REVIEWS

A review of the most recent progresses of state-of-art gallium oxide power devices

Hong Zhou, Jincheng Zhang, Chunfu Zhang, Qian Feng, Shenglei Zhao, Peijun Ma and Yue Hao

+ Author Affiliations

 Corresponding author: Jincheng Zhang, jchzhang@xidian.edu.cn

PDF

Turn off MathJax

Abstract: Until very recently, gallium oxide (Ga2O3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic electron mobility limit of 250 cm2/(V·s), yielding a high Baliga’s figures-of-merit (FOM) of more than 3000, which is several times higher than GaN and SiC. In addition to its excellent material properties, potential low-cost and large size substrate through melt-grown methodology also endows β-Ga2O3 more potential for future low-cost power devices. This article focuses on reviewing the most recent advances of β-Ga2O3 based power devices. It will be starting with a brief introduction to the material properties of β-Ga2O3 and then the growth techniques of its native substrate, followed by the thin film epitaxial growth. The performance of state-of-art β-Ga2O3 devices, including diodes and FETs are fully discussed and compared. Finally, potential solutions to the challenges of β-Ga2O3 are also discussed and explored.

Key words: gallium oxidepower electronicspower devices



[1]
Zhang Y, Joishi C, Xia Z et al. Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. Appl Phys Lett 2018, 112: 233503 doi: 10.1063/1.5037095
[2]
Lv Y, Zhou X, Long S et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2. IEEE Electron Device Lett 2019, 39 doi: 10.1109/LED.2018.2881274
[3]
Green A J, Chabak K, Heller E R, et al. 3.8 MV/cm Breakdown strength of MOVPE-grown Sn-doped Ga2O3 MOSFETs. IEEE Electron Device Lett, 2016, 37 (7): 902. doi: 10.1109/LED.2016.2568139
[4]
Chabak K D, Moser N, Green A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett, 2016, 109: 213501. doi: 10.1063/1.4967931
[5]
Tadjer M, Mahadik N, Wheeler V D, et al. Communications-A (001) β-Ga2O3 MOSFETs with +2.9 V threshold voltage and HfO2 gate dielectric. ECS J Solid State Sci Tech, 2016, 5: 468. doi: 10.1149/2.0061609jss
[6]
Zeng K, Wallace J S, Heimburger C, et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 2017, 38 (4): 513. doi: 10.1109/LED.2017.2675544
[7]
Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11 (1): 22. doi: 10.1016/S1369-7021(07)70349-8
[8]
Fu H, Baranowski I, Huang X, et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV. IEEE Electron Device Lett, 2017, 38 (9): 1286. doi: 10.1109/LED.2017.2723603
[9]
Baliga B J. Power semiconductor-device figure of merit for high-frequency applications. IEEE Electron Device Lett, 1989, 10(10): 455. doi: 10.1109/55.43098
[10]
Wenckstern H V. Group‐III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 2017, 3(9): 1600350. doi: 10.1002/aelm.v3.9
[11]
Yoshioka S, Hayashi H, Kuwabara A, et al. Structures and energetics of Ga2O3 polymorphs. J Phys: Condens Matter, 2007, 19: 346211. doi: 10.1088/0953-8984/19/34/346211
[12]
He H, Orlando R, Blanco M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74 (19): 195123. doi: 10.1103/PhysRevB.74.195123
[13]
He H, Blanco M A, Pandey R. Electronic and thermodynamic properties of Ga2O3. Appl Phys Lett, 2006, 88: 261904. doi: 10.1063/1.2218046
[14]
Kroll P, Dronskowski R, Martin M. Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga–O–N. J Mater Chem, 2005, 15: 3296. doi: 10.1039/b506687e
[15]
Playford H Y, Hannon A C, Barney E R, et al. Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction. Eur J, 2013, 19 (8): 2803. doi: 10.1002/chem.201203359
[16]
Peelaers H, Van de Walle C G. Brillouin zone and band structure of β‐Ga2O3. Phys Status Solidi B, 2015, 252 (4): 828. doi: 10.1002/pssb.201451551
[17]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97: 142106. doi: 10.1063/1.3499306
[18]
Vasyltsiv V I, Rym Y I, Zakharo Y M. Optical absorption and photoconductivity at the band edge of β‐Ga2−xInxO3. Phys Status Solidi B, 1996, 195, 653. doi: 10.1002/(ISSN)1521-3951
[19]
Galazka Z, Irmscher K, Uecker R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 2014, 404 (15): 184. doi: 10.1016/j.jcrysgro.2014.07.021
[20]
Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β‐Ga2O3 single crystals. Cryst Res Technol, 2010, 45 (12), 1229. doi: 10.1002/crat.v45.12
[21]
Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J App Phys Part 1, 2016, 55, 1202A2. doi: 10.7567/JJAP.55.1202A2
[22]
Vıllora E G, Morioka Y, Atou T. Infrared reflectance and electrical conductivity of β-Ga2O3. Phys. Status Solidi A, 2002, 193: 187. doi: 10.1002/(ISSN)1521-396X
[23]
Zhang J, Li B, Xia C, Growth and spectral characterization of β-Ga2O3 single crystals. J Phys Chem Solids, 2006, 67: 2448. doi: 10.1016/j.jpcs.2006.06.025
[24]
Suzuki N, Ohira S, Tanaka M. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys Status Solidi C, 2007, 4 (7): 2310. doi: 10.1002/(ISSN)1610-1642
[25]
Mohamed M, Irmscher K, Janowitz C, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 2012, 101: 132106. doi: 10.1063/1.4755770
[26]
Suzuki K, Okamoto T, Takata M. Crystal growth of β-Ga2O3 by electric current heating method. Ceram Int, 2004, 30(7): 1679. doi: 10.1016/j.ceramint.2003.12.154
[27]
Zhang J, Xia C, Deng Q, et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn. J Phys Chem Solids, 2006, 67: 1656. doi: 10.1016/j.jpcs.2006.02.018
[28]
Tomm Y, Reiche P, Klimm D, et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 2000, 220 (4): 510. doi: 10.1016/S0022-0248(00)00851-4
[29]
Galazka Z, Uecker R, Klimm D et al.Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS J Solid State Sci Technol 2017, 6: Q3007 doi: 10.1016/j.jcrysgro.2014.07.021
[30]
Higashiwaki M, Kuramata A, Murakami H, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D, 2017, 50: 333002. doi: 10.1088/1361-6463/aa7aff
[31]
Hoshikawa K, Ohba E, Kobayashi E, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447 (1): 36. doi: 10.1016/j.jcrysgro.2016.04.022
[32]
Alema F, Hertog B, Osinsky A, et al. Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 2017, 475: 77. doi: 10.1016/j.jcrysgro.2017.06.001
[33]
Gogova D, Wagner G, Baldini M, et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth, 2014, 401: 665. doi: 10.1016/j.jcrysgro.2013.11.056
[34]
Baldini M, Albrecht M, Fiedler A, et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J Mater Sci, 2016, 51(7): 3650. doi: 10.1007/s10853-015-9693-6
[35]
Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J Cryst Growth, 2014, 392: 30. doi: 10.1016/j.jcrysgro.2014.02.002
[36]
Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46: 7217. doi: 10.1143/JJAP.46.7217
[37]
Okumura H, Kita M, Sasaki K, et al. Systematic investigation of the growth rate of β-Ga2O3(010) by plasma-assisted molecular beam epitaxy. Appl Phys Express, 2014, 7: 095501. doi: 10.7567/APEX.7.095501
[38]
Oshima T, Arai N, Suzuki N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 2008, 516: 5768. doi: 10.1016/j.tsf.2007.10.045
[39]
Y Oshima, E G Vıllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 2015, 8: 055501. doi: 10.7567/APEX.8.055501
[40]
Watahiki T, Yuda Y, Furukawa A, et al. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl Phys Lett, 2017, 111: 222104. doi: 10.1063/1.4998311
[41]
Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2015, 8: 015503. doi: 10.7567/APEX.8.015503
[42]
K Nomura, K Goto, R Togashi, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405: 19. doi: 10.1016/j.jcrysgro.2014.06.051
[43]
Hebert C, Petitmangin A, Perrie're J, et al. Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition. Mater Chem Phys, 2012, 133 (1): 135. doi: 10.1016/j.matchemphys.2011.12.078
[44]
Chen Z, Wang X, Noda S, et al. Effects of dopant contents on structural, morphological and optical properties of Er doped Ga2O3 films. Superlattices Microstruct, 2016, 90: 207. doi: 10.1016/j.spmi.2015.12.025
[45]
Kawaharamura T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 2014, 53: 05FF08. doi: 10.7567/JJAP.53.05FF08
[46]
Lee S D, Kaneko K, Fujita S. Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Jpn J Appl Phys, 2016, 55: 1202B8. doi: 10.7567/JJAP.55.1202B8
[47]
Dang G T, Kawaharamura T, Furuta M, et al. Metal–semiconductor field-effect transistors with In–Ga–Zn–O channel grown by nonvacuum-processed mist chemical vapor deposition. IEEE Electron Device Lett, 2015, 36 (5): 463. doi: 10.1109/LED.2015.2412124
[48]
Fujita S, Kaneko K. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 2014, 401: 588. doi: 10.1016/j.jcrysgro.2014.02.032
[49]
Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51: 070203. doi: 10.1143/JJAP.51.070203
[50]
Baldini M, Albrecht M, Gogova D, et al. Effect of indium as a surfactant in (Ga1−xInx)2O3 epitaxial growth on β-Ga2O3 by metal organic vapour phase epitaxy. Semicond Sci Technol, 2015, 30: 024013. doi: 10.1088/0268-1242/30/2/024013
[51]
Hu Z, Zhou H, Feng Q. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 2018, 39(10): 1564. doi: 10.1109/LED.2018.2868444
[52]
Sasaki K, Kuramata A, Masui T, et al. Device-quality beta-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Exp, 2012, 5: 035502. doi: 10.1143/APEX.5.035502
[53]
Konishi K, Goto K, Murakami H, et al. 1-kV vertical β-Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110 (10): 103506. doi: 10.1063/1.4977857
[54]
Yang J, Ahn S, Ren F, et al. High reverse breakdown voltage Schottky rectifiers without edge termination on β-Ga2O3. Appl Phys Lett, 2017, 110 (19): 192101. doi: 10.1063/1.4983203
[55]
Yang J, Ahn S, Ren F, et al. High breakdown voltage (−201) β-Ga2O3 Schottky rectifiers. IEEE Electron Device Lett, 2017, 38 (7): 906. doi: 10.1109/LED.2017.2703609
[56]
Yang J, Ren F, Pearton S J, et al. Vertical geometry 2-A forward current Ga2O3 Schottky rectifiers on bulk Ga2O3 substrates. IEEE Trans Electron Devices, 2018, 65(7): 2790. doi: 10.1109/TED.2018.2838439
[57]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal−semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett 2012, 100: 013504. doi: 10.1063/1.3674287
[58]
Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2016, 37: 212. doi: 10.1109/LED.2015.2512279
[59]
Zeng K, Vaidya A, Singisetti U, et al. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39(9): 1385. doi: 10.1109/LED.2018.2859049
[60]
Zeng K, Sasaki K, Kuramata A, et al. Depletion and enhancement mode β-Ga2O3 MOSFETs with ALD SiO2 gate and near 400 V breakdown voltage. Proc 74th Annu DRC, 2016: 1
[61]
Hu Z, Nomoto K, Li W, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett, 2018, 39(6): 869. doi: 10.1109/LED.2018.2830184
[62]
Green A J, Chabak K D, Baldini M, et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017.38 (6): 790. doi: 10.1109/LED.2017.2694805
[63]
Singh M, Casbon M A, Uren M J, et al. Pulsed large signal rf performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018.39 (10): 1572. doi: 10.1109/led.2018.2865832
[64]
Chabak K D, Walker D E, Green A J, et al. sub-micron gallium oxide radio frequency field-effect transistors. IEEE MTT-S IMWS-AMP, 2018: 1
[65]
Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect transistors with wide-bandgap beta-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104: 203111. doi: 10.1063/1.4879800
[66]
Hu Z, Zhou H, Dang K, et al. lateral-ga2o3 schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV. IEEE J Electron Device Soc, 2018, 6: 815. doi: 10.1109/JEDS.2018.2853615
[67]
Zhou H, Maize K, Qiu G, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111: 092102. doi: 10.1063/1.5000735
[68]
: Zhou H, Si M, Alghamdi S, et al. High performance depletion/ enhancement mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 2017, 38: 103. doi: 10.1109/LED.2016.2635579
[69]
Moser N A, Mccandless J P, Crespo A, et al. High pulsed density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 2017, 110: 143505. doi: 10.1063/1.4979789
[70]
Shin S H, Wahab M A, Masuduzzaman A, et al. Direct observation of self-heating in III–V gate-all-around nanowire MOSFETs. IEEE Trans Electron Devices, 2014, 62: 3516. doi: 10.1109/IEDM.2014.7047088
[71]
Zhou H, Maize K, Noh J, et al. Thermo-dynamic studies of β-Ga2O3 nano-membrane field-effect transistors on sapphire substrate. ACS Omega, 2017, 2: 7723. doi: 10.1021/acsomega.7b01313
[72]
Noh J, Si M, Zhou H, et al. The impact of substrates on the performance of top-gate β-Ga2O3 field-effect transistors: record high drain current of 980 mA/mm on diamond. IEEE Device Research Conference, 2018: 1.
[73]
Maize K, Zibari A, French W D, et al. Thermoreflectance ccd imaging of self-heating in power MOSFET arrays. IEEE Trans Electron Devices 2014, 61: 3047. doi: 10.1109/TED.2014.2332466
[74]
Si M, Yang L, Zhou H, et al. β-Ga2O3 Nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega, 2017, 2: 7136. doi: 10.1021/acsomega.7b01289
Fig. 1.  (Color online) Atomic unit cell of β-Ga2O3 with lattice constant and angle marked.

