J. Semicond. > 2020, Volume 41 > Issue 5 > Article Number: 051201

Recent progress in developing efficient monolithic all-perovskite tandem solar cells

Yurui Wang , , Mei Zhang , , Ke Xiao , Renxing Lin , Xin Luo , Qiaolei Han and Hairen Tan ,

+ Author Affiliations + Find other works by these authors
  • Corresponding author: Hairen Tan, Email: hairentan@nju.edu.cn
  • PDF

    Turn off MathJax

    Abstract: Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption, long carrier diffusion lengths, tunable bandgaps, and low temperature processing. Single-junction perovskite solar cells (PSCs) have achieved a boost of the power conversion efficiency (PCE) from 3.8% to 25.2% in just a decade. With the continuous growth of PCE in single-junction PSCs, exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs. In this review, we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell. We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device: tunnel recombination junction, wide-bandgap top subcell, and narrow-bandgap bottom subcell. Finally, we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field.

    Key words: perovskite solar cellsmonolithic tandemmonolithic all-perovskite tandem solar cellstability



    References:

    [1]

    Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature, 2019, 567(7749), 511

    [2]

    Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396), 1442

    [3]

    Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355(6326), 722

    [4]

    Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden –Popper perovskite solar cells. Nature, 2016, 536(7616), 312

    [5]

    Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234

    [6]

    Zhu P, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 2020, 10(3), 1903083

    [7]

    Zhao Y, Tan H, Yuan H, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 2018, 9(1), 1607

    [8]

    Han Q, Wei Y, Lin R, et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb –Sn low-bandgap perovskite solar cells. Sci Bull, 2019, 64(19), 1399

    [9]

    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17), 6050

    [10]

    National Renewable Energy Laboratory. Best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2019

    [11]

    Green M A, Dunlop E D, Levi D H, et al. Solar cell efficiency tables (version 54). Prog Photovolt Res Appl, 2019, 27(7), 565

    [12]

    Shockley W, Queisser H J. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys, 1961, 32(3), 510

    [13]

    Geisz J F, Steiner M A, Jain N, et al. Building a six-junction inverted metamorphic concentrator solar cell. IEEE J Photovolt, 2017, 8(2), 626

    [14]

    Meillaud F, Shah A, Droz C, et al. Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells, 2006, 90(18/19), 2952

    [15]

    Contreras M A, Mansfield L M, Egaas B, et al. Wide bandgap Cu(In, Ga)Se2 solar cells with improved energy conversion efficiency. Prog Photovolt Res Appl, 2012, 20(7), 843

    [16]

    Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407), 1094

    [17]

    Che X, Li Y, Qu Y, et al. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat Energy, 2018, 3(5), 422

    [18]

    Cheng P, Li G, Zhan X, et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics, 2018, 12(3), 131

    [19]

    Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140

    [20]

    Anaya M, Lozano G, Calvo M E, et al. ABX3 perovskites for tandem solar cells. Joule, 2017, 1(4), 769

    [21]

    Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7(5), 746

    [22]

    Yu Y, Wang C, Grice C R, et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett, 2017, 2(5), 1177

    [23]

    Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828

    [24]

    Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7(3), 982

    [25]

    Xu G, Bi P, Wang S, et al. Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv Funct Mater, 2018, 28(42), 1804427

    [26]

    Wei M, Xiao K, Walters G, et al. Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv Mater, 2020, 1907058

    [27]

    Li C, Song Z, Zhao D, et al. Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin–lead halide perovskite solar cells. Adv Energy Mater, 2019, 9(3), 1803135

    [28]

    Liu X, Yang Z, Chueh C C, et al. Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J Mater Chem A, 2016, 4(46), 17939

    [29]

    Yang Z, Rajagopal A, Chueh C C, et al. Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv Mater, 2016, 28(40), 8990

    [30]

    Zhao B, Abdi-Jalebi M, Tabachnyk M, et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv Mater, 2017, 29(2), 1604744

    [31]

