J. Semicond. > Volume 40 > Issue 1 > Article Number: 011805

Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3

Xiangqian Xiu , , Liying Zhang , Yuewen Li , Zening Xiong , Rong Zhang and Youdou Zheng

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Halide vapor phase epitaxy (HVPE) is widely used in the semiconductor industry for the growth of Si, GaAs, GaN, etc. HVPE is a non-organic chemical vapor deposition (CVD) technique, characterized by high quality growth of epitaxial layers with fast growth rate, which is versatile for the fabrication of both substrates and devices with wide applications. In this paper, we review the usage of HVPE for the growth and device applications of Ga2O3, with detailed discussions on a variety of technological aspects of HVPE. It is concluded that HVPE is a promising candidate for the epitaxy of large-area Ga2O3 substrates and for the fabrication of high power β-Ga2O3 devices.

Key words: halide vapor phase epitaxyGa2O3Schottky barrier diodesepitaxy growth

Abstract: Halide vapor phase epitaxy (HVPE) is widely used in the semiconductor industry for the growth of Si, GaAs, GaN, etc. HVPE is a non-organic chemical vapor deposition (CVD) technique, characterized by high quality growth of epitaxial layers with fast growth rate, which is versatile for the fabrication of both substrates and devices with wide applications. In this paper, we review the usage of HVPE for the growth and device applications of Ga2O3, with detailed discussions on a variety of technological aspects of HVPE. It is concluded that HVPE is a promising candidate for the epitaxy of large-area Ga2O3 substrates and for the fabrication of high power β-Ga2O3 devices.

Key words: halide vapor phase epitaxyGa2O3Schottky barrier diodesepitaxy growth



References:

[1]

R Roy, V G Hill, E F Osborn, et al. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 1952,74(3): 719

[2]

H H Tippins. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys Rev, 1965, 140: A316.

[3]

H He, R Orlando, M A Blanco, et al. First-principles study of structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74: 195123.

[4]

M Orita, H Ohta, M Hirano, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77: 4166.

[5]

T Onuma, S Fujioka, T Yamaguchi, et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 2013, 103: 041910.

[6]

T Oshima, T Okuno, N Arai, et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates. Appl Phys Express, 2008, 1(1): 011202

[7]

E G Víllora, K Shimamura, K Kitamura, et al. Epitaxial relationship between wurtzite GaN and β-Ga2O3. Appl Phys Lett, 2007, 90(23): 234102.

[8]

E G Víllora, S Arjoca, K Shimamura, et al. β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs and LDs, and β-Ga2O3 potential for next generation of power devices. Proc SPIE, 2014, 8987: 89871U

[9]

K Sasaki, A Kuramata, T Masui T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 2012, 5(3): 035502.

[10]

M Higashiwaki, K Sasaki, A Kuramata, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100(1): 013504.

[11]

M Higashiwaki, K Sasaki, T Kamimura, et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 2013, 103(12): 123511.

[12]

Z Galazka, K Irmscher, R Uecker, et al. On the bulk β-Ga2O3 single crystals grown by czochralski method. J Cryst Growth, 2014, 404: 184.

[13]

N Ueda, H Hosono, R Waseda, et al. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl Phys Lett, 1997, 70: 3561.

[14]

E G Villora, K Shimamura, Y Yoshikawa, et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 2004, 270: 420.

[15]

A Kuramata, K Koshi, S Watanabe, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 2016, 55: 1202A2.

[16]

T Oshima, T Okuno, S Fujita. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46(11R): 7217.

[17]

G Wagner, M Baldini, D Gogova, et al. Homoepitaxial growth of β‐Ga2O3 layers by metal‐organic vapor phase epitaxy. Phys Status Solidi A, 2014, 211(1): 27

[18]

K Fujito, S Kubo, H Nagaoka, et al. Bulk GaN crystals grown by HVPE. J Cryst Growth, 2009, 311(10): 3011

[19]

R Masuda, T Fujii, N Yoshii, et al. Step-flow growth of homoepitaxial ZnO thin layers by halide vapor phase epitaxy using ZnCl2 and H2O source gases. J Cryst Growth, 2010, 312(16/17): 2324

[20]

Y Kumagai, Y Kubota, T Nagashima, et al. Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl Phys Express, 2012, 5(5): 055504.