Fig. 2.  Band structure of β-Ga2O3 with Fermi energy aligned to zero. Reprint from Appl Phys Lett, 88, 261904 (2006). Copyright 2006 American Institute of Physics.

Fig. 3.  Photograph of 4-inch-diameter β-Ga2O3 wafer. Reprinted from Higashiwaki et al., J Phy D, 50 (2017). Copyright 2017 IOP Publishing[30].

Fig. 4.  (Color online) β-Ga2O3 crystals grown by the VB method in either (a) a full-diameter crucible (a’), and (b) or in a conical crucible (b’). Reprinted from Hoshikawa et al., J Cryst Growth 447, 36 (2016). Copyright 2016 Elsevier[31].

Fig. 5.  (Color online) (a) HRTEM image of an undoped homoepitaxial β-Ga2O3 layer from MOVPE method. (b) Surface morphologies of 60-nm-thick β-Ga2O3 (010) layers grown on Sn-doped β-Ga2O3 (010) substrates at a growth rate of 1 nm/min under slightly Ga-rich conditions at the growth temperatures of 500, 700, 800, and 900 °C, respectively. NDIC microscopy images of β-Ga2O3 surfaces after HVPE growth on (001) β-Ga2O3 substrates for 1 h at (c) 800 and (d) 1000 °C. Reprinted from Refs. [33, 37, 41].

Fig. 6.  (Color online) (a) Electron mobility as a function of carrier concentration. (b) I–V characteristics of Pt/β-Ga2O3 Schottky barrier diodes. The inset shows the schematic structure of the β-Ga2O3 SBD. Reprinted from Sasaki et al., Appl Phys Express, 5, 035502 (2012)[52]. Copyright of 2012 Japanese Society of Applied Physics.

Fig. 7.  (Color online) (a) Forward and (b) reverse J–V characteristics of β-Ga2O3 FP-SBD at room temperature. Inset shows the cross-section device schematic of the vertical SBD. Reprinted from Appl Phys Lett, 110, 103506 (2017). Copyright 2017 American Institute of Physics[53].

Fig. 8.  (Color online) (a) Reverse I–V characteristics of 3 diodes with two different diameters, showing a diameter dependence of the BV, and (b) forward and reverse I–V characteristics from a 20 μm diameter diode. Reprinted from Appl Phys Lett, 110, 192101 (2017) and IEEE Electron Device Lett. Copyrights 2017 American Institute of Physics and 2017 IEEE[54, 55].

Fig. 9.  (Color online) (a) DC output characteristics of β-Ga2O3 MESFET and (b) transfer characteristics of the same MESFET at VDS = 40 V. Reprinted from Appl Phys Lett, 100, 013504 (2012). Copyrights 2012 American Institute of Physics[57].

