Issue 1 > Article Number: 011801

Growth and fundamentals of bulk β-Ga2O3 single crystals

H. F. Mohamed 1, 2, , Changtai Xia 1, , , Qinglin Sai 1, , Huiyuan Cui 1, , Mingyan Pan 1, and Hongji Qi 1,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The rapid development of bulk β-Ga2O3 crystals has attracted much attention to their use as ultra-wide bandgap materials for next-generation power devices owing to its large bandgap (~ 4.9 eV) and large breakdown electric field of about 8 MV/cm. Low cost and high quality of large β-Ga2O3 single-crystal substrates can be attained by melting growth techniques widely used in the industry. In this paper, we first present an overview of the properties of β-Ga2O3 crystals in bulk form. We then describe the various methods for producing bulk β-Ga2O3 crystals and their applications. Finally, we will present a future perspective of the research in the area in the area of single crystal growth.

Key words: β-Ga2O3crystal structurebulk crystal growthapplications

Abstract: The rapid development of bulk β-Ga2O3 crystals has attracted much attention to their use as ultra-wide bandgap materials for next-generation power devices owing to its large bandgap (~ 4.9 eV) and large breakdown electric field of about 8 MV/cm. Low cost and high quality of large β-Ga2O3 single-crystal substrates can be attained by melting growth techniques widely used in the industry. In this paper, we first present an overview of the properties of β-Ga2O3 crystals in bulk form. We then describe the various methods for producing bulk β-Ga2O3 crystals and their applications. Finally, we will present a future perspective of the research in the area in the area of single crystal growth.

Key words: β-Ga2O3crystal structurebulk crystal growthapplications



References:

[1]

Geller S. Crystal Structure of β‐Ga2O3. J Chem Phys, 1960, 33: 676

[2]

Roy R, Hill V G, and Osborn E F J. Polymorphism of Ga2O3 and the System Ga2O3—H2O. Am Chem Soc, 1952, 74:719

[3]

Tippins H H. Optical Absorption and Photoconductivity in the Band Edge of β−Ga2O3. Phys Rev, 1965, 140:A316

[4]

Hajnal Z, Miro J, Kiss G, Reti F, Deak P, Herndon R C, and Kuperberg J M. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3. J Appl Phys, 1999, 86:3792

[5]

Kohn J A, Katz G and Broder J D. Characterization of β-Ga2O3 and its Alumina Isomorph θ-Al2O3. Am Mineral, 1956, 42:398

[6]

Wolten G M and Chase A B. Determination of the point group of β-Ga2O3 from morphology and physical properties. J Solid State Chem, 1976, 16: 377

[7]

Ahman J, Svensson G and Albertsson J. A reinvestigation of β-gallium oxide. Acta Crystallogr Sect C Cryst Struct Commun,1996, 52: 1336

[8]

Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K and Fornari R. Experimental electronic structure of In2O3 and Ga2O3. New J Phys, 2011, 13:085014.

[9]

Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K and Tanaka I. Structures and energetics of Ga2O3 polymorphs. J Phys Condens Matter, 2007, 19: 346211

[10]

Yamaguchi K. First principles study on electronic structure of β-Ga2O3. Solid State Commun, 2004,131:739

[11]

He H, Orlando R, Blanco M, Pandey R, and Rétat M. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74:195123

[12]

Zhang Y, Yan J, Zhao G and Xie W. First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3. Phys B Condens Matter, 2010, 405:3899

[13]

Zhang L, Yan J, Zhang Y, Li T and Ding X. First principles study on electronic structure and optical properties of N-doped P-type β-Ga2O3. Sci China Physics, Mech Astron, 2012, 55:19

[14]

Peelaers H and Van de Walle C G. Brillouin zone and band structure of β‐Ga2O3. Phys Status Solidi (B), 2015, 252:828

[15]

Varley J B, Weber J R, Janotti A and Van de Walle C G. Oxygen vacancies and donor impurities in β‐Ga2O3. Appl Phys Lett, 2010, 97:142106