[21]

K Nomura, K Goto, R Togashi, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405: 19

[22]

Y Oshima, E G Vίllora, K Shimamura. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy. J Cryst Growth, 2015, 410: 53

[23]

N Suzuki, S Ohira, M Tanaka, et al. Fabrication and characterization of transparent conductive Sn‐doped β‐Ga2O3 single crystals. Phys Status Solidi C, 2007, 4(7): 2310

[24]

M Slomski, N Blumenschein, P P Paskov, et al. Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J Appl Phys, 2017, 121(23): 235104.

[25]

T Harwig, G J Wubs, G J Dirksen. Electrical properties of β-Ga2O3 single crystals. Solid State Commun., 1976, 18(9/10): 1223

[26]

T Matsumoto, M Aoki, A Kinoshita, et al. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3. Jpn J Appl Phys, 1974, 13(10): 1578.

[27]

E G Víllora, K Shimamura, K Kitamura, et al. Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3. Appl Phys Lett, 2006, 88(3): 031105.

[28]

M Y Tsai, O Bierwagen, M E White, et al. β-Ga2O3 growth by plasma-assisted molecular beam epitaxy. J Vac Sci Technol, 2010, 28(2): 354

[29]

V Gottschalch, K Mergenthaler, G Wagner, et al. Growth of β‐Ga2O3 on Al2O3 and GaAs using metal‐organic vapor‐phase epitaxy. Phys Stat Solidi (a), 2009, 206(2): 243

[30]

W Mi, J Ma, Z Zhu, et al. Epitaxial growth of Ga2O3 thin films on MgO (110) substrate by metal–organic chemical vapor deposition. J Cryst Growth, 2012, 354(1): 93

[31]

F B Zhang, K Saito, T Tanaka, et al. Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition. J Cryst Growth, 2014, 387: 96

[32]

Z N Xiong, X Q Xiu, Y W Li, et al. Growth of β-Ga2O3 films on sapphire by HVPE. Chin Phys Lett, 2018, 35: 058101

[33]

M Orita, H Hiramatsu, H Ohta, et al. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures. Thin Solid Films, 2002, 411(1): 134

[34]

D Shinohara, S Fujita. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 2008, 47(9R): 7311.

[35]

T Kawaharamura, G T Dang, M Furuta. Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51(4R): 040207.

[36]

K Akaiwa, S Fujita. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51(7R): 070203.

[37]

S Fujita, K Kaneko. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 2014, 401: 588

[38]

Y Oshima, E G Víllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 2015, 8(5): 055501.

[39]

Y Oshima Y, E G Víllora, Y Matsushita, et al. Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy. J Appl Phys, 2015, 118(8): 085301.

[40]

Y Yao, S Okur, A M Lyle, et al. Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 2018, 6(5): 268

[41]

M Mohamed, K Irmscher, C Janowitz, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 2012, 101(13): 132106.

[42]

S Oh, G Yang, J Kim. Electrical characteristics of vertical Ni/β-Ga2O3 schottky barrier diodes at high temperatures. ECS J Solid State Sci Technol, 2017, 6(2): Q3022

[43]

J Yang, S Ahn, F Ren, et al. High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3. Appl Phys Lett, 2017, 110(19): 192101.

[44]

M Higashiwaki, K Konishi, K Sasaki, et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n––Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 2016, 108(13): 133503.

[45]

H Murakami, K Nomura, K Goto, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2014, 8(1): 015503.

[46]

Z Z Hu, H Zhou, Q Feng, et al. Field-plated lateral β- Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 2018, 39 (10): 1564

[47]

M Higashiwaki, K Sasaki, H Murakami, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31(3): 034001.

[48]

K Konishi, K Goto, H Murakami, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110(10): 103506.

[49]

K Shimamura, E G Víllora, K Domen, et al. Epitaxial growth of GaN on (100) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 2004, 44(1L): L7.