Fig. 10.  (Color online) (a) Schematic cross section of a β-Ga2O3 MOSFET with a gate-connected FP structure and (b) Output characteristics of the MOSFET with maximum ID of 78 mA/mm and BV of 750 V. Reprinted from IEEE Electron Device Lett, 37, 2 (2016). Copyright of 2016 IEEE[58].

Fig. 11.  (Color online) (a) Cross-section view and (b) optical image of the fabricated field-plated Ga2O3 MOSFET with SOG S/D doping. (c) Three-terminal breakdown measurement of the field-plated Ga2O3 MOSFET and a record-high BV of 1850 V is demonstrated. Reprinted from IEEE Electron Device Lett, 39, 9 (2018). Copyright of 2018 IEEE[59].

Fig. 12.  (Color online) IDVGS characteristics of (a) Zeng’s and (b) Tadjer’s E-mode MOSFET. Reprinted from IEEE Device Research Conf and ECS J, Solid State Sci, Technol, 39, 9 (2018). Copyright of 2016 IEEE[60] and 2016 ECS[5].

Fig. 13.  (Color online) (a) Tilted false-colored SEM image of a fabricated E-mode β-Ga2O3 Fin-MOSFET and (b) The breakdown characteristics of β-Ga2O3 Fin-MOSFET with LG = 2 μm and LGD = 16, 21 μm at VGS = 0 V. The inset shows the transfer characteristics of the same device indicating a VTH = 0.8 V. Reprinted from Appl Phys Lett, 109, 213501 (2016). Copyrights 2016 American Institute of Physics[4].

Fig. 14.  (Color online) (a) Schematic cross-section and (b) SEM image of a vertical E-mode β-Ga2O3 Fin-MOSFET, (c) transfer characteristics of the device with a VTH = 2.2 V, on/off ratio of 108, and on-current of 400 A/cm2. (d) The breakdown characteristics of β-Ga2O3 Fin-MOSFET with channel width of 330 nm. Reprinted from IEEE Electron Device Lett, 39, 869, 2018. Copyright of 2018 IEEE[61].

Fig. 15.  (Color online) (a) A device cross section schematic is shown for the β-Ga2O3 MOSFET under test. (b) A focused ion beam (FIB) cross sectional image of the device. (c) Extrinsic small signal RF gain performance recorded at VGS = −3.5 V (peak gm) and VDS = 40 V (d) 800 MHz Class-A power sweep of a 2 × 50 μm β-Ga2O3 gate recessed MOSFET. Reprinted from IEEE Electron Device Lett, 38, 790, 2017. Copyright of 2017 IEEE[62].

Fig. 16.  (Color online) (a) DC output characteristics and pulsed IV from a quiescent bias of VGS = VDS = 0 V up to VDS = 80 V with 1 μs pulse length and 1 ms period (b) Pulsed and CW large signal measurements at 1 GHz with input available power sweep up to 22 dBm, measured at VDS = 40 V with IDS = 5 mA. Reprinted from IEEE Electron Device Lett, 39, 1572, 2018. Copyright of 2018 IEEE[63].

Fig. 17.  (Color online) Transfer characteristics of the thin-channel BGO MOSFET with T-gate. The GM reaches 25 mS/mm with current density over 275 mA/mm, and the inset shows a good ION/IOFF ratio greater than 108. (b) Small signal gain at VDS = 15 V of the thin-channel BGO MOSFET with ft/fmax = 5.1/17.1 GHz. Reprinted from IEEE IMWS-AMP, 2018. Copyright of 2018 IEEE[64].

Fig. 18.  (Color online) (a) Schematic-view and (b) top-view microscopy image of a fabricated lateral β-Ga2O3 SBD on sapphire substrate. (c) Log-scale forward characteristics of β-Ga2O3 SBD with LSchottky-Ohmic = 15 μm at the temperature range from 30 to 150 °C with 20 °C as a step. (d) Linear-scale forward I–V characteristics of β-Ga2O3 SBDs with various LSchottky−Ohmic. (e) Reverse I–V characteristics of lateral β-Ga2O3 SBDs with various LSchottky−Ohmic. Reprinted from IEEE JEDS 6, 815, 2018. Copyright of 2018 IEEE[66].

Fig. 19.  (Color online) (a) Tilted 3-D schematic-view and (b) top-view microscopy image of a fabricated lateral field-plated β-Ga2O3 SBD on Sapphire substrate. (c) Forward I–V and differential RonV characteristics in linear scale. The inset shows as-measured current dependence on the width of the SBD at a similar LAC of 14–18 μm. (d) Reverse I–V characteristics of lateral SBDs with field plate structure and various LAC. (e) DC RON,SP versus BV of some both lateral and vertical β-Ga2O3 SBDs. Reprinted from IEEE Electron Device Lett, 39, 1564, 2018. Copyright of 2018 IEEE[51].

Fig. 20.  (Color online) (a) Schematic view of a GOOI FET with a 300 nm SiO2 layer on Si substrate and (b) AFM image of the atomic flat β-Ga2O3 surface after cleavage. Reprinted from IEEE Electron Device Lett, 38, 103, 2017. Copyright of 2017 IEEE[68].

Fig. 21.  (Color online) (a) and (c) are IDVDS output characteristics of D- and E-mode GOOI FETs with 3.0 × 1018 and 8.0 × 1018 cm−3 doping channel, respectively. (b) and (d) are IDgmVGS transfer characteristics of D-mode and E-mode GOOI FETs with 8.0 × 1018 cm−3 doping channel, respectively. Record high IDMAX of 1.5 and 1.0 A/mm are demonstrated for D/E mode devices. Both D and E-mode devices have high on/off ratio of 1010 and low SS of 150–165 mV/dec for 300 nm SiO2. Reprinted from Appl Phys Lett, 111, 092102, 2017. Copyright of 2017 AIP[67].