[16]

Nassau K. Dr. A. V. L. Verneuil: The man and the method. J of Cry Growth, 1972, 13:12

[17]

Chase A B. Growth of β‐Ga2O3 by the Verneuil Technique. J Am Ceram Soc, 1964, 47: 470

[18]

Lorenz M R, Woods J F, Gambino R J. Some electrical properties of the semiconductor βGa2O3. J Phys Chem Solids, 1967, 28:403

[19]

Harwig T and Schoonman J. Electrical properties of β-Ga2O3 single crystals. II. Journal of Solid State Chemistry, 1978, 23: 205

[20]

Harwig T, Wubs G J, and Dirksen G J. Electrical properties of β-Ga2O3 single crystals. Solid State Communications, 1976, 18:1223

[21]

Theurer H C. Method of processing semiconductive materials. U. S. Patent 3,060,123 (Filed December 17, 1952. Issued October 23, 1962)

[22]

Víllora E G, Shimamura K, Yoshikawa Y, Aoki K, and Ichinose N. Large-size β-Ga2O3 single crystals and wafers. Journal of Crystal Growth, 2004, 270:420.

[23]

Zhang J, Li B, Xia C, Pei G, Deng Q, Yang Z, Wusheng X, Hongsheng Shi, Feng W, Yongqing W, Jun X. Growth and spectral characterization of β-Ga2O3 single crystals. Journal of Physics and Chemistry of Solids, 2006, 67: 2448

[24]

Czochralski J. A new method for the measurement of the crystallization rate of metals. Zeitschrift für Physikalische Chemie, 1918, 92: 219

[25]

Galazka Z, Uecker R, Irmscher K, Albrecht M, Klimm D, Pietsch M. Czochralski growth and characterization of β‐Ga2O3 single crystals. Crystal Research and Technology, 2010, 45: 1229

[26]

Tomm Y, Reiche P, Klimm D, and Fukuda T. Czochralski grown Ga2O3 crystals. Journal of Crystal Growth, 2000, 220: 510

[27]

Galazka Z, Uecker R, Klimm D, Irmscher K, Naumann M, Pietsch M, Kwasniewski A, Bertram R, Ganschow S and Bickermann M. Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS Journal of Solid State Science and Technology, 2017,6: Q3007

[28]

Galazka Z, Ganschow S, Fiedler A, Bertam R, Klimm D, Irmscher K, Schewski R, Pietsch M, Albercht M, and Bichermann M. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al. J Cry Growth, 2018, 486:82

[29]

Chalmers B, LaBelle Jr H E, and Mlavsky A I. Growth of controlled profile crystals from the melt: Part III — Theory. Materials Research Bulletin, 1971, 6: 681

[30]

LaBelle Jr H E and Mlavsky A. Growth of controlled profile crystals from the melt: Part I - Sapphire filaments. Materials Research Bulletin, 1971, 6: 571

[31]

LaBelle Jr H. Growth of controlled profile crystals from the melt: Part II - Edge-defined, film-fed growth (EFG). Materials Research Bulletin, 1971, 6: 581

[32]

Aida H, Nishiguchi K, Takeda H, Aota N, Sunakawa K, and Yaguchi Y. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Japanese Journal of Applied Physics, 2008,47: 8506

[33]

Mu We, Jia Zh, Yin Y, Hu Qg , Li Y, Wu B, Zhang J, Tao X. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method. Journal of Alloys and Compounds, 2017, 714, 453:458

[34]

Kuramata A, Koshi K, Watanabe Sh, Yamaoka Yu, Masui T and Yamakoshi Sh. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Japanese Journal of Applied Physics, 2016, 55: 1202A2

[35]

Kuramata A, Koshi K, Watanabe Sh, et al. Bulk crystal growth of Ga2O3. Proc SPIE 10533, Oxide-based Materials and Devices IX, 2018, 105330E

[36]

