REVIEWS

Telecom wavelength single photon sources

Xin Cao, Michael Zopf and Fei Ding

+ Author Affiliations

 Corresponding author: Fei Ding, f.ding@fkp.uni-hannover.de

PDF

Turn off MathJax

Abstract: Single photon sources are key components for quantum technologies such as quantum communication, computing and metrology. A key challenge towards the realization of global quantum networks are transmission losses in optical fibers. Therefore, single photon sources are required to emit at the low-loss telecom wavelength bands. However, an ideal telecom wavelength single photon source has yet to be discovered. Here, we review the recent progress in realizing such sources. We start with single photon emission based on atomic ensembles and spontaneous parametric down conversion, and then focus on solid-state emitters including semiconductor quantum dots, defects in silicon carbide and carbon nanotubes. In conclusion, some state-of-the-art applications are highlighted.

Key words: telecom wavelengthsingle photon sourcesquantum communication



[1]
Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc A, 1985, 400, 97 doi: 10.1098/rspa.1985.0070
[2]
Kaltenbaek R, Walther P, Tiefenbacher F, et al. High-speed linear optics quantum computing using active feed-forward. Nature, 2007, 445, 65 doi: 10.1038/nature05346
[3]
Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution. Rev Mod Phys, 2009, 81, 1301 doi: 10.1103/RevModPhys.81.1301
[4]
Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theor Comput Sci, 2014, 560, 7 doi: 10.1016/j.tcs.2014.05.025
[5]
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409, 46 doi: 10.1038/35051009
[6]
Müller M, Vural H, Schneider C, et al. Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys Rev Lett, 2017, 118, 257402 doi: 10.1103/PhysRevLett.118.257402
[7]
Kimble H J. The quantum internet. Nature, 2008, 453, 1023 doi: 10.1038/nature07127
[8]
Clauser J F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effects. Phys Rev D, 1974, 9, 853 doi: 10.1103/PhysRevD.9.853
[9]
Chou C W, Polyakov S V, Kuzmich A, et al. Single-photon generation from stored excitation in an atomic ensemble. Phys Rev Lett, 2004, 92, 213601 doi: 10.1103/PhysRevLett.92.213601
[10]
Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 2004, 431, 1075 doi: 10.1038/nature02961
[11]
Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407, 491 doi: 10.1038/35035032
[12]
Alléaume R, Treussart F, Courty J M, et al. Photon statistics characterization of a single-photon source. New J Phys, 2004, 6, 85 doi: 10.1088/1367-2630/6/1/085
[13]
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290, 2282 doi: 10.1126/science.290.5500.2282
[14]
Brouri R, Beveratos A, Poizat J P, et al. Photon antibunching in the fluorescence of individual color centers in diamond. Opt Lett, 2000, 25, 1294 doi: 10.1364/OL.25.001294
[15]
Neu E, Steinmetz D, Riedrich-Möller J, et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys, 2011, 13, 025012 doi: 10.1088/1367-2630/13/2/025012
[16]
Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys Rev Lett, 2008, 100, 090501 doi: 10.1103/PhysRevLett.100.090501
[17]
Eisaman M D, Fan J, Migdall A, et al. Single-photon sources and detectors. Rev Sci Instrum, 2011, 82, 071101 doi: 10.1063/1.3610677
[18]
Bennett C H, Bessette F, Brassard G, et al. Experimental quantum cryptography. J Cryptol, 1992, 5, 3 doi: 10.1145/74074.74087
[19]
Hughes R J, Buttler W T, Kwiat P G, et al. Free-space quantum key distribution in daylight. J Mod Opt, 2000, 47, 549 doi: 10.1080/09500340008244059
[20]
Hughes R J, Nordholt J E, Derkacs D, et al. Practical free-space quantum key distribution over 10 km in daylight and at night. New J Phys, 2002, 4, 343 doi: 10.1088/1367-2630/4/1/343
[21]
Liao S K, Yong H L, Liu C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat Photonics, 2017, 11, 509 doi: 10.1038/nphoton.2017.116
[22]
Martín-Mateos P. New spectroscopic techniques and architectures for environmental and biomedical applications. PhD Dissertaion, Universidad Carlos III De Madrid, 2015
[23]
Lounis B, Orrit M. Single-photon sources. Rep Prog Phys, 2005, 68, 1129 doi: 10.1088/0034-4885/68/5/R04
[24]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026 doi: 10.1038/nnano.2017.218
[25]
Hanbury Brown R, Twiss R Q. Correlation between photons in two coherent beams of light. Nature, 1956, 177, 27 doi: 10.1038/177027a0
[26]
Willis R T, Becerra F E, Orozco L A, et al. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble. Opt Express, 2011, 19, 14632 doi: 10.1364/OE.19.014632
[27]
Bock M, Lenhard A, Chunnilall C, et al. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. Opt Express, 2016, 24, 23992 doi: 10.1364/OE.24.023992
[28]
Miyazawa T, Takemoto K, Nambu Y, et al. Single-photon emission at 1.5 μm from an InAs / InP quantum dot with highly suppressed multi-photon emission probabilities. Appl Phys Lett, 2016, 109, 132106 doi: 10.1063/1.4961888
[29]
Wang J, Zhou Y, Wang Z, et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat Commun, 2018, 9, 4106 doi: 10.1038/s41467-018-06605-3
[30]
He X, Hartmann N F, Ma X, et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat Photonics, 2017, 11, 577 doi: 10.1038/nphoton.2017.119
[31]
Zhou Y, Wang Z, Rasmita A, et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 2018, 4, eaar3580 doi: 10.1126/sciadv.aar3580
[32]
Kolesov R, Xia K, Reuter R, et al. Optical detection of a single rare-earth ion in a crystal. Nat Commun, 2012, 3, 1029 doi: 10.1038/ncomms2034
[33]
Utikal T, Eichhammer E, Petersen L, et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat Commun, 2014, 5, 3627 doi: 10.1038/ncomms4627
[34]
Nakamura I, Yoshihiro T, Inagawa H, et al. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K. Sci Rep, 2014, 4, 7364 doi: 10.1038/srep07364
[35]
Yin C, Rancic M, de Boo G G, et al. Optical addressing of an individual erbium ion in silicon. Nature, 213, 497, 91 doi: 10.1038/nature12081
[36]
Chanelière T, Matsukevich D N, Jenkins S D, et al. Quantum telecommunication based on atomic cascade transitions. Phys Rev Lett, 2006, 96, 093604 doi: 10.1103/PhysRevLett.96.093604
[37]
Jenkins S D, Matsukevich D N, Chanelière T, et al. Quantum telecommunication with atomic ensembles. J Opt Soc Am B, 2007, 24, 316 doi: 10.1364/JOSAB.24.000316
[38]
Bao X, Reingruber A, Dietrich P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat Phys, 2012, 8, 517 doi: 10.1038/nphys2324
[39]
Saglamyurek E, Jin J, Verma V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat Photonics, 2015, 9, 83 doi: 10.1038/nphoton.2014.311
[40]
Bussières F, Clausen C, Tiranov A, et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat Photonics, 2014, 8, 775 doi: 10.1038/nphoton.2014.215
[41]
Maring N, Farrera P, Kutluer K, et al. Photonic quantum state transfer between a cold atomic gas and a crystal. Nature, 2017, 551, 485 doi: 10.1038/nature24468
