J. Semicond. > Volume 40 > Issue 7 > Article Number: 072902

Stable single photon sources in the near C-band range above 400 K

Qiang Li 1, 2, #, , Ji-Yang Zhou 1, 2, #, , Zheng-Hao Liu 1, 2, , Jin-Shi Xu 1, 2, , , Chuan-Feng Li 1, 2, , and Guang-Can Guo 1, 2,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: The intrinsic characteristics of single photons became critical issues since the early development of quantum mechanics. Nowadays, acting as flying qubits, single photons are shown to play important roles in the quantum key distribution and quantum networks. Many different single photon sources (SPSs) have been developed. Point defects in silicon carbide (SiC) have been shown to be promising SPS candidates in the telecom range. In this work, we demonstrate a stable SPS in an epitaxial 3C-SiC with the wavelength in the near C-band range, which is very suitable for fiber communications. The observed SPSs show high single photon purity and stable fluorescence at even above 400 K. The lifetimes of the SPSs are found to be almost linearly decreased with the increase of temperature. Since the epitaxial 3C-SiC can be conveniently nanofabricated, these stable near C-band SPSs would find important applications in the integrated photonic devices.

Key words: single photon sourcestable photoluminescencesilicon carbideelevated temperature

Abstract: The intrinsic characteristics of single photons became critical issues since the early development of quantum mechanics. Nowadays, acting as flying qubits, single photons are shown to play important roles in the quantum key distribution and quantum networks. Many different single photon sources (SPSs) have been developed. Point defects in silicon carbide (SiC) have been shown to be promising SPS candidates in the telecom range. In this work, we demonstrate a stable SPS in an epitaxial 3C-SiC with the wavelength in the near C-band range, which is very suitable for fiber communications. The observed SPSs show high single photon purity and stable fluorescence at even above 400 K. The lifetimes of the SPSs are found to be almost linearly decreased with the increase of temperature. Since the epitaxial 3C-SiC can be conveniently nanofabricated, these stable near C-band SPSs would find important applications in the integrated photonic devices.

Key words: single photon sourcestable photoluminescencesilicon carbideelevated temperature



References:

[1]

Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299(5886), 802

[2]

Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution. Rev Mod Phys, 2009, 81(3), 1301

[3]

Aspuru-Guzik A, Waither P. Photonic quantum simulators. Nat Phys, 2012, 8(4), 285

[4]

Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 2007, 79(1), 135

[5]

Preskill J. Quantum computing and the entanglement frontier. arXiv: 1203.5813v3, 2012

[6]

Aaronson S, Arkhipov A. The computational complexity of linear optics. Proceedings of the ACM Symposium on Theory of Computing, ACM, New York, 2011, 333

[7]

Lund A P, Bremner M J, Ralph T C. Quantum sampling problems, Boson sampling and quantum supremacy. npj Quantum Inform, 2017, 3, 15

[8]

Lapkiewicz R, Li P, Schaeff C, et al. Experimetnal non-classicality of an indivisible quantum system. Nature, 2011, 474(7352), 490

[9]

Xiao Y, Xu Z P, Li Q, et al. Experimental observation of quantum state-independent contextuality under no-signaling conditions. Opt Express, 2018, 26(1), 32

[10]

Xiao Y, Xu Z P, Li Q, et al. Experimental test of quantum correlations from platonic graphs. Optica, 2018, 5(6), 718

[11]

Kwiat P G, Mattle K, Weinfurter H, et al. New high-intensity source of polarization- entangled photon pairs. Phys Rev Lett, 1995, 75(24), 4337

[12]

Gazzano O, Michaelis de Vasconecellos S, Arnold C, et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 2013, 4, 1425

[13]

He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol, 2013, 8(3), 213

[14]

Santori C, Fattal D, Vuckovic J, et al. Indistinguishable photons from a single-photon device. Nature, 2002, 419(6907), 594

[15]

Wang H, He Y, Li Y H, et al. High-efficiency multiphoton boson sampling. Nat Photon, 2017, 11(6), 361

[16]

Loredo J C, Broome M A, Hilaire P, et al. Boson sampling with single-photon fock states from a bright solid-state source. Phys Rev Lett, 2017, 118(13), 130503

[17]

Jelezko F, Wrachtrup J. Single defect centres in diamond: A review. Phys Status Solidi A, 2006, 203(13), 3207

[18]

Morfa A J, Gibson B C, Karg M, et al. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett, 2012, 12(2), 949

[19]

Lohrmann A, Johnson B C, McCallum J C, et al. A review on single photon sources in silicon carbide. Rep Prog Phys, 2017, 80(3), 034502

[20]