Zhang Sh, Lian X, Ma Y, Liu W , Zhang Y , Xu Y and Cheng H. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. Journal of Semiconductors. 2018, 39: 083003

[37]

Bridgman Percy W. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proceedings of the American Academy of Arts and Sciences. 1925, 60 : 305

[38]

Stockbarger D C. The production of large single crystals of lithium fluoride. Review of Scientific Instruments, 1936 7: 133

[39]

Hoshikawa K, Ohba E, Kobayashi T, Yanagisawa J, Miyagawa C, and Nakamura Y. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. Journal of Crystal Growth, 2016, 447: 36

[40]

Ohba E, Kobayashi T, Kado M, and Hoshikawa K. Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method. Japanese Journal of Applied Physics, 2016, 55:1202BF

[41]

Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Tadjer M J, Witulski A F, Wraback M, and Simmons J A.Ultrawide‐Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron Mater, 2018, 4:1600501

[42]

Suzuki N, Ohira S, Tanaka M, Sugawara T, Nakajima K and Shishido T. Fabrication and characterization of transparent conductive Sn‐doped β‐Ga2O3 single crystal. Phys Status Solidi (C), 2007, 4: 2310

[43]

Ueda N, Hosono H, Waseda R and Kawazoe H. Synthesis and control of conductivity of ultraviolet transmitting single crystals. Appl Phys Lett 1997, 70: 3561

[44]

Ohira S, Suzuki N, Arai N, Tanaka M, Sugawara T, Nakajima K and Shishido T. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing. Thin Solid Films 2008, 516: 5763

[45]

VÍllora E G, Shimamura K, Yoshikaw Y, Ujiie T and Aoki K. Electrical conductivity and carrier concentration control in by Si doping. Appl Phys Lett,2008, 92:202120

[46]

Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S. Si-Ion Implantation Doping in β-Ga2O3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts. Appl Phys Express, 2013, 6 : 6502

[47]

Zhou W, Xia ch, Sai Q, and Zhang H. Controlling n-type conductivity of β-Ga2O3 by Nb doping. Appl Phys Lett, 2017, 111:242103

[48]

Mastro M A, Kuramata A, Calkins J, Kim J, Ren F and Pearton S J ECS. Perspective—Opportunities and Future Directions for Ga2O3. J Solid State Sci Technol, 2017,6: P356

[49]

Varley J B, Janotti A, Franchini C, and Van de Walle C G. Role of self-trapping in luminescence and-type conductivity of wide-band-gap oxides. Phys Rev B, 2012, 85 :081109

[50]

Kananen B E, Halliburton L E, Stevens K T, Foundos G K, and Giles N.C. Gallium vacancies in β-Ga2O3 crystals. Appl Phys Lett, 2017, 110: 202104

[51]

Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T and Honda T. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 2013, 103 : 2013

[52]

Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C and Yang Z. Fabrication and characteristics of N-doped β-Ga2O3 nanowires. Appl Phys A, 2010, 98: 831

[53]

Dong L, Jia R, Li C, Xin B, and Zhang Y. Ab initio study of N-doped β-Ga2O3 with intrinsic defects: the structural, electronic and optical properties. J Alloys Compd, 2017, 712:379

[54]

Kyrtsos A, Matsubara M, and Bellotti E. On the feasibility of p-type Ga2O3. Appl Phy Lett, 2018, 112:032108

[55]

Bartic M, Toyoda Y, Baban C-I, and Ogita M. Oxygen sensitivity in gallium oxide thin films and single crystals at high temperatures. Jpn. J Appl Phys, 2006, 45: 5186

[56]

Hudgins J L, Simin G S, Santi E and Khan M A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 2003,18: 907.