[42]
Mckeever J, Boca A, Boozer A D, et al. Deterministic generation of single photons from one atom trapped in a cavity. Science, 2004, 303, 1992 doi: 10.1126/science.1095232
[43]
Klyshko D N, Penin A N, Polkovnikov B F. Parametric luminescence and light scattering by polaritons. JETP Lett, 1970, 11, 5 doi: 10.1007/BF01394700
[44]
Production P. Observation of simultaneity in parametric production of optical photon pairs. Phys Rev Lett, 1970, 25, 84 doi: 10.1103/PhysRevLett.25.84
[45]
Pan J W, Chen Z B, Lu C Y, et al. Multiphoton entanglement and interferometry. Rev Mod Phys, 2012, 84, 777 doi: 10.1103/revmodphys.84.777
[46]
Fujii G, Namekata N, Motoya M, et al. Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide. Opt Express, 2007, 15, 12769 doi: 10.1364/OE.15.012769
[47]
Xue Y, Yoshizawa A, Tsuchida H. Polarization-based entanglement swapping at the telecommunication wavelength using spontaneous parametric down-conversion photon-pair sources. Phys Rev A, 2012, 85, 032337 doi: 10.1103/PhysRevA.85.032337
[48]
Lo R, Jiang H, Rogers S, et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt Express, 2017, 25, 24531 doi: 10.1364/OE.25.024531
[49]
Jin R, Shimizu R, Wakui K, et al. Widely tunable single photon source with high purity at telecom wavelength. Opt Express, 2013, 21, 10659 doi: 10.1364/OE.21.010659
[50]
Zaske S, Lenhard A, Becher C. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band. Opt Express, 2011, 19, 12825 doi: 10.1364/OE.19.012825
[51]
Fekete J, Rieländer D, Cristiani M, et al. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys Rev Lett, 2013, 110, 220502 doi: 10.1103/PhysRevLett.110.220502
[52]
Zaske S, Lenhard A, Keßler C A, et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys Rev Lett, 2012, 109, 147404 doi: 10.1103/physrevlett.109.147404
[53]
Fasel S, Alibart O, Tanzilli S, et al. High-quality asynchronous heralded single-photon source at telecom wavelength High-quality asynchronous heralded single-photon source at telecom wavelength. New J Phys, 2004, 6, 163 doi: 10.1117/12.608457
[54]
Wolfgramm F, Xing X, Cerè A, et al. Bright filter-free source of indistinguishable photon pairs. Opt Express, 2008, 16, 18145 doi: 10.1364/OE.16.018145
[55]
Ahlrichs A, Benson O. Bright source of indistinguishable photons based on cavity-enhanced parametric down- conversion utilizing the cluster effect parametric down-conversion utilizing the cluster effect. Appl Phys Lett, 2016, 108, 021111 doi: 10.1063/1.4939925
[56]
Xiong C, Zhang X, Liu Z, et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat Commun, 2016, 7, 10853 doi: 10.1038/ncomms10853
[57]
Wang X, Chen L, Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117 doi: 10.1103/PhysRevLett.117.210502
[58]
Meyer-Scott E, Prasannan N, Eigner C, et al. High-performance source of spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk optics. Opt Express, 2018, 26, 32475 doi: 10.1364/OE.26.032475
[59]
Osorio C I, Sangouard N, Thew R T. On the purity and indistinguishability of down-converted photons. J Phys B, 2013, 46, 055501 doi: 10.1088/0953-4075/46/5/055501
[60]
Ngah L A, Alibart O, Labonté L, et al. Ultra-fast heralded single photon source based on telecom technology. Lasers Photonics Rev, 2015, 6, 1 doi: 10.1002/lpor.201400404
[61]
Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501 doi: 10.1038/ncomms15501
[62]
Atkinson P, Zallo E, Schmidt O G. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J Appl Phys, 2012, 112, 054303 doi: 10.1063/1.4748183
[63]
Huo Y H, Rastelli A, Schmidt O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl Phys Lett, 2013, 102, 152105 doi: 10.1063/1.4802088
[64]
Marzin J Y, Gérard J M, Izrael A, et al. Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys Rev Lett, 2000, 73, 716 doi: 10.1103/PhysRevLett.73.716
[65]
Grundmann M, Stier O, Bimberg D. InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys Rev B, 1995, 52, 11969 doi: 10.1103/PhysRevB.52.11969
[66]
Fry P W, Itskevich I E, Mowbray D J, et al. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys Rev Lett, 2000, 84, 733 doi: 10.1103/PhysRevLett.84.733
[67]
Heitz R, Kalburge A, Xie Q, et al. Excited states and energy relaxation in stacked InAs / GaAs quantum dots. Phys Rev B, 1998, 57, 9050 doi: 10.1103/PhysRevB.57.9050
[68]
Ugur A, Hatami F, Masselink W T, et al. Single-dot optical emission from ultralow density well-isolated InP quantum dots. Appl Phys Lett, 2008, 93, 143111 doi: 10.1063/1.2996004
[69]
Hatami F, Masselink W T, Schrottke L, et al. InP quantum dots embedded in GaP: Optical properties and carrier dynamics. Phys Rev B, 2003, 67, 085306 doi: 10.1103/PhysRevB.67.085306
[70]
Hatami F, Lordi V, Harris J S, et al. Red light-emitting diodes based on InP/GaP quantum dots. J Appl Phys, 2005, 97, 096106 doi: 10.1063/1.1884752
[71]
Song Y, Simmonds P J, Lee M L. Self-assembled GaP quantum dots on Self-assembled In0.5Ga0.5As quantum dots on GaP. Appl Phys Lett, 2013, 97, 223110 doi: 10.1063/1.3522647
[72]
Nguyen Thanh T, Robert C, Cornet C, et al. Room temperature photoluminescence of high density (In, Ga)As/GaP quantum dots. Appl Phys Lett, 2011, 99, 143123 doi: 10.1063/1.3646911
[73]
Oshinowo J, Nishioka M, Ishida S, et al. Highly uniform InGaAs / GaAs quantum dots (~15 nm) by metalorganic chemical vapor deposition. Appl Phys Lett, 1994, 65, 1421 doi: 10.1063/1.112070
[74]
Ramsay A J, Gopal A V, Gauger E M, et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett, 2010, 104, 017402 doi: 10.1103/physrevlett.104.017402
[75]
Heitz R, Veit M, Ledentsov N N, et al. Energy relaxation by multiphonon processes in InAs / GaAs quantum dots. Phys Rev B, 1997, 56, 10435 doi: 10.1103/PhysRevB.56.10435
[76]
Seravalli L, Trevisi G, Frigeri P, et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl Phys Lett, 2011, 98, 173112 doi: 10.1063/1.3584132
[77]
Paul M, Olbrich F, Höschele J, et al. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/ GaAs metamorphic buffers. Appl Phys Lett, 2017, 111, 033102 doi: 10.1063/1.4993935
[78]
Kettler J, Paul M, Olbrich F, et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm. Appl Phys B, 2016, 122, 48 doi: 10.1007/s00340-015-6280-0
[79]
Ustinov V M, Maleev N A, Zhukov A E, et al. InAs / InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Appl Phys Lett, 1999, 74, 2815 doi: 10.1063/1.124023
[80]
Olbrich F, Kettler J, Bayerbach M, et al. Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer. J Appl Phys, 2017, 121, 184302 doi: 10.1063/1.4983362
[81]
Paul M, Kettler J, Zeuner K, et al. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm. Appl Phys Lett, 2015, 106, 122105 doi: 10.1063/1.4916349
[82]
Chen Z S, Ma B, Shang X J, et al. Bright single-photon source at 1.3 μm based on inas bilayer quantum dot in micropillar. Nanoscale Res Lett, 2017, 12, 2321 doi: 10.1186/s11671-016-1773-2
[83]