    Zhu H L, Choy W C H. Crystallization, properties, and challenges of low-bandgap Sn–Pb binary perovskites. Sol RRL, 2018, 2(10), 1800146

    [32]

    Bush K A, Palmstrom A F, Zhengshan J Y, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2017, 2(4), 17009

    [33]

    Werner J, Barraud L, Walter A, et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2016, 1(2), 474

    [34]

    Chen B, Zhengshan J Y, Manzoor S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4, 850

    [35]

    Werner J, Weng C H, Walter A, et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2. J Phys Chem Lett, 2016, 7(1), 161

    [36]

    Duong T, Wu Y, Shen H, et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater, 2017, 7(14), 1700228

    [37]

    Pisoni S, Fu F, Feurer T, et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J Mater Chem A, 2017, 5(26), 13639

    [38]

    Shen H, Peng J, Jacobs D, et al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ Sci, 2018, 11(2), 394

    [39]

    Todorov T, Gershon T, Gunawan O, et al. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Appl Phys Lett, 2014, 105(17), 173902

    [40]

    Han Q, Hsieh Y T, Meng L, et al. High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science, 2018, 361(6405), 904

    [41]

    Fu F, Feurer T, Weiss T P, et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat Energy, 2016, 2(1), 1690

    [42]

    Bailie C D, Christoforo M G, Mailoa J P, et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci, 2015, 8(3), 956

    [43]

    Zeng Q, Liu L, Xiao Z, et al. A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci Bull, 2019, 64(13), 885

    [44]

    Saha U, Alam M K. Proposition and computational analysis of a kesterite/kesterite tandem solar cell with enhanced efficiency. RSC Adv, 2017, 7(8), 4806

    [45]

    Li Y, Hu H, Chen B, et al. Solution-processed perovskite-kesterite reflective tandem solar cells. Sol Energy, 2017, 155, 35

    [46]

    Lee H, Lee C. Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv Energy Mater, 2018, 8(11), 1702197

    [47]

    Tanabe K. A Review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies, 2009, 2(3), 504

    [48]

    Ameri T, Li N, Brabec C J. Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci, 2013, 6(8), 2390

    [49]

    Yu Z J, Leilaeioun M, Holman Z. Selecting tandem partners for silicon solar cells. Nat Energy, 2016, 1(11), 16137

    [50]

    Celik I, Philips A B, Song Z, et al. Energy payback time (EPBT) and energy return on energy invested (eroi) of perovskite tandem photovoltaic solar cells. IEEE J Photovoltaics, 2017, 8(1), 305

    [51]

    Zhengshan J Y, Carpenter J V, Holman Z C. Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat Energy, 2018, 3(9), 747

    [52]

    Heo J H, Im S H. CH3NH3PbBr3–CH3NH3PbI3 perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv Mater, 2016, 28(25), 5121

    [53]

    Eperon G E, Leijtens T, Bush K A, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314), 861

    [54]

    Lin R, Xiao K, Qin Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink. Nat Energy, 2019, 4(10), 864

    [55]

    Werner J, Niesen B, Ballif C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? – An overview Adv Mater Interfaces, 2018, 5(1), 1700731

    [56]

    Eperon G E, Hörantner M T, Snaith H J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat Rev Chem, 2017, 1(12), 0095

    [57]

    Araújo G L, Martí A. Absolute limiting efficiencies for photovoltaic energy conversion. Sol Energy Mater Sol Cells, 1994, 33(2), 213

    [58]

    Hörantner M T, Leijtens T, Ziffer M E, et al. The potential of multijunction perovskite solar cells. ACS Energy Lett, 2017, 2(10), 2506

    [59]

    Unger E L, Kegelmann L, Suchan K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 2017, 5(23), 11401

    [60]

    Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13(4), 1764

    [61]

    Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 2018, 30(21), 1800855

    [62]

    Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3(1), 191

    [63]

    Palmstrom A F, Eperon G E, Leijtens T, et al. Enabling flexible all-perovskite tandem solar cells. Joule, 2019, 3(9), 2193

    [64]

    Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354(6309), 206

    [65]