[57]

Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, and Yamakoshi S. Recent progress in Ga2O3 power devices. Semiconductor Science and Technology, 2016, 31: 034001

[58]

Higashiwaki M, Sasaki K, Kuramata A, Masui T, and Yamakoshi S. Development of gallium oxide power devices, Physica Status Solidi (a) ,2014, 211: 21

[59]

Oishi T, Koga Y, Harada K and Kasu M. High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 2015, 8 : 031101

[60]

Sasaki K, Higashiwaki M, Kuramata A, Masui T, and Yamakoshi S. Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3(010) Substrates. IEEE Electron Device Letters, 2013, 34: 493

[61]

Hu Z Z, Zhou H, Feng Q, Zhang J C, Zhang C F, Dang K, Cai Y C, Feng Z Q, Gao Y Y, Hao Y. Field-Plated Lateral β-Ga2O3 Schottky Barrier Diode With High Reverse Blocking Voltage of More Than 3 kV and High DC Power Figure-of-Merit of 500 MW/cm2. IEEE Electron Device Letters, 2018, 39:1564-7

[62]

Higashiwaki M, Sasaki K, Kuramata A, Masui T, and Yamakoshi S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Applied Physics Letters, 2012, 100: 013504

[63]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, Crespo A, Leedy K, and Jessen G H. 3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped β-Ga2O3 MOSFETs. IEEE Electron Device Letters, 2016, 37: 902

[64]

Suzuki R, Nakagomi S, Kokubun Y, Arai N and Ohira S. Enhancement of responsivity in solar-blind photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. Appl Phys Lett, 2009, 94: 222102

[65]

Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y and Du G. Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3. RSC Adv, 2018, 8:6341

[66]

Patrick E, Choudhury M, Ren F, Pearton S J, and Law M. Simulation of Radiation Effects in AlGaN/GaN HEMTs ECS J Solid State Sci Technol, 2015, 4, Q21

[67]

Yang J, Ren F, Pearton S J, Yang G, Kim J, and Kuramata A.1.5 MeV electron irradiation damage in β-Ga2O3 vertical rectifiers, J Vac Sci Technol B, 2017, 35, 031208

[68]

Szalkai D, Galazka Z, Irmscher K, Tütt˝o P, Klix A and Gehre D. β-Ga2O3 Solid-State Devices for Fast Neutron Detection. IEEE Transactions on Nuclear Science, 2017, 64, 6: 1248

[1]

Geller S. Crystal Structure of β‐Ga2O3. J Chem Phys, 1960, 33: 676

[2]

Roy R, Hill V G, and Osborn E F J. Polymorphism of Ga2O3 and the System Ga2O3—H2O. Am Chem Soc, 1952, 74:719

[3]

Tippins H H. Optical Absorption and Photoconductivity in the Band Edge of β−Ga2O3. Phys Rev, 1965, 140:A316

[4]

Hajnal Z, Miro J, Kiss G, Reti F, Deak P, Herndon R C, and Kuperberg J M. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3. J Appl Phys, 1999, 86:3792

[5]

Kohn J A, Katz G and Broder J D. Characterization of β-Ga2O3 and its Alumina Isomorph θ-Al2O3. Am Mineral, 1956, 42:398

[6]

Wolten G M and Chase A B. Determination of the point group of β-Ga2O3 from morphology and physical properties. J Solid State Chem, 1976, 16: 377

[7]

Ahman J, Svensson G and Albertsson J. A reinvestigation of β-gallium oxide. Acta Crystallogr Sect C Cryst Struct Commun,1996, 52: 1336

[8]

Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K and Fornari R. Experimental electronic structure of In2O3 and Ga2O3. New J Phys, 2011, 13:085014.