Chen Z S, Ma B, Shang X J, He Y, et al. Telecommunication wavelength-band single-photon emission from single large InAs quantum dots nucleated on low-density seed quantum dots. Nanoscale Res Lett, 2016, 11, 1 doi: 10.1186/s11671-015-1209-4
[84]
Benyoucef M, Yacob M, Reithmaier J P, et al. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl Phys Lett, 2013, 103, 162101 doi: 10.1063/1.4825106
[85]
Takemoto K, Sakuma Y, Hirose S, et al. Observation of exciton transition in 1.3–1.55 μm band from single InAs/InP quantum dots in mesa structure. Jpn J Appl Phys, 2004, 43, 349 doi: 10.1143/JJAP.43.349
[86]
Dusanowski L, Syperek M, Mrowinski P, et al. Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash. Appl Phys Lett, 2014, 105 doi: 10.1063/1.4890603
[87]
Takemoto K, Takatsu M, Hirose S, et al. An optical horn structure for single- photon source using quantum dots at telecommunication wavelength. J Appl Phys, 2007, 101, 081720 doi: 10.1063/1.2723177
[88]
Dusanowski Ł, Syperek M, Misiewicz J, et al. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl Phys Lett, 2016, 108, 163108 doi: 10.1063/1.4947448
[89]
Marcet S, Ohtani K, Ohno H. Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot. Appl Phys Lett, 2010, 96, 101117 doi: 10.1063/1.3360212
[90]
Bayer M, Ortner G, Stern O, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B, 2002, 65, 195315 doi: 10.1103/PhysRevB.65.195315
[91]
Zhang J, Huo Y, Rastelli A, et al. Single photons on-demand from light-hole excitons in strain-engineered quantum dots. Nano Lett, 2015, 15, 422 doi: 10.1021/nl5037512
[92]
Chen Y, Zhang J, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387 doi: 10.1038/srep00817
[93]
Zhang Y, Chen Y, Mietschke M, et al. Monolithically integrated microelectromechanical systems for on-chip strain engineering of quantum dots. Nano Lett, 2016, 16, 5785 doi: 10.1021/acs.nanolett.6b02523
[94]
Zeuner K D, Paul M, Lettner T, et al. A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band. arXiv: 1801.01518v1, 2018
[95]
Balet L, Francardi M, Gerardino A, et al. Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths. Appl Phys Lett, 2007, 91, 123115 doi: 10.1063/1.2789291
[96]
Birowosuto M D, Sumikura H, Matsuo S, et al. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling. Sci Rep, 2012, 2, 321 doi: 10.1038/srep00321
[97]
Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9, 2994 doi: 10.1038/s41467-018-05456-2
[98]
Mrowinski P, Sek G. Modelling the enhancement of spectrally broadband extraction efficiency of emission from single InAs/InP quantum dots at telecommunication wavelengths. Phys B, 2019, 562, 141 doi: 10.1016/j.physb.2019.03.015
[99]
Srocka N, Musia A, Schneider P I, et al. Enhanced photon-extraction efficiency from InGaAs / GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography. AIP Adv, 2018, 8, 085205 doi: 10.1063/1.5038137
[100]
Kim J Y, Cai T, Richardson C J K, et al. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica, 2016, 3, 577 doi: 10.1364/OPTICA.3.000577
[101]
Son N T, Carlsson P, Hassan J ul, et al. Divacancy in 4H-SiC. Phys Rev Lett, 2006, 96, 055501 doi: 10.1103/PhysRevLett.96.055501
[102]
Magnusson B, Janzén E. Optical Characterization of Deep Level Defects in SiC. Mater Sci Forum, 2005, 483–485, 341 doi: 10.4028/www.scientific.net/MSF.483-485.341
[103]
Lijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56 doi: 10.1038/354056a0
[104]
Högele A, Galland C, Winger M, et al. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys Rev Lett, 2008, 100, 1217401 doi: 10.1103/PhysRevLett.100.217401
[105]
Crochet J J, Duque J G, Werner J H, et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett, 2012, 12, 5091 doi: 10.1021/nl301739d
[106]
Ma X, Hartmann N F, Baldwin J K S, et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol, 2015, 10, 671 doi: 10.1038/nnano.2015.136
[107]
Ghosh S, Bachilo S M, Simonette R A, et al. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science, 2010, 330, 1656 doi: 10.1126/science.1196382
[108]
Ma X, Baldwin J K S, Hartmann N F, et al. Solid-state approach for fabrication of photostable, oxygen-doped carbon nanotubes. Adv Funct Mater, 2015, 25, 6157 doi: 10.1002/adfm.v25.39
[109]
Ma X, Adamska L, Yamaguchi H, et al. Electronic structure and chemical. nature, of oxygen dopant states in carbon nanotubes. ACS Nano, 2014, 8, 10782 doi: 10.1021/nn504553y
[110]
Liao S, Cai W, Liu W, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549, 43 doi: 10.1038/nature23655
[111]
Comandar L C, Fröhlich B, Lucamarini M, et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl Phys Lett, 2014, 104, 021101 doi: 10.1063/1.4855515
[112]
Yin H, Chen T, Yu Z, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 2016, 117, 190501 doi: 10.1103/PhysRevLett.117.190501
[113]
Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 2018, 557, 400 doi: 10.1038/s41586-018-0066-6
[114]
Liao S, Cai W, Handsteiner J, et al. Satellite-relayed intercontinental quantum network. Phys Rev Lett, 2018, 120, 030501 doi: 10.1103/PhysRevLett.120.030501
[115]
Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70, 1895 doi: 10.1103/PhysRevLett.70.1895
[116]
Bouwmeester D, Pan J, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390, 575 doi: 10.1038/37539
[117]
Sun Q, Mao Y, Chen S, et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat Photonics, 2016, 10, 671 doi: 10.1038/nphoton.2016.179
[118]
Valivarthi R, Puigibert G, Zhou Q, et al. Quantum teleportation across a metropolitan fibre network. Nat Photonics, 2016, 10, 676 doi: 10.1038/nphoton.2016.180
[119]
Yin J, Ren J, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488, 185 doi: 10.1038/nature11332
[120]
Ma X, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489, 269 doi: 10.1038/nature11472
[121]
Yang M, Li L, Yang K, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549, 70 doi: 10.1038/nature23675
[122]
Müller T, Krysa A B, Huwer J, et al. A quantum light-emitting diode for the standard telecom window around 1,550nm. Nat Commun, 2018, 9, 862 doi: 10.1038/s41467-018-03251-7
[123]
Zopf M, Macha T, Keil R, et al. Frequency feedback for two-photon interference from separate quantum dots. Phys Rev B, 2018, 98, 161302 doi: 10.1103/PhysRevB.98.161302
[124]
Gazzano O, de Vasconcellos S M, Arnold C, et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 2013, 4, 1425 doi: 10.1038/ncomms2434
[125]
Toishi M, Englund D, Faraon A, et al. High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Opt Express, 2009, 17, 14618 doi: 10.1364/OE.17.014618
Fig. 1.  (Color online) (a) Solar radiation spectrum from UV to near-infrared light. (b) Photon attenuation in optical fiber as a function of wavelength. Wavelengths at 1300 and 1550 nm are called telecom O-band and C-band, respectively, which are commonly used in fiber-based applications. (a) Adapted with permission from Ref. [21]. (Springer Nature) (b) Adapted from Ref. [22].

