Citation: 
Jing Teng, Nan Liu, Yongqing Li. Mndoped topological insulators: a review[J]. Journal of Semiconductors, 2019, 40(8): 081507. doi: 10.1088/16744926/40/8/081507
J Teng, N Liu, Y Q Li, Mndoped topological insulators: a review[J]. J. Semicond., 2019, 40(8): 081507. doi: 10.1088/16744926/40/8/081507.
Export: BibTex EndNote


Abstract
Topological insulators (TIs) host robust edge or surface states protected by timereversal symmetry (TRS), which makes them prime candidates for applications in spintronic devices. A promising avenue of research for the development of functional TI devices has involved doping of threedimensional (3D) TI thin film and bulk materials with magnetic elements. This approach aims to break the TRS and open a surface band gap near the Dirac point. Utilizing this gapped surface state allows for a wide range of novel physical effects to be observed, paving a way for applications in spintronics and quantum computation. This review focuses on the research of 3D TIs doped with manganese (Mn). We summarize major progress in the study of Mn doped chalcogenide TIs, including Bi_{2}Se_{3}, Bi_{2}Te_{3}, and Bi_{2}(Te,Se)_{3}. The transport properties, in particular the anomalous Hall effect, of the Mndoped Bi_{2}Se_{3} are discussed in detail. Finally, we conclude with future prospects and challenges in further studies of Mn doped TIs. 
References
[1] Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect. Phys Rev Lett, 2005, 95, 146802 doi: 10.1103/PhysRevLett.95.146802[2] Kane C L, Mele E J. Quantum spin Hall effect in graphene. Phys Rev Lett, 2005, 95, 226801 doi: 10.1103/PhysRevLett.95.226801[3] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438, 201 doi: 10.1038/nature04235[4] Bernevig B A, Zhang S C. Quantum spin Hall effect. Phys Rev Lett, 2006, 96, 106802 doi: 10.1103/PhysRevLett.96.106802[5] Prange R E, Girvin S M. The quantum Hall effect. New York: SpringerVerlag, 1990[6] Klitzing K V, Dorda G, Pepper M. New method for highaccuracy determination of the finestructure constant based on quantized hall resistance. Phys Rev Lett, 1980, 45, 494 doi: 10.1103/PhysRevLett.45.494[7] Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall conductance in a twodimensional periodic potential. Phys Rev Lett, 1982, 49, 405 doi: 10.1103/PhysRevLett.49.405[8] Simon B. Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys Rev Lett, 1983, 51, 2167 doi: 10.1103/PhysRevLett.51.2167[9] Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314, 1757 doi: 10.1126/science.1133734[10] Koenig M, Wiedmann S, Bruene C, et al. Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007, 318, 766 doi: 10.1126/science.1148047[11] Qi X L, Zhang S C. Topological insulators and superconductors. Rev Mov Phys, 2011, 83, 1057 doi: 10.1103/revmodphys.83.1057[12] Ando Y. Topological insulator materials. J Phys Soc Jpn, 2013, 82, 102001 doi: 10.7566/JPSJ.82.102001[13] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Phys Rev Lett, 2007, 98, 106803 doi: 10.1103/physrevlett.98.106803[14] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase. Nature, 2008, 452, 970 doi: 10.1038/nature06843[15] Xia Y, Qian D, Hsieh D, et al. Observation of a largegap topological insulator class with a single Dirac cone on the surface. Nat Phys, 2009, 5, 398 doi: 10.1038/nphys1274[16] Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a threedimensional topological insulator, Bi_{2}Te_{3}. Science, 2009, 325, 178 doi: 10.1126/science.1173034[17] Zhang H, Liu C X, Qi X L, et al. Topological insulators in Bi_{2}Se_{3}, Bi_{2}Te_{3} and Sb_{2}Te_{3} with a single Dirac cone on the surface. Nat Phys, 2009, 5, 438 doi: 10.1038/nphys1270[18] Chen J, Qin H J, Yang F, et al. Gatevoltage control of chemical potential and weak antilocalization in Bi_{2}Se_{3}. Phys Rev Lett, 2010, 105, 176602 doi: 10.1103/PhysRevLett.105.176602[19] Qu D X, Hor Y S, Xiong J, et al. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi_{2}Te_{3}. Science, 2010, 329, 821 doi: 10.1126/science.1189792[20] Analytis J G, Chu J H, Chen Y, et al. Bulk Fermi surface coexistence with Dirac surface state in Bi_{2}Se_{3}: A comparison of photoemission and Shubnikov–de Haas measurements. Phys Rev B, 2010, 81, 205407 doi: 10.1103/PhysRevB.81.205407[21] Yu R, Zhang W, Zhang H J, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329, 61 doi: 10.1126/science.1187485[22] Chang C Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340, 167 doi: 10.1126/science.1234414[23] Mellnik A R, Lee J S, Richardella A, et al. Spintransfer torque generated by a topological insulator. Nature, 2014, 511, 449 doi: 10.1038/nature13534[24] Qi X L, Hughes T L, Zhang S C. Topological field theory of timereversal invariant insulators. Phys Rev B, 2008, 78, 195424 doi: 10.1103/physrevb.78.195424[25] Essin A M, Moore J E, Vanderbilt D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys Rev Lett, 2009, 102, 146805 doi: 10.1103/PhysRevLett.102.146805[26] Tse W K, MacDonald A H. Giant magnetooptical Kerr effect and universal Faraday effect in thinfilm topological insulators. Phys Rev Lett, 2010, 105, 057401 doi: 10.1103/PhysRevLett.105.057401[27] Li R, Wang J, Qi X L, et al. Dynamical axion field in topological magnetic insulators. Nat Phys, 2010, 6, 284 doi: 10.1038/nphys1534[28] Fu L, Kane C L. Superconducting proximity effect and Majorana Fermions at the surface of a topological insulator. Phys Rev Lett, 2008, 100, 096407 doi: 10.1103/physrevlett.100.096407[29] Qi X L, Li R, Zang J, et al. Inducing a magnetic monopole with topological surface states. Science, 2009, 323, 1184 doi: 10.1126/science.1167747[30] Hasan M Z, Kane C L. Colloquium: topological insulators. Rev Mod Phys, 2010, 82, 3045 doi: 10.1103/revmodphys.82.3045[31] Lu H Z, Shi J, Shen S Q. Competition between weak localization and antilocalization in topological surface states. Phys Rev Lett, 2011, 107, 076801 doi: 10.1103/PhysRevLett.107.076801[32] Checkelsky J G, Yoshimi R, Tsukazaki A, et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat Phys, 2014, 10, 731 doi: 10.1038/nphys3053[33] Kou X, Guo S T, Fan Y, et al. Scaleinvariant quantum anomalous Hall effect in magnetic topological insulators beyond the twodimensional limit. Phys Rev Lett, 2014, 113, 137201 doi: http://dx.doi.org/10.1103/PhysRevLett.113.199901[34] Bestwick A J, Fox E J, Kou X, et al. Precise quantization of the anomalous Hall effect near zero magnetic field. Phys Rev Lett, 2015, 114, 187201 doi: 10.1103/PhysRevLett.114.187201[35] Chang C Z, Zhao W, Kim D Y, et al. Highprecision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat Mater, 2015, 14, 473 doi: 10.1038/nmat4204[36] Chen Y L, Chu J H, Analytis J G, et a. Massive Dirac Fermion on the surface of a magnetically doped topological insulator. Science, 2010, 329, 659 doi: 10.1126/science.1189924[37] Xu S Y, Neupane M, Liu C, et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat Phys, 2012, 8, 616 doi: 10.1038/nphys2351[38] Rienks E D L, Wimmer S, Mandal P S, et al. Large magnetic gap at the Dirac point in a Mninduced Bi_{2}Te_{3} heterostructure. arXiv: 1810.06238[39] Zhang J M, Ming W, Huang Z, et al. Stability, electronic, and magnetic properties of the magnetically doped topological insulators Bi_{2}Se_{3}, Bi_{2}Te_{3} and Sb_{2}Te_{3}. Phys Rev B, 2013, 88, 235131 doi: 10.1103/PhysRevB.88.235131[40] Abdalla L B, Seixas L, Schmidt T M, et al. Topological insulator Bi_{2}Se_{3}(111) surface doped with transition metals: An ab initio investigation. Phys Rev B, 2013, 88, 