[9]

Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K and Tanaka I. Structures and energetics of Ga2O3 polymorphs. J Phys Condens Matter, 2007, 19: 346211

[10]

Yamaguchi K. First principles study on electronic structure of β-Ga2O3. Solid State Commun, 2004,131:739

[11]

He H, Orlando R, Blanco M, Pandey R, and Rétat M. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74:195123

[12]

Zhang Y, Yan J, Zhao G and Xie W. First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3. Phys B Condens Matter, 2010, 405:3899

[13]

Zhang L, Yan J, Zhang Y, Li T and Ding X. First principles study on electronic structure and optical properties of N-doped P-type β-Ga2O3. Sci China Physics, Mech Astron, 2012, 55:19

[14]

Peelaers H and Van de Walle C G. Brillouin zone and band structure of β‐Ga2O3. Phys Status Solidi (B), 2015, 252:828

[15]

Varley J B, Weber J R, Janotti A and Van de Walle C G. Oxygen vacancies and donor impurities in β‐Ga2O3. Appl Phys Lett, 2010, 97:142106

[16]

Nassau K. Dr. A. V. L. Verneuil: The man and the method. J of Cry Growth, 1972, 13:12

[17]

Chase A B. Growth of β‐Ga2O3 by the Verneuil Technique. J Am Ceram Soc, 1964, 47: 470

[18]

Lorenz M R, Woods J F, Gambino R J. Some electrical properties of the semiconductor βGa2O3. J Phys Chem Solids, 1967, 28:403

[19]

Harwig T and Schoonman J. Electrical properties of β-Ga2O3 single crystals. II. Journal of Solid State Chemistry, 1978, 23: 205

[20]

Harwig T, Wubs G J, and Dirksen G J. Electrical properties of β-Ga2O3 single crystals. Solid State Communications, 1976, 18:1223

[21]

Theurer H C. Method of processing semiconductive materials. U. S. Patent 3,060,123 (Filed December 17, 1952. Issued October 23, 1962)

[22]

Víllora E G, Shimamura K, Yoshikawa Y, Aoki K, and Ichinose N. Large-size β-Ga2O3 single crystals and wafers. Journal of Crystal Growth, 2004, 270:420.

[23]

Zhang J, Li B, Xia C, Pei G, Deng Q, Yang Z, Wusheng X, Hongsheng Shi, Feng W, Yongqing W, Jun X. Growth and spectral characterization of β-Ga2O3 single crystals. Journal of Physics and Chemistry of Solids, 2006, 67: 2448

[24]

Czochralski J. A new method for the measurement of the crystallization rate of metals. Zeitschrift für Physikalische Chemie, 1918, 92: 219

[25]

Galazka Z, Uecker R, Irmscher K, Albrecht M, Klimm D, Pietsch M. Czochralski growth and characterization of β‐Ga2O3 single crystals. Crystal Research and Technology, 2010, 45: 1229

[26]

Tomm Y, Reiche P, Klimm D, and Fukuda T. Czochralski grown Ga2O3 crystals. Journal of Crystal Growth, 2000, 220: 510

[27]

Galazka Z, Uecker R, Klimm D, Irmscher K, Naumann M, Pietsch M, Kwasniewski A, Bertram R, Ganschow S and Bickermann M. Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS Journal of Solid State Science and Technology, 2017,6: Q3007

[28]

Galazka Z, Ganschow S, Fiedler A, Bertam R, Klimm D, Irmscher K, Schewski R, Pietsch M, Albercht M, and Bichermann M. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al. J Cry Growth, 2018, 486:82

[29]

Chalmers B, LaBelle Jr H E, and Mlavsky A I. Growth of controlled profile crystals from the melt: Part III — Theory. Materials Research Bulletin, 1971, 6: 681

[30]

LaBelle Jr H E and Mlavsky A. Growth of controlled profile crystals from the melt: Part I - Sapphire filaments. Materials Research Bulletin, 1971, 6: 571

[31]

LaBelle Jr H. Growth of controlled profile crystals from the melt: Part II - Edge-defined, film-fed growth (EFG). Materials Research Bulletin, 1971, 6: 581

[32]

Aida H, Nishiguchi K, Takeda H, Aota N, Sunakawa K, and Yaguchi Y. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Japanese Journal of Applied Physics, 2008,47: 8506

[33]

Mu We, Jia Zh, Yin Y, Hu Qg , Li Y, Wu B, Zhang J, Tao X. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method. Journal of Alloys and Compounds, 2017, 714, 453:458