Fig. 2.  (Color online) Scheme of single photon excitation and emission in a two-level system.

Fig. 3.  (Color online) Scheme of Hanbury Brown and Twiss setup for autocorrelation measurement. The beam of light is sent to a beam splitter with single-photon detectors at the two outputs. An electronic correlator then determines the time delay between the two detector signals. Single photon emission results in the absence of simultaneous detection events on D1 and D2, in contrast to the case of multi-photon emission. Reprinted with permission from Ref. [24]. (Springer Nature)

Fig. 4.  (Color online) Second order correlation function measured under two types of optical excitations. (a) Continuous wave excitation. (b) Pulsed excitation.

Fig. 5.  (Color online) (a) Scheme of single photon emission from Rb atoms. Two pumping lasers are needed for Rb excitation (795 and 1324 nm), and two wavelength of single photons will be emitted (780 and 1367 nm). (b) The configuration of Rb energy levels. Reprinted with permission from Ref. [26]. (The Optical Society)

Fig. 6.  (Color online) (a) Scheme of SPDC process and phase matching. (b) High purity of single photon emission. The dots are experiment data, the blue and red curves are theoretical fitting with and without considering detector noise. The inset is g(2)(0) = 0.001. Reprinted with permission from Ref. [27]. (The Optical Society)

Fig. 7.  (Color online) (a) Scheme of experimental setup of ultra-fast heralded single photon source. (b) Selected signal photons (ITU 50) and idler photons (ITU 43) from the SPDC spectrum (black line). Reprinted with permission from Ref. [60]. (John Wiley & Sons)

Fig. 8.  (Color online) Three types of QDs grown epitaxially on GaAs and InP substrate, respectively. Reprinted with permission from Refs. [77, 81, 84]. (AIP Publishing)