Fig. 22.  (Color online) (a) Thickness dependent IDVGS plots of various GOOI FETs from D-mode of thicker β-Ga2O3 to E-mode of thinner β-Ga2O3. (b) Thickness dependent VT extracted at VDS = 1 V of 15 devices. Reprinted from IEEE Electron Device Lett, 38, 103, 2017. Copyright of 2017 IEEE[68].

Fig. 23.  (Color online) (a) IDVGS comparison between GOOI FETs with and without ALD passivation for β-Ga2O3 nano-membrane with doping concentration of 3.0 × 1018 cm−3, (b) simulated C–V curve for E-mode GOOI FET at a β-Ga2O3 nano-membrane thickness of 80 nm and doping concentration of 3.0 × 1018 cm−3 after considering the top and bottom negative surface charge (ns = 1.2 × 1013 cm2) depletion effect. Band diagram and electron density distribution of E-mode GOOI FETs with surface negative charge depletion on (c) lower doping (ns = 1.2 × 1013 cm−2) and (d) high doping (ns = 2.2 × 1013 cm−2) β-Ga2O3 nano-membrane channels at VGS = 0 V. Reprinted from Appl Phys Lett, 111, 092102, 2017. Copyright of 2017 AIP[67].

Fig. 24.  (Color online) Cross-section schematic view of a top-gate GOOI FET on (a) SiO2/Si and (b) sapphire and diamond substrates with different κ marked. 15 nm of Al2O3 is used as the gate dielectric, Ti/Al/Au (15/60/50 nm) is used as the source/drain electrodes, and Ni/Au (30/50 nm) is used the gate electrode. (c) False-colored SEM top-view of a GOOI FET with LG = 1 μm and LSD = 6 μm. Reprinted from ACS Omega 2,11, 2017. Copyright of 2017 ACS[71].

Fig. 25.  (Color online) IDVDS characteristics of GOOI FETs on (a) SiO2/Si, (b) sapphire and (c) diamond substrates with LSD = 6–6.5 μm and LG = 1 μm. A high IDMAX = 960 mA/mm is demonstrated on top-gate β-Ga2O3 GOOI FETs. Comparison of (d) IDVDS (e) log-scale IDVGS and (f) linear-scale gmVGS of β-Ga2O3 FETs on a diamond, sapphire and SiO2/Si substrates. IDVGS transfer characteristics of GOOI FETs on three substrates with high on/off ratio of 109 and low SS of 65 mV/dec, yielding a low Dit of 2.6 × 1011 eV−1·cm−2. Higher gm shows higher electron μ on diamond due to the reduced device temperature. Reprinted from ACS Omega 2,11, 2017. Copyright of 2017 ACS[71] and 2018 IEEE[72].

Fig. 26.  (Color online) TR and charge-coupled device (CCD) camera merged images of GOOI FET on (a) SiO2/Si, (b) sapphire and (c) diamond substrates when device P is increased by increasing VDS at VGS = 0 V. (d) Comparison of measured or simulated ΔT versus P (W/mm2) characteristics of top-gate GOOI FETs on a diamond substrate using TR imaging, Raman thermography and the thermal simulations. (e) Measured by TR method and simulated ΔT versus P characteristics of top-gate GOOI FETs on different substrates. The ΔT of GOOI FET on the SiO2/Si substrate is more than 3 and 8 times of that on the sapphire and diamond substrates at the same P. As a result, the RT of GOOI FET on the sapphire substrate is 4.62 × 10−2 and 1.71 × 10−2 mm2·K/W, which is less than 1/3 and 1/8 of that on the SiO2/Si substrate. Reprinted from ACS Omega 2,11, 2017. Copyright of 2017 ACS[71].

Fig. 27.  (Color online) (a) Schematic view of β-Ga2O3 FE-FETs. The gate stack includes a heavily n-doped Si as the gate electrode, 20 nm HZO as the ferroelectric insulator, 3 nm Al2O3 as the capping layer. Ti/Au (30/60 nm) is used as the source/drain electrodes. Sn-doped n-type β-Ga2O3 (86 nm) is used as the channel. (b) Top-view false-color SEM image of representative β-Ga2O3 FE-FETs on the same membrane with different channel lengths. (c) Cross-sectional view of the HZO/Al2O3 gate stack, capturing the polycrystalline HZO and the amorphous Al2O3. Reprinted from ACS Omega 2,10, 2017. Copyright of 2017 ACS[74].

Fig. 28.  (Color online) (a) IDVGS characteristics in the log scale of a β-Ga2O3 FE-FET. This device has a channel length of 0.5 μm and a channel thickness of 86 nm. SS versus ID characteristics of the same device in (a) at (b) VDS = 0.1, (c) VDS = 0.5, and (d) VDS = 0.9 V. SS less than 60 mV/dec at room temperature is demonstrated for both forward and reverse VGS sweeps. Reprinted from ACS Omega 2,10, 2017. Copyright of 2017 ACS[74].

Fig. 29.  (Color online) (a) IDVGS characteristics in the linear scale of the same β-Ga2O3 FE-FET as in Fig. 9. (b) IDVDS characteristics of the same β-Ga2O3 FE-FET as in Fig. 9. Reprinted from ACS Omega 2,10, 2017. Copyright of 2017 ACS[74].