[50]

E G Víllora, K Shimamura, K Aoki, et al. Molecular beam epitaxy of c-plane wurtzite GaN on nitridized a-plane β-Ga2O3. Thin Solid Films, 2006, 500(1/2): 209

[51]

Z L Xie, R Zhang, C T Xia, et al. Demonstration of GaN/InGaN light emitting diodes on (100) beta-Ga2O3 substrates by metalorganic chemical vapour deposition. Chin Phys Lett, 2008, 25: 2185

[52]

I A Ajia, Y Yamashita, K Lorenz, et al. GaN/AlGaN multiple quantum wells grown on transparent and conductive (-201)-oriented β-Ga2O3 substrate for UV vertical light emitting devices. Appl Phys Lett, 2018, 113(8): 082102.

[53]

V M Krymov, S I Stepanov, N K Zhumashev, et al. GaN growth on β-Ga2O3 substrates by HVPE. Mater Phys Mech, 2015, 22: 59

[54]

S Ito, K Takeda, K Nagata, et al. Growth of GaN and AlGaN on (100) β‐Ga2O3 substrates. Phys. Stat. Solidi c, 2012, 9(3/4): 519

[55]

H J Lee, T I Shin, D H Yoon. Influence of NH3 gas for GaN epilayer on β-Ga2O3 substrate by nitridation. Surf Coat.Tech, 2008, 202(22/23): 5497

[56]

K Kachel, M Korytov, D Gogova, et al. A new approach to free-standing GaN using β-Ga2O3 as a substrate. CrystEngComm, 2012, 14(24): 8536

[57]

V I Nikolaev, A I Pechnikov, V N Maslov, et al. GaN growth on β-Ga2O3 substrates by HVPE. Mater Phys Mechan, 2015, 22:59

[58]

Y W Li, X Q Xiu, Z N Xiong, et al. Single crystal GaN layer converted from β-Ga2O3 films and its application for free-Standing GaN. CrystEngComm, 2019, DOI: 10.1039/C8CE01336E

[1]

R Roy, V G Hill, E F Osborn, et al. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 1952,74(3): 719

[2]

H H Tippins. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys Rev, 1965, 140: A316.

[3]

H He, R Orlando, M A Blanco, et al. First-principles study of structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74: 195123.

[4]

M Orita, H Ohta, M Hirano, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77: 4166.

[5]

T Onuma, S Fujioka, T Yamaguchi, et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 2013, 103: 041910.

[6]

T Oshima, T Okuno, N Arai, et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates. Appl Phys Express, 2008, 1(1): 011202

[7]

E G Víllora, K Shimamura, K Kitamura, et al. Epitaxial relationship between wurtzite GaN and β-Ga2O3. Appl Phys Lett, 2007, 90(23): 234102.

[8]

E G Víllora, S Arjoca, K Shimamura, et al. β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs and LDs, and β-Ga2O3 potential for next generation of power devices. Proc SPIE, 2014, 8987: 89871U

[9]

K Sasaki, A Kuramata, T Masui T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 2012, 5(3): 035502.

[10]

M Higashiwaki, K Sasaki, A Kuramata, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100(1): 013504.

[11]

M Higashiwaki, K Sasaki, T Kamimura, et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 2013, 103(12): 123511.

[12]

Z Galazka, K Irmscher, R Uecker, et al. On the bulk β-Ga2O3 single crystals grown by czochralski method. J Cryst Growth, 2014, 404: 184.

[13]

N Ueda, H Hosono, R Waseda, et al. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl Phys Lett, 1997, 70: 3561.

[14]

E G Villora, K Shimamura, Y Yoshikawa, et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 2004, 270: 420.

[15]

A Kuramata, K Koshi, S Watanabe, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 2016, 55: 1202A2.

[16]

T Oshima, T Okuno, S Fujita. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46(11R): 7217.

[17]

G Wagner, M Baldini, D Gogova, et al. Homoepitaxial growth of β‐Ga2O3 layers by metal‐organic vapor phase epitaxy. Phys Status Solidi A, 2014, 211(1): 27

[18]

K Fujito, S Kubo, H Nagaoka, et al. Bulk GaN crystals grown by HVPE. J Cryst Growth, 2009, 311(10): 3011

[19]

R Masuda, T Fujii, N Yoshii, et al. Step-flow growth of homoepitaxial ZnO thin layers by halide vapor phase epitaxy using ZnCl2 and H2O source gases. J Cryst Growth, 2010, 312(16/17): 2324

[20]

Y Kumagai, Y Kubota, T Nagashima, et al. Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl Phys Express, 2012, 5(5): 055504.