Fig. 9.  (Color online) (a) Confocal map of four single photon emitters in 3C SiC epitaxy layer. (b) Room temperature photoluminescence spectra of three representative single photon emitters. (c) Second order autocorrelation measurement of the single photon emission. Reprinted with permission from Ref. [29]. (Springer Nature)

Fig. 10.  (Color online) (a) Upper panel: Scheme of single wall carbon nanotube with oxygen-doping (Ether-d and Epoxide groups). Lower panel: Trap energy levels at doped areas. Oxygen-doping creates deep trap states below the E11 state of the nanotube, leading the localization of excitons near the doping sites. (b) Photoluminescence wavelength distribution of undoped and doped nanotubes. Reprinted with permission from Ref. [106]. (Springer Nature)

Fig. 11.  (Color online) Photoluminescence spectra of two types of aryl-functionalized carbon nanotubes with different chiralities ((a) (6,5), (b) (7,5), (c) (10,3)) and their corresponding second-order correlation function. Reprinted with permission from Ref. [30]. (Springer Nature)

Fig. 12.  (Color online) Illustration of satellite based QKD among three ground stations (Xinglong, Nanshan and Graz). Reprinted with permission from Ref. [114]. (American Physical Society)

Fig. 13.  (Color online) (a) Bird’s-eye view of experiment site in China. (b–d) Illustration of the entangled photon pair generation and distribution from Charlie, single photon state preparation and Bell state measurement from Alice and single photon state reconstruction from Bob. Reprinted with permission from Ref. [119]. (Springer Nature)

Table 1.   Summary of six types of single photon sources emitting at telecom wavelength.