[34]

Kuramata A, Koshi K, Watanabe Sh, Yamaoka Yu, Masui T and Yamakoshi Sh. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Japanese Journal of Applied Physics, 2016, 55: 1202A2

[35]

Kuramata A, Koshi K, Watanabe Sh, et al. Bulk crystal growth of Ga2O3. Proc SPIE 10533, Oxide-based Materials and Devices IX, 2018, 105330E

[36]

Zhang Sh, Lian X, Ma Y, Liu W , Zhang Y , Xu Y and Cheng H. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. Journal of Semiconductors. 2018, 39: 083003

[37]

Bridgman Percy W. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proceedings of the American Academy of Arts and Sciences. 1925, 60 : 305

[38]

Stockbarger D C. The production of large single crystals of lithium fluoride. Review of Scientific Instruments, 1936 7: 133

[39]

Hoshikawa K, Ohba E, Kobayashi T, Yanagisawa J, Miyagawa C, and Nakamura Y. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. Journal of Crystal Growth, 2016, 447: 36

[40]

Ohba E, Kobayashi T, Kado M, and Hoshikawa K. Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method. Japanese Journal of Applied Physics, 2016, 55:1202BF

[41]

Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Tadjer M J, Witulski A F, Wraback M, and Simmons J A.Ultrawide‐Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron Mater, 2018, 4:1600501

[42]

Suzuki N, Ohira S, Tanaka M, Sugawara T, Nakajima K and Shishido T. Fabrication and characterization of transparent conductive Sn‐doped β‐Ga2O3 single crystal. Phys Status Solidi (C), 2007, 4: 2310

[43]

Ueda N, Hosono H, Waseda R and Kawazoe H. Synthesis and control of conductivity of ultraviolet transmitting single crystals. Appl Phys Lett 1997, 70: 3561

[44]

Ohira S, Suzuki N, Arai N, Tanaka M, Sugawara T, Nakajima K and Shishido T. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing. Thin Solid Films 2008, 516: 5763

[45]

VÍllora E G, Shimamura K, Yoshikaw Y, Ujiie T and Aoki K. Electrical conductivity and carrier concentration control in by Si doping. Appl Phys Lett,2008, 92:202120

[46]

Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S. Si-Ion Implantation Doping in β-Ga2O3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts. Appl Phys Express, 2013, 6 : 6502

[47]

Zhou W, Xia ch, Sai Q, and Zhang H. Controlling n-type conductivity of β-Ga2O3 by Nb doping. Appl Phys Lett, 2017, 111:242103

[48]

Mastro M A, Kuramata A, Calkins J, Kim J, Ren F and Pearton S J ECS. Perspective—Opportunities and Future Directions for Ga2O3. J Solid State Sci Technol, 2017,6: P356

[49]

Varley J B, Janotti A, Franchini C, and Van de Walle C G. Role of self-trapping in luminescence and-type conductivity of wide-band-gap oxides. Phys Rev B, 2012, 85 :081109

[50]

Kananen B E, Halliburton L E, Stevens K T, Foundos G K, and Giles N.C. Gallium vacancies in β-Ga2O3 crystals. Appl Phys Lett, 2017, 110: 202104

[51]

Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T and Honda T. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 2013, 103 : 2013

[52]

Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C and Yang Z. Fabrication and characteristics of N-doped β-Ga2O3 nanowires. Appl Phys A, 2010, 98: 831

[53]

Dong L, Jia R, Li C, Xin B, and Zhang Y. Ab initio study of N-doped β-Ga2O3 with intrinsic defects: the structural, electronic and optical properties. J Alloys Compd, 2017, 712:379

[54]

Kyrtsos A, Matsubara M, and Bellotti E. On the feasibility of p-type Ga2O3. Appl Phy Lett, 2018, 112:032108

[55]

Bartic M, Toyoda Y, Baban C-I, and Ogita M. Oxygen sensitivity in gallium oxide thin films and single crystals at high temperatures. Jpn. J Appl Phys, 2006, 45: 5186

[56]

Hudgins J L, Simin G S, Santi E and Khan M A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 2003,18: 907.