[21]

K Nomura, K Goto, R Togashi, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405: 19

[22]

Y Oshima, E G Vίllora, K Shimamura. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy. J Cryst Growth, 2015, 410: 53

[23]

N Suzuki, S Ohira, M Tanaka, et al. Fabrication and characterization of transparent conductive Sn‐doped β‐Ga2O3 single crystals. Phys Status Solidi C, 2007, 4(7): 2310

[24]

M Slomski, N Blumenschein, P P Paskov, et al. Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J Appl Phys, 2017, 121(23): 235104.

[25]

T Harwig, G J Wubs, G J Dirksen. Electrical properties of β-Ga2O3 single crystals. Solid State Commun., 1976, 18(9/10): 1223

[26]

T Matsumoto, M Aoki, A Kinoshita, et al. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3. Jpn J Appl Phys, 1974, 13(10): 1578.

[27]

E G Víllora, K Shimamura, K Kitamura, et al. Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3. Appl Phys Lett, 2006, 88(3): 031105.

[28]

M Y Tsai, O Bierwagen, M E White, et al. β-Ga2O3 growth by plasma-assisted molecular beam epitaxy. J Vac Sci Technol, 2010, 28(2): 354

[29]

V Gottschalch, K Mergenthaler, G Wagner, et al. Growth of β‐Ga2O3 on Al2O3 and GaAs using metal‐organic vapor‐phase epitaxy. Phys Stat Solidi (a), 2009, 206(2): 243

[30]

W Mi, J Ma, Z Zhu, et al. Epitaxial growth of Ga2O3 thin films on MgO (110) substrate by metal–organic chemical vapor deposition. J Cryst Growth, 2012, 354(1): 93

[31]

F B Zhang, K Saito, T Tanaka, et al. Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition. J Cryst Growth, 2014, 387: 96

[32]

Z N Xiong, X Q Xiu, Y W Li, et al. Growth of β-Ga2O3 films on sapphire by HVPE. Chin Phys Lett, 2018, 35: 058101

[33]

M Orita, H Hiramatsu, H Ohta, et al. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures. Thin Solid Films, 2002, 411(1): 134

[34]

D Shinohara, S Fujita. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 2008, 47(9R): 7311.

[35]

T Kawaharamura, G T Dang, M Furuta. Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51(4R): 040207.

[36]

K Akaiwa, S Fujita. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51(7R): 070203.

[37]

S Fujita, K Kaneko. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 2014, 401: 588

[38]

Y Oshima, E G Víllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 2015, 8(5): 055501.

[39]

Y Oshima Y, E G Víllora, Y Matsushita, et al. Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy. J Appl Phys, 2015, 118(8): 085301.

[40]

Y Yao, S Okur, A M Lyle, et al. Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 2018, 6(5): 268

[41]

M Mohamed, K Irmscher, C Janowitz, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 2012, 101(13): 132106.

[42]

S Oh, G Yang, J Kim. Electrical characteristics of vertical Ni/β-Ga2O3 schottky barrier diodes at high temperatures. ECS J Solid State Sci Technol, 2017, 6(2): Q3022

[43]

J Yang, S Ahn, F Ren, et al. High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3. Appl Phys Lett, 2017, 110(19): 192101.

[44]

M Higashiwaki, K Konishi, K Sasaki, et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n––Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 2016, 108(13): 133503.

[45]

H Murakami, K Nomura, K Goto, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2014, 8(1): 015503.

[46]

Z Z Hu, H Zhou, Q Feng, et al. Field-plated lateral β- Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 2018, 39 (10): 1564

[47]

M Higashiwaki, K Sasaki, H Murakami, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31(3): 034001.

[48]

K Konishi, K Goto, H Murakami, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110(10): 103506.

[49]

K Shimamura, E G Víllora, K Domen, et al. Epitaxial growth of GaN on (100) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 2004, 44(1L): L7.