Material system Operating temperature g(2)(0) Ref.
Atomic sources Room temperature 0.06 [26]
Parametric down conversion Room temperature 0.001 ± 0.0003 [27]
InAs quantum dots Cryogenic temperature 0.00044 ± 0.00002 [28]
Silicon Carbide Room temperature 0.05 ± 0.03 [29]
Carbon nanotubes Room temperature 0.01 [30]
Gallium Nitride Room temperature 0.05 ± 0.02 [31]
DownLoad: CSV
[1]
Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc A, 1985, 400, 97 doi: 10.1098/rspa.1985.0070
[2]
Kaltenbaek R, Walther P, Tiefenbacher F, et al. High-speed linear optics quantum computing using active feed-forward. Nature, 2007, 445, 65 doi: 10.1038/nature05346
[3]
Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution. Rev Mod Phys, 2009, 81, 1301 doi: 10.1103/RevModPhys.81.1301
[4]
Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theor Comput Sci, 2014, 560, 7 doi: 10.1016/j.tcs.2014.05.025
[5]
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409, 46 doi: 10.1038/35051009
[6]
Müller M, Vural H, Schneider C, et al. Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys Rev Lett, 2017, 118, 257402 doi: 10.1103/PhysRevLett.118.257402
[7]
Kimble H J. The quantum internet. Nature, 2008, 453, 1023 doi: 10.1038/nature07127
[8]
Clauser J F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effects. Phys Rev D, 1974, 9, 853 doi: 10.1103/PhysRevD.9.853
[9]
Chou C W, Polyakov S V, Kuzmich A, et al. Single-photon generation from stored excitation in an atomic ensemble. Phys Rev Lett, 2004, 92, 213601 doi: 10.1103/PhysRevLett.92.213601
[10]
Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 2004, 431, 1075 doi: 10.1038/nature02961
[11]
Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407, 491 doi: 10.1038/35035032
[12]
Alléaume R, Treussart F, Courty J M, et al. Photon statistics characterization of a single-photon source. New J Phys, 2004, 6, 85 doi: 10.1088/1367-2630/6/1/085
[13]
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290, 2282 doi: 10.1126/science.290.5500.2282
[14]
Brouri R, Beveratos A, Poizat J P, et al. Photon antibunching in the fluorescence of individual color centers in diamond. Opt Lett, 2000, 25, 1294 doi: 10.1364/OL.25.001294
[15]
Neu E, Steinmetz D, Riedrich-Möller J, et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys, 2011, 13, 025012 doi: 10.1088/1367-2630/13/2/025012
[16]
Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys Rev Lett, 2008, 100, 090501 doi: 10.1103/PhysRevLett.100.090501
[17]
Eisaman M D, Fan J, Migdall A, et al. Single-photon sources and detectors. Rev Sci Instrum, 2011, 82, 071101 doi: 10.1063/1.3610677
[18]
Bennett C H, Bessette F, Brassard G, et al. Experimental quantum cryptography. J Cryptol, 1992, 5, 3 doi: 10.1145/74074.74087
[19]
Hughes R J, Buttler W T, Kwiat P G, et al. Free-space quantum key distribution in daylight. J Mod Opt, 2000, 47, 549 doi: 10.1080/09500340008244059
[20]
Hughes R J, Nordholt J E, Derkacs D, et al. Practical free-space quantum key distribution over 10 km in daylight and at night. New J Phys, 2002, 4, 343 doi: 10.1088/1367-2630/4/1/343
[21]
Liao S K, Yong H L, Liu C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat Photonics, 2017, 11, 509 doi: 10.1038/nphoton.2017.116
[22]
Martín-Mateos P. New spectroscopic techniques and architectures for environmental and biomedical applications. PhD Dissertaion, Universidad Carlos III De Madrid, 2015
[23]
Lounis B, Orrit M. Single-photon sources. Rep Prog Phys, 2005, 68, 1129 doi: 10.1088/0034-4885/68/5/R04
[24]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026 doi: 10.1038/nnano.2017.218
[25]
Hanbury Brown R, Twiss R Q. Correlation between photons in two coherent beams of light. Nature, 1956, 177, 27 doi: 10.1038/177027a0
[26]
Willis R T, Becerra F E, Orozco L A, et al. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble. Opt Express, 2011, 19, 14632 doi: 10.1364/OE.19.014632
[27]
Bock M, Lenhard A, Chunnilall C, et al. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. Opt Express, 2016, 24, 23992 doi: 10.1364/OE.24.023992
[28]
Miyazawa T, Takemoto K, Nambu Y, et al. Single-photon emission at 1.5 μm from an InAs / InP quantum dot with highly suppressed multi-photon emission probabilities. Appl Phys Lett, 2016, 109, 132106 doi: 10.1063/1.4961888
[29]
Wang J, Zhou Y, Wang Z, et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat Commun, 2018, 9, 4106 doi: 10.1038/s41467-018-06605-3
[30]
He X, Hartmann N F, Ma X, et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat Photonics, 2017, 11, 577 doi: 10.1038/nphoton.2017.119
[31]
Zhou Y, Wang Z, Rasmita A, et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 2018, 4, eaar3580 doi: 10.1126/sciadv.aar3580
[32]
Kolesov R, Xia K, Reuter R, et al. Optical detection of a single rare-earth ion in a crystal. Nat Commun, 2012, 3, 1029 doi: 10.1038/ncomms2034
[33]
Utikal T, Eichhammer E, Petersen L, et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat Commun, 2014, 5, 3627 doi: 10.1038/ncomms4627
[34]
Nakamura I, Yoshihiro T, Inagawa H, et al. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K. Sci Rep, 2014, 4, 7364 doi: 10.1038/srep07364
[35]
Yin C, Rancic M, de Boo G G, et al. Optical addressing of an individual erbium ion in silicon. Nature, 213, 497, 91 doi: 10.1038/nature12081
[36]
Chanelière T, Matsukevich D N, Jenkins S D, et al. Quantum telecommunication based on atomic cascade transitions. Phys Rev Lett, 2006, 96, 093604 doi: 10.1103/PhysRevLett.96.093604
[37]
Jenkins S D, Matsukevich D N, Chanelière T, et al. Quantum telecommunication with atomic ensembles. J Opt Soc Am B, 2007, 24, 316 doi: 10.1364/JOSAB.24.000316
[38]
Bao X, Reingruber A, Dietrich P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat Phys, 2012, 8, 517 doi: 10.1038/nphys2324
[39]
Saglamyurek E, Jin J, Verma V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat Photonics, 2015, 9, 83 doi: 10.1038/nphoton.2014.311
[40]
Bussières F, Clausen C, Tiranov A, et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat Photonics, 2014, 8, 775 doi: 10.1038/nphoton.2014.215
[41]
Maring N, Farrera P, Kutluer K, et al. Photonic quantum state transfer between a cold atomic gas and a crystal. Nature, 2017, 551, 485 doi: 10.1038/nature24468
[42]
Mckeever J, Boca A, Boozer A D, et al. Deterministic generation of single photons from one atom trapped in a cavity. Science, 2004, 303, 1992 doi: 10.1126/science.1095232
[43]
Klyshko D N, Penin A N, Polkovnikov B F. Parametric luminescence and light scattering by polaritons. JETP Lett, 1970, 11, 5 doi: 10.1007/BF01394700
[44]
Production P. Observation of simultaneity in parametric production of optical photon pairs. Phys Rev Lett, 1970, 25, 84 doi: 10.1103/PhysRevLett.25.84
[45]
Pan J W, Chen Z B, Lu C Y, et al. Multiphoton entanglement and interferometry. Rev Mod Phys, 2012, 84, 777 doi: 10.1103/revmodphys.84.777
[46]