Table 1.   Properties of β-Ga2O3 relative to some other major semiconductors used for power electronics applications, considering their different kinds of FOM.

Material Parameter Si GaAs 4H-SiC GaN Diamond β-Ga2O3
Bandgap Eg (eV) 1.14 1.43 3.25 3.4 5.5 4.8
Dielectric constant ε 12 13 10 9 5.5 11
Breakdown field EC (MV/cm) 0.3 0.4 2.5 3.3 10 8
Carrier mobility μ (cm2/(V·s)) 1450 8400 1000 1200 2000 300
Saturation velocity νsat (107 cm/s) 1 1.2 2 2.5 1 2
Thermal conductivity κ (W/mK) 150 50 370 250 2000 10–30
FOM relative to Si
Baliga FOM = εμEc3 1 14.7 317 846 24 660 3200
Johnson FOM = Ec2νsat2/4π2 1 1.8 278 1089 1110 2844
Baliga High Frequency FOM = μEc2 1 10 46 100 1500 142
Keyes FOM = κ[(sat)(4πε)]1/2 1 0.3 3.6 1.8 41.5 0.2
DownLoad: CSV

Table 2.   Comparison of CW and pulse large signal measurements performed at two different operating power levels of 0.4 and 0.8 W/mm. larger differences in performance between cw and pulsed modes can been seen with increasing operating power. Reprinted from IEEE Electron Device Lett, 39, 1572, 2018. Copyright of 2018 IEEE.