[57]

Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, and Yamakoshi S. Recent progress in Ga2O3 power devices. Semiconductor Science and Technology, 2016, 31: 034001

[58]

Higashiwaki M, Sasaki K, Kuramata A, Masui T, and Yamakoshi S. Development of gallium oxide power devices, Physica Status Solidi (a) ,2014, 211: 21

[59]

Oishi T, Koga Y, Harada K and Kasu M. High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 2015, 8 : 031101

[60]

Sasaki K, Higashiwaki M, Kuramata A, Masui T, and Yamakoshi S. Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3(010) Substrates. IEEE Electron Device Letters, 2013, 34: 493

[61]

Hu Z Z, Zhou H, Feng Q, Zhang J C, Zhang C F, Dang K, Cai Y C, Feng Z Q, Gao Y Y, Hao Y. Field-Plated Lateral β-Ga2O3 Schottky Barrier Diode With High Reverse Blocking Voltage of More Than 3 kV and High DC Power Figure-of-Merit of 500 MW/cm2. IEEE Electron Device Letters, 2018, 39:1564-7

[62]

Higashiwaki M, Sasaki K, Kuramata A, Masui T, and Yamakoshi S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Applied Physics Letters, 2012, 100: 013504

[63]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, Crespo A, Leedy K, and Jessen G H. 3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped β-Ga2O3 MOSFETs. IEEE Electron Device Letters, 2016, 37: 902

[64]

Suzuki R, Nakagomi S, Kokubun Y, Arai N and Ohira S. Enhancement of responsivity in solar-blind photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. Appl Phys Lett, 2009, 94: 222102

[65]

Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y and Du G. Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3. RSC Adv, 2018, 8:6341

[66]

Patrick E, Choudhury M, Ren F, Pearton S J, and Law M. Simulation of Radiation Effects in AlGaN/GaN HEMTs ECS J Solid State Sci Technol, 2015, 4, Q21

[67]

Yang J, Ren F, Pearton S J, Yang G, Kim J, and Kuramata A.1.5 MeV electron irradiation damage in β-Ga2O3 vertical rectifiers, J Vac Sci Technol B, 2017, 35, 031208

[68]

Szalkai D, Galazka Z, Irmscher K, Tütt˝o P, Klix A and Gehre D. β-Ga2O3 Solid-State Devices for Fast Neutron Detection. IEEE Transactions on Nuclear Science, 2017, 64, 6: 1248

[1]

Bo Fu, Zhitai Jia, Wenxiang Mu, Yanru Yin, Jian Zhang, Xutang Tao. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism. J. Semicond., 2019, 40(1): 011804. doi: 10.1088/1674-4926/40/1/011804

[2]

Li Lezhong, Yang Weiqing, Ding Yingchun, Zhu Xinghua. First principle study of the electronic structure of hafnium-doped anatase TiO2. J. Semicond., 2012, 33(1): 012002. doi: 10.1088/1674-4926/33/1/012002

[3]

Jiaqi Wei, Kumsong Kim, Fang Liu, Ping Wang, Xiantong Zheng, Zhaoying Chen, Ding Wang, Ali Imran, Xin Rong, Xuelin Yang, Fujun Xu, Jing Yang, Bo Shen, Xinqiang Wang. β-Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy. J. Semicond., 2019, 40(1): 012802. doi: 10.1088/1674-4926/40/1/012802

[4]

Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Youwen Zhao. Carbon agent chemical vapor transport growth of Ga2O3 crystal. J. Semicond., 2016, 37(10): 103004. doi: 10.1088/1674-4926/37/10/103004

[5]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[6]

Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, Yuji Zhao. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates. J. Semicond., 2019, 40(1): 012801. doi: 10.1088/1674-4926/40/1/012801

[7]

Xutang Tao. Bulk gallium oxide single crystal growth. J. Semicond., 2019, 40(1): 010401. doi: 10.1088/1674-4926/40/1/010401

[8]

Zhao Youwen, Dong Zhiyuan, Wei Xuecheng, Duan Manlong, Li Jinmin. Study of Sublimation Crystal Growth of Bulk AlN. J. Semicond., 2006, 27(7): 1241.