Fujii G, Namekata N, Motoya M, et al. Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide. Opt Express, 2007, 15, 12769 doi: 10.1364/OE.15.012769
[47]
Xue Y, Yoshizawa A, Tsuchida H. Polarization-based entanglement swapping at the telecommunication wavelength using spontaneous parametric down-conversion photon-pair sources. Phys Rev A, 2012, 85, 032337 doi: 10.1103/PhysRevA.85.032337
[48]
Lo R, Jiang H, Rogers S, et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt Express, 2017, 25, 24531 doi: 10.1364/OE.25.024531
[49]
Jin R, Shimizu R, Wakui K, et al. Widely tunable single photon source with high purity at telecom wavelength. Opt Express, 2013, 21, 10659 doi: 10.1364/OE.21.010659
[50]
Zaske S, Lenhard A, Becher C. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band. Opt Express, 2011, 19, 12825 doi: 10.1364/OE.19.012825
[51]
Fekete J, Rieländer D, Cristiani M, et al. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys Rev Lett, 2013, 110, 220502 doi: 10.1103/PhysRevLett.110.220502
[52]
Zaske S, Lenhard A, Keßler C A, et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys Rev Lett, 2012, 109, 147404 doi: 10.1103/physrevlett.109.147404
[53]
Fasel S, Alibart O, Tanzilli S, et al. High-quality asynchronous heralded single-photon source at telecom wavelength High-quality asynchronous heralded single-photon source at telecom wavelength. New J Phys, 2004, 6, 163 doi: 10.1117/12.608457
[54]
Wolfgramm F, Xing X, Cerè A, et al. Bright filter-free source of indistinguishable photon pairs. Opt Express, 2008, 16, 18145 doi: 10.1364/OE.16.018145
[55]
Ahlrichs A, Benson O. Bright source of indistinguishable photons based on cavity-enhanced parametric down- conversion utilizing the cluster effect parametric down-conversion utilizing the cluster effect. Appl Phys Lett, 2016, 108, 021111 doi: 10.1063/1.4939925
[56]
Xiong C, Zhang X, Liu Z, et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat Commun, 2016, 7, 10853 doi: 10.1038/ncomms10853
[57]
Wang X, Chen L, Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117 doi: 10.1103/PhysRevLett.117.210502
[58]
Meyer-Scott E, Prasannan N, Eigner C, et al. High-performance source of spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk optics. Opt Express, 2018, 26, 32475 doi: 10.1364/OE.26.032475
[59]
Osorio C I, Sangouard N, Thew R T. On the purity and indistinguishability of down-converted photons. J Phys B, 2013, 46, 055501 doi: 10.1088/0953-4075/46/5/055501
[60]
Ngah L A, Alibart O, Labonté L, et al. Ultra-fast heralded single photon source based on telecom technology. Lasers Photonics Rev, 2015, 6, 1 doi: 10.1002/lpor.201400404
[61]
Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501 doi: 10.1038/ncomms15501
[62]
Atkinson P, Zallo E, Schmidt O G. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J Appl Phys, 2012, 112, 054303 doi: 10.1063/1.4748183
[63]
Huo Y H, Rastelli A, Schmidt O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl Phys Lett, 2013, 102, 152105 doi: 10.1063/1.4802088
[64]
Marzin J Y, Gérard J M, Izrael A, et al. Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys Rev Lett, 2000, 73, 716 doi: 10.1103/PhysRevLett.73.716
[65]
Grundmann M, Stier O, Bimberg D. InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys Rev B, 1995, 52, 11969 doi: 10.1103/PhysRevB.52.11969
[66]
Fry P W, Itskevich I E, Mowbray D J, et al. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys Rev Lett, 2000, 84, 733 doi: 10.1103/PhysRevLett.84.733
[67]
Heitz R, Kalburge A, Xie Q, et al. Excited states and energy relaxation in stacked InAs / GaAs quantum dots. Phys Rev B, 1998, 57, 9050 doi: 10.1103/PhysRevB.57.9050
[68]
Ugur A, Hatami F, Masselink W T, et al. Single-dot optical emission from ultralow density well-isolated InP quantum dots. Appl Phys Lett, 2008, 93, 143111 doi: 10.1063/1.2996004
[69]
Hatami F, Masselink W T, Schrottke L, et al. InP quantum dots embedded in GaP: Optical properties and carrier dynamics. Phys Rev B, 2003, 67, 085306 doi: 10.1103/PhysRevB.67.085306
[70]
Hatami F, Lordi V, Harris J S, et al. Red light-emitting diodes based on InP/GaP quantum dots. J Appl Phys, 2005, 97, 096106 doi: 10.1063/1.1884752
[71]
Song Y, Simmonds P J, Lee M L. Self-assembled GaP quantum dots on Self-assembled In0.5Ga0.5As quantum dots on GaP. Appl Phys Lett, 2013, 97, 223110 doi: 10.1063/1.3522647
[72]
Nguyen Thanh T, Robert C, Cornet C, et al. Room temperature photoluminescence of high density (In, Ga)As/GaP quantum dots. Appl Phys Lett, 2011, 99, 143123 doi: 10.1063/1.3646911
[73]
Oshinowo J, Nishioka M, Ishida S, et al. Highly uniform InGaAs / GaAs quantum dots (~15 nm) by metalorganic chemical vapor deposition. Appl Phys Lett, 1994, 65, 1421 doi: 10.1063/1.112070
[74]
Ramsay A J, Gopal A V, Gauger E M, et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett, 2010, 104, 017402 doi: 10.1103/physrevlett.104.017402
[75]
Heitz R, Veit M, Ledentsov N N, et al. Energy relaxation by multiphonon processes in InAs / GaAs quantum dots. Phys Rev B, 1997, 56, 10435 doi: 10.1103/PhysRevB.56.10435
[76]
Seravalli L, Trevisi G, Frigeri P, et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl Phys Lett, 2011, 98, 173112 doi: 10.1063/1.3584132
[77]
Paul M, Olbrich F, Höschele J, et al. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/ GaAs metamorphic buffers. Appl Phys Lett, 2017, 111, 033102 doi: 10.1063/1.4993935
[78]
Kettler J, Paul M, Olbrich F, et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm. Appl Phys B, 2016, 122, 48 doi: 10.1007/s00340-015-6280-0
[79]
Ustinov V M, Maleev N A, Zhukov A E, et al. InAs / InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Appl Phys Lett, 1999, 74, 2815 doi: 10.1063/1.124023
[80]
Olbrich F, Kettler J, Bayerbach M, et al. Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer. J Appl Phys, 2017, 121, 184302 doi: 10.1063/1.4983362
[81]
Paul M, Kettler J, Zeuner K, et al. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm. Appl Phys Lett, 2015, 106, 122105 doi: 10.1063/1.4916349
[82]
Chen Z S, Ma B, Shang X J, et al. Bright single-photon source at 1.3 μm based on inas bilayer quantum dot in micropillar. Nanoscale Res Lett, 2017, 12, 2321 doi: 10.1186/s11671-016-1773-2
[83]
Chen Z S, Ma B, Shang X J, He Y, et al. Telecommunication wavelength-band single-photon emission from single large InAs quantum dots nucleated on low-density seed quantum dots. Nanoscale Res Lett, 2016, 11, 1 doi: 10.1186/s11671-015-1209-4
[84]
Benyoucef M, Yacob M, Reithmaier J P, et al. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl Phys Lett, 2013, 103, 162101 doi: 10.1063/1.4825106
[85]
Takemoto K, Sakuma Y, Hirose S, et al. Observation of exciton transition in 1.3–1.55 μm band from single InAs/InP quantum dots in mesa structure. Jpn J Appl Phys, 2004, 43, 349 doi: 10.1143/JJAP.43.349
[86]
Dusanowski L, Syperek M, Mrowinski P, et al. Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash. Appl Phys Lett, 2014, 105 doi: 10.1063/1.4890603