    Park Y H, Jeong I, Bae S, et al. Inorganic rubidium cation as an enhancer for photovoltaic performance and moisture stability of HC(NH2)2PbI3 perovskite solar cells. Adv Funct Mater, 2017, 27(16), 1605988

    [66]

    Yadav P, Dar M I, Arora N, et al. The role of rubidium in multiple-cation-based high-efficiency perovskite solar cells. Adv Mater, 2017, 29(40), 1701077

    [67]

    Zhang M, Yun J S, Ma Q, et al. High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett, 2017, 2(2), 438

    [68]

    Liao W, Zhao D, Yu Y, et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J Am Chem Soc, 2016, 138(38), 12360

    [69]

    Im J, Stoumpos C C, Jin H, et al. Antagonism between spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1– xPb xI3. J Phys Chem Lett, 2015, 6(17), 3503

    [70]

    Prasanna R, Gold-Parker A, Leijtens T, et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J Am Chem Soc, 2017, 139(32), 11117

    [71]

    Yang Z, Chueh C C, Liang P W, et al. Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328

    [72]

    Forgács D, Gil-Escrig L, Pérez-Del-Rey D, et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv Energy Mater, 2017, 7(8), 1602121

    [73]

    Rajagopal A, Yang Z, Jo S B, et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater, 2017, 29(34), 1702140

    [74]

    Jiang F, Liu T, Luo B, et al. A two-terminal perovskite/perovskite tandem solar cell. J Mater Chem A, 2016, 4(4), 1208

    [75]

    Leijtens T, Prasanna R, Bush K A, et al. Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain Energy Fuels, 2018, 2(11), 2450

    [76]

    Zhao D, Chen C, Wang C, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat Energy, 2018, 3(12), 1093

    [77]

    Tong J, Song Z, Kim D H, et al. Carrier lifetimes of > 1 μs in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364(6439), 475

    [78]

    Prasanna R, Leijtens T, Dunfield S P, et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat Energy, 2019, 4(11), 939

    [79]

    Sheng R, Hörantner M T, Wang Z, et al. Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers. J Phys Chem C, 2017, 121(49), 27256

    [80]

    Ávila J, Momblona C, Boix P, et al. High voltage vacuum-deposited CH3NH3Pb3–CH3NH3PbI3 tandem solar cells. Energy Environ Sci, 2018, 11(11), 3292

    [81]

    Yan Y. All-perovskite tandem solar cell showing unprecedentedly high open-circuit voltage. Joule, 2018, 2(11), 2206

    [82]

    Zhao D, Wang C, Song Z, et al. Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett, 2018, 3(2), 305

    [83]

    Abdollahi B, Hossain I M, Jakoby M, et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv Energy Mater, 2020, 10(5), 1902583

    [84]

    Braly I L, Stoddard R J, Rajagopal A, et al. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett, 2017, 2(8), 1841

    [85]

    Stoddard R J, Rajagopal A, Palmer R L, et al. Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying. ACS Energy Lett, 2018, 3(6), 1261

    [86]

    Saparov B, Mitzi D B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev, 2016, 116(7), 4558

    [87]

    Zhao D, Yu Y, Wang C, et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat Energy, 2017, 2(4), 17018

    [88]

    Hao F, Stoumpos C C, Guo P, et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc, 2015, 137(35), 11445

    [89]

    Zhou Y, Yang M, Wu W, et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J Mater Chem A, 2015, 3(15), 8178

    [90]

    Yang Z, Yu Z, Wei H, et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat Commun, 2019, 10(1), 4498

    [1]

    Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature, 2019, 567(7749), 511

    [2]

    Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396), 1442

    [3]

    Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355(6326), 722

    [4]

    Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden –Popper perovskite solar cells. Nature, 2016, 536(7616), 312

    [5]

    Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234

    [6]

    Zhu P, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 2020, 10(3), 1903083

    [7]

    Zhao Y, Tan H, Yuan H, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 2018, 9(1), 1607

    [8]