[9]

Jinliang Yan, Chong Qu. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations. J. Semicond., 2016, 37(4): 042002. doi: 10.1088/1674-4926/37/4/042002

[10]

Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng, Jiandong Ye. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804

[11]

Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, Youdou Zheng. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J. Semicond., 2019, 40(1): 011805. doi: 10.1088/1674-4926/40/1/011805

[12]

Shengnan Zhang, Xiaozheng Lian, Yanchao Ma, Weidan Liu, Yingwu Zhang, Yongkuan Xu, Hongjuan Cheng. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J. Semicond., 2018, 39(8): 083003. doi: 10.1088/1674-4926/39/8/083003

[13]

Zhang Fan, Zhao Youwen, Dong Zhiyuan, Zhang Rui, Yang Jun. Bulk Single Crystal Growth and Properties of In-Doped ZnO. J. Semicond., 2008, 29(8): 1540.

[14]

Dong Zhiyuan, Zhao Youwen, Wei Xuecheng, Li Jinmin. Physical Vapor Transport Growth and Characterization of Large Bulk AlN Crystal. J. Semicond., 2007, 28(2): 204.

[15]

Zhu Xinghua, Zhao Beijun, Zhu Shifu, Jin Yingrong, Xiang Anping, Wei Zhaorong. Growth of PbI2 Crystal with Excessive Pb and Its Characterization. J. Semicond., 2007, 28(6): 898.

[16]

L. Bouhdjer, S. Addala, A. Chala, O. Halimi, B. Boudine, M. Sebais. Elaboration and characterization of a KCl single crystal doped with nanocrystalsof a Sb2O3 semiconductor. J. Semicond., 2013, 34(4): 043001. doi: 10.1088/1674-4926/34/4/043001

[17]

Zhang Junyu, Wang Yong, Liu Jing, Zhang Manhong, Xu Zhongguang, Huo Zongliang, Liu Ming. A novel 2 T P-channel nano-crystal memory for low power/high speed embedded NVM applications. J. Semicond., 2012, 33(8): 084006. doi: 10.1088/1674-4926/33/8/084006

[18]

Yuanqi Huang, Zhengwei Chen, Xiao Zhang, Xiaolong Wang, Yusong Zhi, Zhenping Wu, Weihua Tang. The structure and magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film. J. Semicond., 2018, 39(5): 053002. doi: 10.1088/1674-4926/39/5/053002

[19]

Wei Xuecheng, Zhao Youwen, Dong Zhiyuan, Li Jinmin. Defects and Their Influence on Properties of Bulk ZnO Single Crystal. J. Semicond., 2006, 27(10): 1759.

[20]

G. Trimarchi. Crystal structure prediction in the context of inverse materials design. J. Semicond., 2018, 39(7): 071004. doi: 10.1088/1674-4926/39/7/071004

Search

Advanced Search >>

GET CITATION

H F Mohamed, C T Xia, Q L Sai, H Y Cui, M Y Pan, H J Qi, Growth and fundamentals of bulk β-Ga2O3 single crystals[J]. J. Semicond., 2019, 40(1): 011801. doi: 10.1088/1674-4926/40/1/011801.

Export: BibTex EndNote

Article Metrics

Article views: 2013 Times PDF downloads: 233 Times Cited by: 0 Times

History

Manuscript received: 30 September 2018 Manuscript revised: 07 December 2018 Online: Accepted Manuscript: 24 December 2018 Uncorrected proof: 29 December 2018 Published: 07 January 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误