Wang J, Zhou Y, Zhang, X, et al. Efficient generation of an array of single silicon-vacancy defects in silicon carbide. Phys Rev Appl, 2017, 7(6), 064021

[21]

Widmann M, Lee S Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 2015, 14(2), 164

[22]

Fuchs F, Stender B, Trupke M, et al. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat Commun, 2015, 6, 7578

[23]

Lienhard B, Schröder T, Mouradian S, et al. Bright and photostable single-photon emitter in silicon carbide. Optica, 2016, 3(7), 768

[24]

Radulaski M, Widmann M, Niethammer M, et al. Scalable quantum photonics with single color centers in silicon carbide. Nano Lett, 2017, 17(3), 1782

[25]

Christle D J, Falk A L, Andrich P, et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat Mater, 2015, 14(2), 160

[26]

Falk A L, Buckley B B, Calusine G, et al. Polytype control of spin qubits in silicon carbide. Nat Commun, 2013, 4, 1819

[27]

Christle D J, Klimov P V, Charles F, et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys Rev X, 2017, 7(2), 021046

[28]

Castelletto S, Johnson B C, Zachreson C, et al. Room temperature quantum emission from cubic silicon carbide nanoparticles. ACS Nano, 2014, 8(8), 7938

[29]

Castelletto S, Johnson B, Ivády V, et al. A silicon carbide room-temperature single-photon source. Nat Mater, 2014, 13(2), 151

[30]

Wang J, Zhou Y, Wang Z, et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat Commun, 2018, 9, 4106

[31]

Neu E, Steinmetz D, Riedrich-Möller J, et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys, 2011, 13, 025012

[32]

Kianinia M, Regan B, Abdulkader S, et al. Robust solid-state quantum system operating at 800 K. ACS Photon, 2017, 4(4), 768

[33]

Radulaski M, Babinec T M, Mueller K, et al. Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes. ACS Photon, 2015, 2(1), 14

[34]

Schell A W, Neumer T, Shi Q, et al. Laser-written parabolic micro-antennas for efficient photon collection. Appl Phys Lett, 2014, 105(23), 231117

[35]

Wan N H, Shields B J, Kim D, et al. Efficient extraction of light from a nitrogen-vacancy center in a diamond parabolic reflector. Nano Lett, 2018, 18(5), 2787

[36]

Choy J T, Bulu I, Hausmann B J, et al. Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings. Appl Phys Lett, 2013, 103(16), 161101

[37]

Li L, Chen E H, Zheng J, et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett, 2015, 15(3), 1493

[38]

Livneh N, Harats M G, Yochelis S, et al. Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna. ACS Photon, 2015, 2(12), 1669

[39]

Lohrmann A, Iwamoto N, Bodrog Z, et al. Single-photon emitting diode in silicon carbide. Nat Commun, 2015, 6, 7783

[40]

Sato S, Honda T, Makino T, et al. Room temperature electrical control of single photon sources at 4H-SiC surface. ACS Photon, 2018, 5(8), 3159

[1]

Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299(5886), 802

[2]

Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution. Rev Mod Phys, 2009, 81(3), 1301

[3]

Aspuru-Guzik A, Waither P. Photonic quantum simulators. Nat Phys, 2012, 8(4), 285

[4]

Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 2007, 79(1), 135

[5]

Preskill J. Quantum computing and the entanglement frontier. arXiv: 1203.5813v3, 2012

[6]

Aaronson S, Arkhipov A. The computational complexity of linear optics. Proceedings of the ACM Symposium on Theory of Computing, ACM, New York, 2011, 333

[7]

Lund A P, Bremner M J, Ralph T C. Quantum sampling problems, Boson sampling and quantum supremacy. npj Quantum Inform, 2017, 3, 15

[8]

Lapkiewicz R, Li P, Schaeff C, et al. Experimetnal non-classicality of an indivisible quantum system. Nature, 2011, 474(7352), 490

[9]

Xiao Y, Xu Z P, Li Q, et al. Experimental observation of quantum state-independent contextuality under no-signaling conditions. Opt Express, 2018, 26(1), 32

[10]

Xiao Y, Xu Z P, Li Q, et al. Experimental test of quantum correlations from platonic graphs. Optica, 2018, 5(6), 718

[11]

Kwiat P G, Mattle K, Weinfurter H, et al. New high-intensity source of polarization- entangled photon pairs. Phys Rev Lett, 1995, 75(24), 4337

[12]

Gazzano O, Michaelis de Vasconecellos S, Arnold C, et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 2013, 4, 1425

[13]

He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol, 2013, 8(3), 213

[14]

Santori C, Fattal D, Vuckovic J, et al. Indistinguishable photons from a single-photon device. Nature, 2002, 419(6907), 594