Parameter Operating condition 0.4 W/mm 25 °C
(IDS = 5 mA, Vds = 40 V)
Operating condition 0.8 W/mm 25 °C
(IDS = 10 mA, VDS = 40 V)
CW Pulse CW Pulse
Pout (dBm) 17.42 18.28 17.63 19.52
Pout (W/mm) 0.11 0.13 0.11 0.17
Drain Eff (%) 19.56 22.40 13.83 17.04
PAE (%) 9.09 12.01 3.23 6.85
Max gain (dB) 4.17 4.81 2.08 3.68
Channel temperature (°C) 58 28 97 36
DownLoad: CSV
[1]
Zhang Y, Joishi C, Xia Z et al. Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. Appl Phys Lett 2018, 112: 233503 doi: 10.1063/1.5037095
[2]
Lv Y, Zhou X, Long S et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2. IEEE Electron Device Lett 2019, 39 doi: 10.1109/LED.2018.2881274
[3]
Green A J, Chabak K, Heller E R, et al. 3.8 MV/cm Breakdown strength of MOVPE-grown Sn-doped Ga2O3 MOSFETs. IEEE Electron Device Lett, 2016, 37 (7): 902. doi: 10.1109/LED.2016.2568139
[4]
Chabak K D, Moser N, Green A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett, 2016, 109: 213501. doi: 10.1063/1.4967931
[5]
Tadjer M, Mahadik N, Wheeler V D, et al. Communications-A (001) β-Ga2O3 MOSFETs with +2.9 V threshold voltage and HfO2 gate dielectric. ECS J Solid State Sci Tech, 2016, 5: 468. doi: 10.1149/2.0061609jss
[6]
Zeng K, Wallace J S, Heimburger C, et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 2017, 38 (4): 513. doi: 10.1109/LED.2017.2675544
[7]
Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11 (1): 22. doi: 10.1016/S1369-7021(07)70349-8
[8]
Fu H, Baranowski I, Huang X, et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV. IEEE Electron Device Lett, 2017, 38 (9): 1286. doi: 10.1109/LED.2017.2723603
[9]
Baliga B J. Power semiconductor-device figure of merit for high-frequency applications. IEEE Electron Device Lett, 1989, 10(10): 455. doi: 10.1109/55.43098
[10]
Wenckstern H V. Group‐III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 2017, 3(9): 1600350. doi: 10.1002/aelm.v3.9
[11]
Yoshioka S, Hayashi H, Kuwabara A, et al. Structures and energetics of Ga2O3 polymorphs. J Phys: Condens Matter, 2007, 19: 346211. doi: 10.1088/0953-8984/19/34/346211
[12]
He H, Orlando R, Blanco M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74 (19): 195123. doi: 10.1103/PhysRevB.74.195123
[13]
He H, Blanco M A, Pandey R. Electronic and thermodynamic properties of Ga2O3. Appl Phys Lett, 2006, 88: 261904. doi: 10.1063/1.2218046
[14]
Kroll P, Dronskowski R, Martin M. Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga–O–N. J Mater Chem, 2005, 15: 3296. doi: 10.1039/b506687e
[15]
Playford H Y, Hannon A C, Barney E R, et al. Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction. Eur J, 2013, 19 (8): 2803. doi: 10.1002/chem.201203359
[16]
Peelaers H, Van de Walle C G. Brillouin zone and band structure of β‐Ga2O3. Phys Status Solidi B, 2015, 252 (4): 828. doi: 10.1002/pssb.201451551
[17]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97: 142106. doi: 10.1063/1.3499306
[18]
Vasyltsiv V I, Rym Y I, Zakharo Y M. Optical absorption and photoconductivity at the band edge of β‐Ga2−xInxO3. Phys Status Solidi B, 1996, 195, 653. doi: 10.1002/(ISSN)1521-3951
[19]
Galazka Z, Irmscher K, Uecker R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 2014, 404 (15): 184. doi: 10.1016/j.jcrysgro.2014.07.021
[20]
Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β‐Ga2O3 single crystals. Cryst Res Technol, 2010, 45 (12), 1229. doi: 10.1002/crat.v45.12
[21]
Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J App Phys Part 1, 2016, 55, 1202A2. doi: 10.7567/JJAP.55.1202A2
[22]
Vıllora E G, Morioka Y, Atou T. Infrared reflectance and electrical conductivity of β-Ga2O3. Phys. Status Solidi A, 2002, 193: 187. doi: 10.1002/(ISSN)1521-396X
[23]
Zhang J, Li B, Xia C, Growth and spectral characterization of β-Ga2O3 single crystals. J Phys Chem Solids, 2006, 67: 2448. doi: 10.1016/j.jpcs.2006.06.025
[24]
Suzuki N, Ohira S, Tanaka M. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys Status Solidi C, 2007, 4 (7): 2310. doi: 10.1002/(ISSN)1610-1642
[25]
Mohamed M, Irmscher K, Janowitz C, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 2012, 101: 132106. doi: 10.1063/1.4755770
[26]
Suzuki K, Okamoto T, Takata M. Crystal growth of β-Ga2O3 by electric current heating method. Ceram Int, 2004, 30(7): 1679. doi: 10.1016/j.ceramint.2003.12.154
[27]
Zhang J, Xia C, Deng Q, et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn. J Phys Chem Solids, 2006, 67: 1656. doi: 10.1016/j.jpcs.2006.02.018
[28]
Tomm Y, Reiche P, Klimm D, et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 2000, 220 (4): 510. doi: 10.1016/S0022-0248(00)00851-4
[29]
Galazka Z, Uecker R, Klimm D et al.Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS J Solid State Sci Technol 2017, 6: Q3007 doi: 10.1016/j.jcrysgro.2014.07.021
[30]
Higashiwaki M, Kuramata A, Murakami H, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D, 2017, 50: 333002. doi: 10.1088/1361-6463/aa7aff
[31]
Hoshikawa K, Ohba E, Kobayashi E, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447 (1): 36. doi: 10.1016/j.jcrysgro.2016.04.022
[32]
Alema F, Hertog B, Osinsky A, et al. Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 2017, 475: 77. doi: 10.1016/j.jcrysgro.2017.06.001
[33]
Gogova D, Wagner G, Baldini M, et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth, 2014, 401: 665. doi: 10.1016/j.jcrysgro.2013.11.056
[34]
Baldini M, Albrecht M, Fiedler A, et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J Mater Sci, 2016, 51(7): 3650. doi: 10.1007/s10853-015-9693-6
[35]
Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J Cryst Growth, 2014, 392: 30. doi: 10.1016/j.jcrysgro.2014.02.002
[36]
Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46: 7217. doi: 10.1143/JJAP.46.7217
[37]
Okumura H, Kita M, Sasaki K, et al. Systematic investigation of the growth rate of β-Ga2O3(010) by plasma-assisted molecular beam epitaxy. Appl Phys Express, 2014, 7: 095501. doi: 10.7567/APEX.7.095501
[38]
Oshima T, Arai N, Suzuki N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 2008, 516: 5768. doi: 10.1016/j.tsf.2007.10.045
[39]
Y Oshima, E G Vıllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 2015, 8: 055501. doi: 10.7567/APEX.8.055501
[40]
Watahiki T, Yuda Y, Furukawa A, et al. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl Phys Lett, 2017, 111: 222104. doi: 10.1063/1.4998311
[41]
Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2015, 8: 015503. doi: 10.7567/APEX.8.015503
[42]
K Nomura, K Goto, R Togashi, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405: 19. doi: 10.1016/j.jcrysgro.2014.06.051
[43]
Hebert C, Petitmangin A, Perrie're J, et al. Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition. Mater Chem Phys, 2012, 133 (1): 135. doi: 10.1016/j.matchemphys.2011.12.078
[44]
Chen Z, Wang X, Noda S, et al. Effects of dopant contents on structural, morphological and optical properties of Er doped Ga2O3 films. Superlattices Microstruct, 2016, 90: 207. doi: 10.1016/j.spmi.2015.12.025
[45]
Kawaharamura T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 2014, 53: 05FF08. doi: 10.7567/JJAP.53.05FF08
[46]
Lee S D, Kaneko K, Fujita S. Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Jpn J Appl Phys, 2016, 55: 1202B8. doi: 10.7567/JJAP.55.1202B8
[47]
Dang G T, Kawaharamura T, Furuta M, et al. Metal–semiconductor field-effect transistors with In–Ga–Zn–O channel grown by nonvacuum-processed mist chemical vapor deposition. IEEE Electron Device Lett, 2015, 36 (5): 463. doi: 10.1109/LED.2015.2412124
[48]
Fujita S, Kaneko K. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 2014, 401: 588. doi: 10.1016/j.jcrysgro.2014.02.032
[49]
Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51: 070203. doi: 10.1143/JJAP.51.070203
[50]
Baldini M, Albrecht M, Gogova D, et al. Effect of indium as a surfactant in (Ga1−xInx)2O3 epitaxial growth on β-Ga2O3 by metal organic vapour phase epitaxy. Semicond Sci Technol, 2015, 30: 024013. doi: 10.1088/0268-1242/30/2/024013
[51]
Hu Z, Zhou H, Feng Q. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 2018, 39(10): 1564. doi: 10.1109/LED.2018.2868444
[52]
Sasaki K, Kuramata A, Masui T, et al. Device-quality beta-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Exp, 2012, 5: 035502. doi: 10.1143/APEX.5.035502
[53]
Konishi K, Goto K, Murakami H, et al. 1-kV vertical β-Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110 (10): 103506. doi: 10.1063/1.4977857
[54]
Yang J, Ahn S, Ren F, et al. High reverse breakdown voltage Schottky rectifiers without edge termination on β-Ga2O3. Appl Phys Lett, 2017, 110 (19): 192101. doi: 10.1063/1.4983203
[55]
Yang J, Ahn S, Ren F, et al. High breakdown voltage (−201) β-Ga2O3 Schottky rectifiers. IEEE Electron Device Lett, 2017, 38 (7): 906. doi: 10.1109/LED.2017.2703609
[56]
Yang J, Ren F, Pearton S J, et al. Vertical geometry 2-A forward current Ga2O3 Schottky rectifiers on bulk Ga2O3 substrates. IEEE Trans Electron Devices, 2018, 65(7): 2790. doi: 10.1109/TED.2018.2838439
[57]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal−semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett 2012, 100: 013504. doi: 10.1063/1.3674287
[58]
Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2016, 37: 212. doi: 10.1109/LED.2015.2512279
[59]
Zeng K, Vaidya A, Singisetti U, et al. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39(9): 1385. doi: 10.1109/LED.2018.2859049
[60]
Zeng K, Sasaki K, Kuramata A, et al. Depletion and enhancement mode β-Ga2O3 MOSFETs with ALD SiO2 gate and near 400 V breakdown voltage. Proc 74th Annu DRC, 2016: 1
[61]
Hu Z, Nomoto K, Li W, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett, 2018, 39(6): 869. doi: 10.1109/LED.2018.2830184
[62]
Green A J, Chabak K D, Baldini M, et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017.38 (6): 790. doi: 10.1109/LED.2017.2694805
[63]
Singh M, Casbon M A, Uren M J, et al. Pulsed large signal rf performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018.39 (10): 1572. doi: 10.1109/led.2018.2865832
[64]
Chabak K D, Walker D E, Green A J, et al. sub-micron gallium oxide radio frequency field-effect transistors. IEEE MTT-S IMWS-AMP, 2018: 1
[65]
Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect transistors with wide-bandgap beta-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104: 203111. doi: 10.1063/1.4879800
[66]
Hu Z, Zhou H, Dang K, et al. lateral-ga2o3 schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV. IEEE J Electron Device Soc, 2018, 6: 815. doi: 10.1109/JEDS.2018.2853615
[67]
Zhou H, Maize K, Qiu G, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111: 092102. doi: 10.1063/1.5000735
[68]
: Zhou H, Si M, Alghamdi S, et al. High performance depletion/ enhancement mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 2017, 38: 103. doi: 10.1109/LED.2016.2635579
[69]
Moser N A, Mccandless J P, Crespo A, et al. High pulsed density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 2017, 110: 143505. doi: 10.1063/1.4979789
[70]
Shin S H, Wahab M A, Masuduzzaman A, et al. Direct observation of self-heating in III–V gate-all-around nanowire MOSFETs. IEEE Trans Electron Devices, 2014, 62: 3516. doi: 10.1109/IEDM.2014.7047088
[71]
Zhou H, Maize K, Noh J, et al. Thermo-dynamic studies of β-Ga2O3 nano-membrane field-effect transistors on sapphire substrate. ACS Omega, 2017, 2: 7723. doi: 10.1021/acsomega.7b01313
[72]
Noh J, Si M, Zhou H, et al. The impact of substrates on the performance of top-gate β-Ga2O3 field-effect transistors: record high drain current of 980 mA/mm on diamond. IEEE Device Research Conference, 2018: 1.
[73]
Maize K, Zibari A, French W D, et al. Thermoreflectance ccd imaging of self-heating in power MOSFET arrays. IEEE Trans Electron Devices 2014, 61: 3047. doi: 10.1109/TED.2014.2332466
[74]
Si M, Yang L, Zhou H, et al. β-Ga2O3 Nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega, 2017, 2: 7136. doi: 10.1021/acsomega.7b01289
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6921 Times PDF downloads: 519 Times Cited by: 0 Times