[50]

E G Víllora, K Shimamura, K Aoki, et al. Molecular beam epitaxy of c-plane wurtzite GaN on nitridized a-plane β-Ga2O3. Thin Solid Films, 2006, 500(1/2): 209

[51]

Z L Xie, R Zhang, C T Xia, et al. Demonstration of GaN/InGaN light emitting diodes on (100) beta-Ga2O3 substrates by metalorganic chemical vapour deposition. Chin Phys Lett, 2008, 25: 2185

[52]

I A Ajia, Y Yamashita, K Lorenz, et al. GaN/AlGaN multiple quantum wells grown on transparent and conductive (-201)-oriented β-Ga2O3 substrate for UV vertical light emitting devices. Appl Phys Lett, 2018, 113(8): 082102.

[53]

V M Krymov, S I Stepanov, N K Zhumashev, et al. GaN growth on β-Ga2O3 substrates by HVPE. Mater Phys Mech, 2015, 22: 59

[54]

S Ito, K Takeda, K Nagata, et al. Growth of GaN and AlGaN on (100) β‐Ga2O3 substrates. Phys. Stat. Solidi c, 2012, 9(3/4): 519

[55]

H J Lee, T I Shin, D H Yoon. Influence of NH3 gas for GaN epilayer on β-Ga2O3 substrate by nitridation. Surf Coat.Tech, 2008, 202(22/23): 5497

[56]

K Kachel, M Korytov, D Gogova, et al. A new approach to free-standing GaN using β-Ga2O3 as a substrate. CrystEngComm, 2012, 14(24): 8536

[57]

V I Nikolaev, A I Pechnikov, V N Maslov, et al. GaN growth on β-Ga2O3 substrates by HVPE. Mater Phys Mechan, 2015, 22:59

[58]

Y W Li, X Q Xiu, Z N Xiong, et al. Single crystal GaN layer converted from β-Ga2O3 films and its application for free-Standing GaN. CrystEngComm, 2019, DOI: 10.1039/C8CE01336E

[1]

M. A. Yeganeh, S. H. Rahmatollahpur. Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes. J. Semicond., 2010, 31(7): 074001. doi: 10.1088/1674-4926/31/7/074001

[2]

Yuanjie Lü, Xubo Song, Zezhao He, Yuangang Wang, Xin Tan, Shixiong Liang, Cui Wei, Xingye Zhou, Zhihong Feng. Source-field-plated Ga2O3 MOSFET with a breakdown voltage of 550 V. J. Semicond., 2019, 40(1): 012803. doi: 10.1088/1674-4926/40/1/012803

[3]

Jingtao Zhou, Chengyue Yang, Ji Ge, Zhi Jin. Planar InP-based Schottky barrier diodes for terahertz applications. J. Semicond., 2013, 34(6): 064003. doi: 10.1088/1674-4926/34/6/064003

[4]

Jiaqi Wei, Kumsong Kim, Fang Liu, Ping Wang, Xiantong Zheng, Zhaoying Chen, Ding Wang, Ali Imran, Xin Rong, Xuelin Yang, Fujun Xu, Jing Yang, Bo Shen, Xinqiang Wang. β-Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy. J. Semicond., 2019, 40(1): 012802. doi: 10.1088/1674-4926/40/1/012802

[5]

Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Youwen Zhao. Carbon agent chemical vapor transport growth of Ga2O3 crystal. J. Semicond., 2016, 37(10): 103004. doi: 10.1088/1674-4926/37/10/103004

[6]

Yin Zhijun, Zhong Fei, Qiu Kai, Li Xinhua, Wang Yuqi. Growth of Thick GaN Films on Mixed-Polarity Buffer by Halide Vapor Phase Epitaxy. J. Semicond., 2007, 28(6): 909.

[7]

Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, Yuji Zhao. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates. J. Semicond., 2019, 40(1): 012801. doi: 10.1088/1674-4926/40/1/012801

[8]

H. F. Mohamed, Changtai Xia, Qinglin Sai, Huiyuan Cui, Mingyan Pan, Hongji Qi. Growth and fundamentals of bulk β-Ga2O3 single crystals. J. Semicond., 2019, 40(1): 011801. doi: 10.1088/1674-4926/40/1/011801

[9]

He Jinxiao, Duan Yao, Wang Xiaofeng, Cui Junpeng, Zeng Yiping, Li Jinmin. Role of a ZnAl2O4 Buffer Layer in the Metal Vapor Phase Epitaxy of ZnO. J. Semicond., 2008, 29(7): 1334.