045312 doi: 10.1103/PhysRevB.88.045312[41] Růžička J, Caha O, Hol V, et al. Structural and electronic properties of manganese doped Bi_{2}Te_{3} epitaxial layers. New J Phys, 2015, 17, 013028 doi: 10.1088/13672630/17/1/013028[42] Lee J S, Richardella A, Rench D W, et al. Ferromagnetism and spindependent transport in ntype Mndoped bismuth telluride thin films. Phys Rev B, 2014, 89, 174425 doi: 10.1103/PhysRevB.89.174425[43] Figueroa A I, van der Laan G, CollinsMcIntyre L J, et al. Local structure and bonding of transition metal dopants in Bi_{2}Se_{3} topological insulator thin films. J Phys Chem C, 2015, 119, 17344 doi: 10.1021/jp511713s[44] Hagmann J A, Li X, Chowdbury S, et al. Molecular beam epitaxy growth and structure of selfassembled Bi_{2}Se_{3}/Bi_{2}MnSe_{4} multilayer heterostructures. New J Phys, 2017, 19, 085002 doi: 10.1088/13672630/aa759c[45] Zhang D, Richardella A, Rench D W, et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys Rev B, 2012, 86, 205127 doi: 10.1103/PhysRevB.86.205127[46] Choi J, Choi S, Choi J, et al. Magnetic properties of Mndoped Bi_{2}Te_{3} and Sb_{2}Te_{3}. Phys Status Solidi B, 2004, 241, 1541 doi: 10.1002/pssb.200304527[47] Choi J, Choi S, Choi J, et al. Mndoped V_{2}VI_{3} semiconductors: Single crystal growth and magnetic properties. J Appl Phys, 2005, 97, 10D doi: 10.1063/1.1854451[48] Bos J W G, Lee M, Morosan E, et al. Ferromagnetism below 10 K in Mndoped BiTe. Phys Rev B, 2006, 74, 184429 doi: 10.1103/PhysRevB.74.184429[49] Janíček P, Drašar Č, Lošt’ák P, et al. Transport, magnetic, optical and thermodynamic properties of Bi_{2– x}Mn_{x}Se_{3} single crystals. Physica B, 2008, 403, 3553 doi: 10.1016/j.physb.2008.05.025[50] Hor Y S, Roushan P, Beidenkopf H, et al. Development of ferromagnetism in the doped topological insulator Bi_{2– x}Mn_{x}Te_{3}. Phys Rev B, 2010, 81, 195203 doi: 10.1103/PhysRevB.81.195203[51] Von Bardeleben H J, Cantin J L, Zhang D M, et al. Ferromagnetism in Bi_{2}Se_{3}:Mn epitaxial layers. Phys Rev B, 2013, 88, 075149 doi: http://dx.doi.org/10.1103/PhysRevB.88.075149[52] Zimmermann S, Steckel F, Hess C, et al. Spin dynamics and magnetic interactions of Mn dopants in the topological insulator Bi_{2}Te_{3}. Phys Rev B, 2016, 94, 125205 doi: 10.1103/PhysRevB.94.125205[53] Islam M F, Canali C M, Pertsova A, et al. Systematics of electronic and magnetic properties in the transition metal doped Sb_{2}Te_{3} quantum anomalous Hall platform. Phys Rev B, 2018, 97, 155429 doi: 10.1103/PhysRevB.97.155429[54] Niu C, Dai Y, Guo M, et al. Mn induced ferromagnetism and modulated topological surface states in Bi_{2}Te_{3}. Appl Phys Lett, 2011, 98, 252502 doi: 10.1063/1.3601020[55] Liu Q, Liu C X, Xu C, et al. Magnetic impurities on the surface of a topological insulator. Phys Rev Lett, 2009, 102, 156603 doi: 10.1103/PhysRevLett.102.156603[56] Zhu J J, Yao D X, Zhang S C, et al. electrically controllable surface magnetism on the surface of topological insulators. Phys Rev Lett, 2011, 106, 097201 doi: 10.1103/physrevlett.106.097201[57] Sessi P, Reis F, Bathon T, et al. Signatures of Dirac fermionmediated magnetic order. Nat Commun, 2014, 5, 5349 doi: 10.1038/ncomms6349[58] Chapler B C, Post K W, Richardella A R, et al. Infrared electrodynamics and ferromagnetism in the topological semiconductors Bi_{2}Te_{3} and Mndoped Bi_{2}Te_{3}. Phys Rev B, 2014, 89, 235308 doi: 10.1103/PhysRevB.89.235308[59] CollinsMcintyre L J, Watson M D, Baker A A, et al. Xray magnetic spectroscopy of MBEgrown Mndoped Bi_{2}Se_{3} thin films. AIP Adv, 2014, 4, 127136 doi: 10.1063/1.4904900[60] SánchezBarriga J, Varykhalov A, Springholz G, et al. Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi_{1− x}Mn_{x})_{2}Se_{3}. Nat Commun, 2016, 7, 10559 doi: 10.1038/ncomms10559[61] Liu N, Teng J, Li Y. Twocomponent anomalous Hall effect in a magnetically doped topological insulator. Nat Commun, 2018, 9, 1282 doi: 10.1038/s41467018036840[62] Tarasenko R, Vališka M, Vondráček M, et al. Magnetic and structural properties of Mndoped Bi_{2}Se_{3} topological insulators. Physica B, 2016, 481, 262 doi: 10.1016/j.physb.2015.11.022[63] Watson M D, CollinsMcIntyre L J, Shelford L R, et al. Study of the structural, electric and magnetic properties of Mndoped Bi_{2}Te_{3} single crystals. New J Phys, 2013, 15, 103016 doi: 10.1088/13672630/15/10/103016[64] Li Y, Zou X, J Li, Zhou G, et al. Ferromagnetism and topological surface states of manganese doped Bi_{2}Te_{3}: Insights from densityfunctional calculations. J Chem Phys, 2014, 140, 124704 doi: 10.1063/1.4869146[65] Checkelsky J G, Ye J, Onose Y, et al. Diracfermionmediated ferromagnetism in a topological insulator. Nat Phys, 2012, 8, 729 doi: 10.1038/nphys2388[66] Rosenberg G, Franz M. Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys Rev B, 2012, 85, 195119 doi: 10.1103/physrevb.85.195119[67] Liu C, Zang Yunyi, Ruan Wei, et al. Dimensional crossoverinduced topological Hall effect in a magnetic topological insulator. Phys Rev Lett, 2017, 119, 176809 doi: 10.1103/PhysRevLett.119.176809[68] Kamboj S, Das S, Sirohi A, et al. Suppression of transport spinpolarization of surface states with emergence of ferromagnetism in Mndoped Bi_{2}Se_{3}. J Phys Cond Matt, 2018, 30, 355001 doi: 10.1088/1361648X/aad3ed[69] Ado I A, Dmitriev I A, Ostrovsky P M, et al. Anomalous Hall effect with massive Dirac fermions, Anomalous Hall effect with massive Dirac fermions. EPL, 2015, 111, 37004 doi: 10.1209/02955075/111/37004[70] Zhang J, Chang C Z, Tang P, et al. Topologydriven magnetic quantum phase transition in topological insulators. Science, 2013, 339, 1582 doi: 10.1126/science.1230905[71] Zhang Z, Feng X, Guo M, et al. Electrically tuned magnetic order and magnetoresistance in a topological insulator. Nat Commun, 2014, 5, 4915 doi: 10.1038/ncomms5915[72] Keser A C, Raimondi R, Culcer D. Sign change in the anomalous Hall effect and strong transport effects in a 2D massive Dirac metal due to spincharge correlated disorder. arXiv: 1902.09605[73] Liu M, Zhang J, Chang C Z, et al. Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys Rev Lett, 2012, 108, 036805 doi: 10.1103/PhysRevLett.108.036805[74] Li J, Li Y, Du S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi_{2}Te_{4}family materials. Sci Adv, 2019, 5 doi: 10.1126/sciadv.aaw5685[75] Zhang D, Shi M, Zhu T, et al. Topological axion states in the magnetic insulator MnBi_{2}Te_{4} with the quantized magnetoelectric effect. Phys Rev Lett, 2019, 122, 206401 doi: 10.1103/PhysRevLett.122.206401[76] Otrokov M M, Klimovskikh I I, et al. Prediction and observation of the first antiferromagnetic topological insulator. arXiv: 1809.07389[77] Chen B, Fei F, Zhang D, et al. Searching the Mn(Sb, Bi)_{2}Te_{4} family of materials for the ideal intrinsic magnetic topological insulator. arXiv: 1903.09934[78] Deng Y, Yu Y, Shi M Z, et al. Magneticfieldinduced quantized anomalous Hall effect in intrinsic magnetic topological insulator MnBi_{2}Te_{4}. arXiv: 1904.11468[79] Liu C, Wang Y, Li H, et al. Quantum phase transition from axion insulator to Chern insulator in MnBi_{2}Te_{4}. arXiv: 1905.00715[80] Gong Y, Guo J, Li J, et al. Experimental realization of an intrinsic magnetic topological insulator. Chin Phys Lett, 2019, 36, 076801 doi: 10.1088/0256307X/36/7/076801[81] Zhang S, Wang R, Wang X, et al. Experimental observation of the gatecontrolled reversal of the anomalous Hall effect in the intrinsic magnetic topological insulator MnBi_{2}Te_{4} device. arXiv: 1905.04839 
Proportional views