[87]
Takemoto K, Takatsu M, Hirose S, et al. An optical horn structure for single- photon source using quantum dots at telecommunication wavelength. J Appl Phys, 2007, 101, 081720 doi: 10.1063/1.2723177
[88]
Dusanowski Ł, Syperek M, Misiewicz J, et al. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl Phys Lett, 2016, 108, 163108 doi: 10.1063/1.4947448
[89]
Marcet S, Ohtani K, Ohno H. Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot. Appl Phys Lett, 2010, 96, 101117 doi: 10.1063/1.3360212
[90]
Bayer M, Ortner G, Stern O, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B, 2002, 65, 195315 doi: 10.1103/PhysRevB.65.195315
[91]
Zhang J, Huo Y, Rastelli A, et al. Single photons on-demand from light-hole excitons in strain-engineered quantum dots. Nano Lett, 2015, 15, 422 doi: 10.1021/nl5037512
[92]
Chen Y, Zhang J, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387 doi: 10.1038/srep00817
[93]
Zhang Y, Chen Y, Mietschke M, et al. Monolithically integrated microelectromechanical systems for on-chip strain engineering of quantum dots. Nano Lett, 2016, 16, 5785 doi: 10.1021/acs.nanolett.6b02523
[94]
Zeuner K D, Paul M, Lettner T, et al. A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band. arXiv: 1801.01518v1, 2018
[95]
Balet L, Francardi M, Gerardino A, et al. Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths. Appl Phys Lett, 2007, 91, 123115 doi: 10.1063/1.2789291
[96]
Birowosuto M D, Sumikura H, Matsuo S, et al. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling. Sci Rep, 2012, 2, 321 doi: 10.1038/srep00321
[97]
Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9, 2994 doi: 10.1038/s41467-018-05456-2
[98]
Mrowinski P, Sek G. Modelling the enhancement of spectrally broadband extraction efficiency of emission from single InAs/InP quantum dots at telecommunication wavelengths. Phys B, 2019, 562, 141 doi: 10.1016/j.physb.2019.03.015
[99]
Srocka N, Musia A, Schneider P I, et al. Enhanced photon-extraction efficiency from InGaAs / GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography. AIP Adv, 2018, 8, 085205 doi: 10.1063/1.5038137
[100]
Kim J Y, Cai T, Richardson C J K, et al. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica, 2016, 3, 577 doi: 10.1364/OPTICA.3.000577
[101]
Son N T, Carlsson P, Hassan J ul, et al. Divacancy in 4H-SiC. Phys Rev Lett, 2006, 96, 055501 doi: 10.1103/PhysRevLett.96.055501
[102]
Magnusson B, Janzén E. Optical Characterization of Deep Level Defects in SiC. Mater Sci Forum, 2005, 483–485, 341 doi: 10.4028/www.scientific.net/MSF.483-485.341
[103]
Lijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56 doi: 10.1038/354056a0
[104]
Högele A, Galland C, Winger M, et al. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys Rev Lett, 2008, 100, 1217401 doi: 10.1103/PhysRevLett.100.217401
[105]
Crochet J J, Duque J G, Werner J H, et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett, 2012, 12, 5091 doi: 10.1021/nl301739d
[106]
Ma X, Hartmann N F, Baldwin J K S, et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol, 2015, 10, 671 doi: 10.1038/nnano.2015.136
[107]
Ghosh S, Bachilo S M, Simonette R A, et al. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science, 2010, 330, 1656 doi: 10.1126/science.1196382
[108]
Ma X, Baldwin J K S, Hartmann N F, et al. Solid-state approach for fabrication of photostable, oxygen-doped carbon nanotubes. Adv Funct Mater, 2015, 25, 6157 doi: 10.1002/adfm.v25.39
[109]
Ma X, Adamska L, Yamaguchi H, et al. Electronic structure and chemical. nature, of oxygen dopant states in carbon nanotubes. ACS Nano, 2014, 8, 10782 doi: 10.1021/nn504553y
[110]
Liao S, Cai W, Liu W, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549, 43 doi: 10.1038/nature23655
[111]
Comandar L C, Fröhlich B, Lucamarini M, et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl Phys Lett, 2014, 104, 021101 doi: 10.1063/1.4855515
[112]
Yin H, Chen T, Yu Z, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 2016, 117, 190501 doi: 10.1103/PhysRevLett.117.190501
[113]
Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 2018, 557, 400 doi: 10.1038/s41586-018-0066-6
[114]
Liao S, Cai W, Handsteiner J, et al. Satellite-relayed intercontinental quantum network. Phys Rev Lett, 2018, 120, 030501 doi: 10.1103/PhysRevLett.120.030501
[115]
Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70, 1895 doi: 10.1103/PhysRevLett.70.1895
[116]
Bouwmeester D, Pan J, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390, 575 doi: 10.1038/37539
[117]
Sun Q, Mao Y, Chen S, et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat Photonics, 2016, 10, 671 doi: 10.1038/nphoton.2016.179
[118]
Valivarthi R, Puigibert G, Zhou Q, et al. Quantum teleportation across a metropolitan fibre network. Nat Photonics, 2016, 10, 676 doi: 10.1038/nphoton.2016.180
[119]
Yin J, Ren J, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488, 185 doi: 10.1038/nature11332
[120]
Ma X, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489, 269 doi: 10.1038/nature11472
[121]
Yang M, Li L, Yang K, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549, 70 doi: 10.1038/nature23675
[122]
Müller T, Krysa A B, Huwer J, et al. A quantum light-emitting diode for the standard telecom window around 1,550nm. Nat Commun, 2018, 9, 862 doi: 10.1038/s41467-018-03251-7
[123]
Zopf M, Macha T, Keil R, et al. Frequency feedback for two-photon interference from separate quantum dots. Phys Rev B, 2018, 98, 161302 doi: 10.1103/PhysRevB.98.161302
[124]
Gazzano O, de Vasconcellos S M, Arnold C, et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 2013, 4, 1425 doi: 10.1038/ncomms2434
[125]
Toishi M, Englund D, Faraon A, et al. High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Opt Express, 2009, 17, 14618 doi: 10.1364/OE.17.014618
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5763 Times PDF downloads: 288 Times Cited by: 0 Times

    History

    Received: 07 May 2019 Revised: 05 June 2019 Online: Accepted Manuscript: 14 June 2019Uncorrected proof: 18 June 2019Published: 05 July 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xin Cao, Michael Zopf, Fei Ding. Telecom wavelength single photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071901. doi: 10.1088/1674-4926/40/7/071901 X Cao, M Zopf, F Ding, Telecom wavelength single photon sources[J]. J. Semicond., 2019, 40(7): 071901. doi: 10.1088/1674-4926/40/7/071901.Export: BibTex EndNote
      Citation:
      Xin Cao, Michael Zopf, Fei Ding. Telecom wavelength single photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071901. doi: 10.1088/1674-4926/40/7/071901

      X Cao, M Zopf, F Ding, Telecom wavelength single photon sources[J]. J. Semicond., 2019, 40(7): 071901. doi: 10.1088/1674-4926/40/7/071901.
      Export: BibTex EndNote

      Telecom wavelength single photon sources

      doi: 10.1088/1674-4926/40/7/071901
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return