[15]

Wang H, He Y, Li Y H, et al. High-efficiency multiphoton boson sampling. Nat Photon, 2017, 11(6), 361

[16]

Loredo J C, Broome M A, Hilaire P, et al. Boson sampling with single-photon fock states from a bright solid-state source. Phys Rev Lett, 2017, 118(13), 130503

[17]

Jelezko F, Wrachtrup J. Single defect centres in diamond: A review. Phys Status Solidi A, 2006, 203(13), 3207

[18]

Morfa A J, Gibson B C, Karg M, et al. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett, 2012, 12(2), 949

[19]

Lohrmann A, Johnson B C, McCallum J C, et al. A review on single photon sources in silicon carbide. Rep Prog Phys, 2017, 80(3), 034502

[20]

Wang J, Zhou Y, Zhang, X, et al. Efficient generation of an array of single silicon-vacancy defects in silicon carbide. Phys Rev Appl, 2017, 7(6), 064021

[21]

Widmann M, Lee S Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 2015, 14(2), 164

[22]

Fuchs F, Stender B, Trupke M, et al. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat Commun, 2015, 6, 7578

[23]

Lienhard B, Schröder T, Mouradian S, et al. Bright and photostable single-photon emitter in silicon carbide. Optica, 2016, 3(7), 768

[24]

Radulaski M, Widmann M, Niethammer M, et al. Scalable quantum photonics with single color centers in silicon carbide. Nano Lett, 2017, 17(3), 1782

[25]

Christle D J, Falk A L, Andrich P, et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat Mater, 2015, 14(2), 160

[26]

Falk A L, Buckley B B, Calusine G, et al. Polytype control of spin qubits in silicon carbide. Nat Commun, 2013, 4, 1819

[27]

Christle D J, Klimov P V, Charles F, et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys Rev X, 2017, 7(2), 021046

[28]

Castelletto S, Johnson B C, Zachreson C, et al. Room temperature quantum emission from cubic silicon carbide nanoparticles. ACS Nano, 2014, 8(8), 7938

[29]

Castelletto S, Johnson B, Ivády V, et al. A silicon carbide room-temperature single-photon source. Nat Mater, 2014, 13(2), 151

[30]

Wang J, Zhou Y, Wang Z, et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat Commun, 2018, 9, 4106

[31]

Neu E, Steinmetz D, Riedrich-Möller J, et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys, 2011, 13, 025012

[32]

Kianinia M, Regan B, Abdulkader S, et al. Robust solid-state quantum system operating at 800 K. ACS Photon, 2017, 4(4), 768

[33]

Radulaski M, Babinec T M, Mueller K, et al. Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes. ACS Photon, 2015, 2(1), 14

[34]

Schell A W, Neumer T, Shi Q, et al. Laser-written parabolic micro-antennas for efficient photon collection. Appl Phys Lett, 2014, 105(23), 231117

[35]

Wan N H, Shields B J, Kim D, et al. Efficient extraction of light from a nitrogen-vacancy center in a diamond parabolic reflector. Nano Lett, 2018, 18(5), 2787

[36]

Choy J T, Bulu I, Hausmann B J, et al. Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings. Appl Phys Lett, 2013, 103(16), 161101

[37]

Li L, Chen E H, Zheng J, et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett, 2015, 15(3), 1493

[38]

Livneh N, Harats M G, Yochelis S, et al. Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna. ACS Photon, 2015, 2(12), 1669

[39]

Lohrmann A, Iwamoto N, Bodrog Z, et al. Single-photon emitting diode in silicon carbide. Nat Commun, 2015, 6, 7783

[40]

Sato S, Honda T, Makino T, et al. Room temperature electrical control of single photon sources at 4H-SiC surface. ACS Photon, 2018, 5(8), 3159

[1]

Guo Hui, Zhang Yimen, Zhang Yuming. Evidence of the Role of Carbon Vacancies in Nickel-Based Ohmic Contacts to n-Type Silicon Carbide. J. Semicond., 2007, 28(1): 5.

[2]

Guo Hui, Feng Qian, Tang Xiaoyan, Zhang Yimen, Zhang Yuming. Fabrication of n+ Polysilicon Ohmic Contacts with a Heterojunction Structure to n-Type 4H-Silicon Carbide. J. Semicond., 2008, 29(4): 637.