[10]

Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng, Jiandong Ye. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804

[11]

Shengnan Zhang, Xiaozheng Lian, Yanchao Ma, Weidan Liu, Yingwu Zhang, Yongkuan Xu, Hongjuan Cheng. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J. Semicond., 2018, 39(8): 083003. doi: 10.1088/1674-4926/39/8/083003

[12]

Jun Hu, Hongyuan Wei, Shaoyan Yang, Chengming Li, Huijie Li, Xianglin Liu, Lianshan Wang, Zhanguo Wang. Hydride vapor phase epitaxy for gallium nitride substrate. J. Semicond., 2019, 40(7): 000000.

[13]

Lin Guoqiang, Zeng Yiping, Duan Ruifei, Wei Tongbo, Ma Ping, Wang Junxi, Liu Zhe, Wang Xiaoliang, Li Jinmin. Selective Area Growth and Characterization of GaN Grown on c-Sapphire by Hydride Vapor Phase Epitaxy. J. Semicond., 2008, 29(3): 530.

[14]

Danmei Zhao, Degang Zhao. Analysis of the growth of GaN epitaxy on silicon. J. Semicond., 2018, 39(3): 033006. doi: 10.1088/1674-4926/39/3/033006

[15]

Yu Guanghui, Lei Benliang, Meng Sheng, Wang Xinzhong, Lin Chaotong, Qi Ming. Hydride Vapor Phase Epitaxy of Thick GaN with Low Temperature AIN Interlayers. J. Semicond., 2007, 28(S1): 238.

[16]

Yingjie Ma, Tong Zhou, Zhenyang Zhong, Zuimin Jiang. Controllable growth of GeSi nanostructures by molecular beam epitaxy. J. Semicond., 2018, 39(6): 061004. doi: 10.1088/1674-4926/39/6/061004

[17]

Zhang Dongyan, Zheng Xinhe, Li Xuefei, Wu Yuanyuan, Wang Jianfeng, Yang Hui. Effects of growth temperature on high-quality In0.2Ga0.8N layers by plasma-assisted molecular beam epitaxy. J. Semicond., 2012, 33(10): 103001. doi: 10.1088/1674-4926/33/10/103001

[18]

Zhang Ruikang, Dong Lei, Yu Yonglin, Wang Dingli, Zhang Jing, Chen Lei, Jiang Shan. Studies on the Butt-Joint of a InGaAsP-Waveguide Realized with Metalorganic Vapor Phase Epitaxy. J. Semicond., 2008, 29(6): 1177.

[19]

Liu Lei, Chen Nuofu, Yang Xiaoli, Wang Yu, Gao Fubao. Growth of 0.55eV-GaInAsSb Quaternary Alloy Films for a Thermophotovoltaic Device by Liquid Phase Epitaxy. J. Semicond., 2008, 29(7): 1258.

[20]

Liu Linsheng, Wang Wenxin, Liu Su, Zhao Hongming, Liu Baoli, Jiang Zhongwei, Gao Hanchao, Wang Jia, Huang Qing’an, Chen Hong, Zhou Junming. Growth of AlGaAs on GaAs (110) Surface by Molecular Beam Epitaxy. J. Semicond., 2007, 28(9): 1411.

Search

Advanced Search >>

GET CITATION

X Q Xiu, L Y Zhang, Y W Li, Z N Xiong, R Zhang, Y D Zheng, Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3[J]. J. Semicond., 2019, 40(1): 011805. doi: 10.1088/1674-4926/40/1/011805.

Export: BibTex EndNote

Article Metrics

Article views: 635 Times PDF downloads: 114 Times Cited by: 0 Times

History

Manuscript received: 27 September 2018 Manuscript revised: 04 December 2018 Online: Accepted Manuscript: 03 January 2019 Uncorrected proof: 04 January 2019 Published: 07 January 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误