    History

    Received: 16 October 2018 Revised: 17 December 2018 Online: Accepted Manuscript: 21 December 2018Uncorrected proof: 24 December 2018Published: 07 January 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hong Zhou, Jincheng Zhang, Chunfu Zhang, Qian Feng, Shenglei Zhao, Peijun Ma, Yue Hao. A review of the most recent progresses of state-of-art gallium oxide power devices[J]. Journal of Semiconductors, 2019, 40(1): 011803. doi: 10.1088/1674-4926/40/1/011803 H Zhou, J C Zhang, C F Zhang, Q Feng, S L Zhao, P J Ma, Y Hao, A review of the most recent progresses of state-of-art gallium oxide power devices[J]. J. Semicond., 2019, 40(1): 011803. doi: 10.1088/1674-4926/40/1/011803.Export: BibTex EndNote
      Citation:
      Hong Zhou, Jincheng Zhang, Chunfu Zhang, Qian Feng, Shenglei Zhao, Peijun Ma, Yue Hao. A review of the most recent progresses of state-of-art gallium oxide power devices[J]. Journal of Semiconductors, 2019, 40(1): 011803. doi: 10.1088/1674-4926/40/1/011803

      H Zhou, J C Zhang, C F Zhang, Q Feng, S L Zhao, P J Ma, Y Hao, A review of the most recent progresses of state-of-art gallium oxide power devices[J]. J. Semicond., 2019, 40(1): 011803. doi: 10.1088/1674-4926/40/1/011803.
      Export: BibTex EndNote

      A review of the most recent progresses of state-of-art gallium oxide power devices

      doi: 10.1088/1674-4926/40/1/011803
      More Information
      • Corresponding author: jchzhang@xidian.edu.cn
      • Received Date: 2018-10-16
      • Revised Date: 2018-12-17
      • Published Date: 2019-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return