    Han Q, Wei Y, Lin R, et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb –Sn low-bandgap perovskite solar cells. Sci Bull, 2019, 64(19), 1399

    [9]

    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17), 6050

    [10]

    National Renewable Energy Laboratory. Best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2019

    [11]

    Green M A, Dunlop E D, Levi D H, et al. Solar cell efficiency tables (version 54). Prog Photovolt Res Appl, 2019, 27(7), 565

    [12]

    Shockley W, Queisser H J. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys, 1961, 32(3), 510

    [13]

    Geisz J F, Steiner M A, Jain N, et al. Building a six-junction inverted metamorphic concentrator solar cell. IEEE J Photovolt, 2017, 8(2), 626

    [14]

    Meillaud F, Shah A, Droz C, et al. Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells, 2006, 90(18/19), 2952

    [15]

    Contreras M A, Mansfield L M, Egaas B, et al. Wide bandgap Cu(In, Ga)Se2 solar cells with improved energy conversion efficiency. Prog Photovolt Res Appl, 2012, 20(7), 843

    [16]

    Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407), 1094

    [17]

    Che X, Li Y, Qu Y, et al. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat Energy, 2018, 3(5), 422

    [18]

    Cheng P, Li G, Zhan X, et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics, 2018, 12(3), 131

    [19]

    Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140

    [20]

    Anaya M, Lozano G, Calvo M E, et al. ABX3 perovskites for tandem solar cells. Joule, 2017, 1(4), 769

    [21]

    Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7(5), 746

    [22]

    Yu Y, Wang C, Grice C R, et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett, 2017, 2(5), 1177

    [23]

    Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828

    [24]

    Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7(3), 982

    [25]

    Xu G, Bi P, Wang S, et al. Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv Funct Mater, 2018, 28(42), 1804427

    [26]

    Wei M, Xiao K, Walters G, et al. Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv Mater, 2020, 1907058

    [27]

    Li C, Song Z, Zhao D, et al. Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin–lead halide perovskite solar cells. Adv Energy Mater, 2019, 9(3), 1803135

    [28]

    Liu X, Yang Z, Chueh C C, et al. Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J Mater Chem A, 2016, 4(46), 17939

    [29]

    Yang Z, Rajagopal A, Chueh C C, et al. Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv Mater, 2016, 28(40), 8990

    [30]

    Zhao B, Abdi-Jalebi M, Tabachnyk M, et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv Mater, 2017, 29(2), 1604744

    [31]

    Zhu H L, Choy W C H. Crystallization, properties, and challenges of low-bandgap Sn–Pb binary perovskites. Sol RRL, 2018, 2(10), 1800146

    [32]

    Bush K A, Palmstrom A F, Zhengshan J Y, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2017, 2(4), 17009

    [33]

    Werner J, Barraud L, Walter A, et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2016, 1(2), 474

    [34]

    Chen B, Zhengshan J Y, Manzoor S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4, 850

    [35]

    Werner J, Weng C H, Walter A, et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2. J Phys Chem Lett, 2016, 7(1), 161

    [36]

    Duong T, Wu Y, Shen H, et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater, 2017, 7(14), 1700228

    [37]

    Pisoni S, Fu F, Feurer T, et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J Mater Chem A, 2017, 5(26), 13639

    [38]

    Shen H, Peng J, Jacobs D, et al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ Sci, 2018, 11(2), 394

    [39]

    Todorov T, Gershon T, Gunawan O, et al. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Appl Phys Lett, 2014, 105(17), 173902

    [40]

    Han Q, Hsieh Y T, Meng L, et al. High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science, 2018, 361(6405), 904

    [41]

    Fu F, Feurer T, Weiss T P, et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat Energy, 2016, 2(1), 1690

    [42]

    Bailie C D, Christoforo M G, Mailoa J P, et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci, 2015, 8(3), 956

    [43]

    Zeng Q, Liu L, Xiao Z, et al. A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci Bull, 2019, 64(13), 885

    [44]