[3]

J. Pradhan, S. R. Pattanaik, S. K. Swain, G. N. Dash. Low noise wide bandgap SiC based IMPATT diodes at sub-millimeter wave frequencies and at high temperature. J. Semicond., 2014, 35(3): 034006. doi: 10.1088/1674-4926/35/3/034006

[4]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[5]

Sizhe Chen, Kuang Sheng, Jue Wang. 1.4 kV 4H-SiC PiN diode with a robust non-uniform floating guard ring termination. J. Semicond., 2014, 35(5): 054003. doi: 10.1088/1674-4926/35/5/054003

[6]

Wang Liang, Zhao Yongmei, Ning Jin, Sun Guosheng, Wang Lei, Liu Xingfang, Zhao Wanshun, Zeng Yiping, Li Jinmin. Laterally Electrostatically Driven Poly 3C-SiC Folded-Beam Resonant Microstructures. J. Semicond., 2008, 29(8): 1453.

[7]

Ding Ruixue, Yang Yintang, Han Ru. Microtrenching effect of SiC ICP etching in SF6/O2 plasma. J. Semicond., 2009, 30(1): 016001. doi: 10.1088/1674-4926/30/1/016001

[8]

Han Ru, Yang Yintang, Wang Ping, Cui Zhandong, Li Liang. Ohmic Contact Properties of Multi-Metal Films on n-Type 4H-SiC. J. Semicond., 2007, 28(2): 149.

[9]

Juntao Li, Chengquan Xiao, Xingliang Xu, Gang Dai, Lin Zhang, Yang Zhou, An Xiang, Yingkun Yang, Jian Zhang. High-voltage 4H-SiC PiN diodes with the etched implant junction termination extension. J. Semicond., 2017, 38(2): 024003. doi: 10.1088/1674-4926/38/2/024003

[10]

Liu Chunjuan, Liu Su, Feng Jingjing, Wu Rong. Nickel ohmic contacts of high-concentration P-implanted 4H-SiC. J. Semicond., 2012, 33(3): 036002. doi: 10.1088/1674-4926/33/3/036002

[11]

Hui Wang, Yingxi Niu, Fei Yang, Yong Cai, Zehong Zhang, Zhongming Zeng, Minrui Wang, Chunhong Zeng, Baoshun Zhang. Influences of ICP etching damages on the electronic properties of metal field plate 4H-SiC Schottky diodes. J. Semicond., 2015, 36(10): 104006. doi: 10.1088/1674-4926/36/10/104006

[12]

Lü Hongliang, Zhang Yimen, Zhang Yuming, Che Yong, Sun Ming. A Simple Method of Surface Parameter Extraction for Gate Schottky Contact in 4H-SiC MESFETs. J. Semicond., 2008, 29(3): 458.

[13]

Zhang Qunshe, Chen Zhiming, Li Liuchen, Yang Feng, Pu Hongbin, Feng Xianfeng. Effects of the Heat Transfer Through Powder Source on the Silicon Carbide Crystal Growth by PVT. J. Semicond., 2007, 28(1): 60.

[14]

Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin, Zhang Zhiyong. Electronic transport properties of the armchair silicon carbide nanotube. J. Semicond., 2010, 31(11): 114003. doi: 10.1088/1674-4926/31/11/114003

[15]

Huang Limin, Xie Jiachun, Liang Jin. High Quality Ultraviolet Photodetectors Based on Silicon Carbide. J. Semicond., 2005, 26(S1): 256.

[16]

Dong Wang, Yue Chang, Shuping Pang, Guanglei Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002

[17]

Lun Dai. Room-temperature stable two-dimensional ferroelectric materials. J. Semicond., 2019, 40(6): 060402. doi: 10.1088/1674-4926/40/6/060402

[18]

Zhang Hongtao, Chen Kun, Lemmer U, Bastian G. Optical Properties of Ultralong Hexagonal Polytype Nano-Silicon Carbide Rod. J. Semicond., 2006, 27(S1): 117.

[19]

Zhang Fasheng, Li Xinran. Mo/Schottky Barrier Diodes on 4H-Silicon Carbide. J. Semicond., 2007, 28(3): 435.

[20]

Xin Cao, Michael Zopf, Fei Ding. Telecom wavelength single photon sources. J. Semicond., 2019, 40(7): 071901. doi: 10.1088/1674-4926/40/7/071901

Search

Advanced Search >>

GET CITATION

Q Li, J Y Zhou, Z H Liu, J S Xu, C F Li, G C Guo, Stable single photon sources in the near C-band range above 400 K[J]. J. Semicond., 2019, 40(7): 072902. doi: 10.1088/1674-4926/40/7/072902.

Export: BibTex EndNote

Article Metrics

Article views: 1259 Times PDF downloads: 75 Times Cited by: 0 Times

History

Manuscript received: 30 April 2019 Manuscript revised: 26 May 2019 Online: Uncorrected proof: 13 June 2019 Accepted Manuscript: 01 July 2019 Published: 05 July 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误