    Saha U, Alam M K. Proposition and computational analysis of a kesterite/kesterite tandem solar cell with enhanced efficiency. RSC Adv, 2017, 7(8), 4806

    [45]

    Li Y, Hu H, Chen B, et al. Solution-processed perovskite-kesterite reflective tandem solar cells. Sol Energy, 2017, 155, 35

    [46]

    Lee H, Lee C. Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv Energy Mater, 2018, 8(11), 1702197

    [47]

    Tanabe K. A Review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies, 2009, 2(3), 504

    [48]

    Ameri T, Li N, Brabec C J. Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci, 2013, 6(8), 2390

    [49]

    Yu Z J, Leilaeioun M, Holman Z. Selecting tandem partners for silicon solar cells. Nat Energy, 2016, 1(11), 16137

    [50]

    Celik I, Philips A B, Song Z, et al. Energy payback time (EPBT) and energy return on energy invested (eroi) of perovskite tandem photovoltaic solar cells. IEEE J Photovoltaics, 2017, 8(1), 305

    [51]

    Zhengshan J Y, Carpenter J V, Holman Z C. Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat Energy, 2018, 3(9), 747

    [52]

    Heo J H, Im S H. CH3NH3PbBr3–CH3NH3PbI3 perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv Mater, 2016, 28(25), 5121

    [53]

    Eperon G E, Leijtens T, Bush K A, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314), 861

    [54]

    Lin R, Xiao K, Qin Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink. Nat Energy, 2019, 4(10), 864

    [55]

    Werner J, Niesen B, Ballif C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? – An overview Adv Mater Interfaces, 2018, 5(1), 1700731

    [56]

    Eperon G E, Hörantner M T, Snaith H J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat Rev Chem, 2017, 1(12), 0095

    [57]

    Araújo G L, Martí A. Absolute limiting efficiencies for photovoltaic energy conversion. Sol Energy Mater Sol Cells, 1994, 33(2), 213

    [58]

    Hörantner M T, Leijtens T, Ziffer M E, et al. The potential of multijunction perovskite solar cells. ACS Energy Lett, 2017, 2(10), 2506

    [59]

    Unger E L, Kegelmann L, Suchan K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 2017, 5(23), 11401

    [60]

    Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13(4), 1764

    [61]

    Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 2018, 30(21), 1800855

    [62]

    Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3(1), 191

    [63]

    Palmstrom A F, Eperon G E, Leijtens T, et al. Enabling flexible all-perovskite tandem solar cells. Joule, 2019, 3(9), 2193

    [64]

    Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354(6309), 206

    [65]

    Park Y H, Jeong I, Bae S, et al. Inorganic rubidium cation as an enhancer for photovoltaic performance and moisture stability of HC(NH2)2PbI3 perovskite solar cells. Adv Funct Mater, 2017, 27(16), 1605988

    [66]

    Yadav P, Dar M I, Arora N, et al. The role of rubidium in multiple-cation-based high-efficiency perovskite solar cells. Adv Mater, 2017, 29(40), 1701077

    [67]

    Zhang M, Yun J S, Ma Q, et al. High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett, 2017, 2(2), 438

    [68]

    Liao W, Zhao D, Yu Y, et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J Am Chem Soc, 2016, 138(38), 12360

    [69]

    Im J, Stoumpos C C, Jin H, et al. Antagonism between spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1– xPb xI3. J Phys Chem Lett, 2015, 6(17), 3503

    [70]

    Prasanna R, Gold-Parker A, Leijtens T, et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J Am Chem Soc, 2017, 139(32), 11117

    [71]

    Yang Z, Chueh C C, Liang P W, et al. Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328

    [72]

    Forgács D, Gil-Escrig L, Pérez-Del-Rey D, et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv Energy Mater, 2017, 7(8), 1602121

    [73]

    Rajagopal A, Yang Z, Jo S B, et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater, 2017, 29(34), 1702140

    [74]

    Jiang F, Liu T, Luo B, et al. A two-terminal perovskite/perovskite tandem solar cell. J Mater Chem A, 2016, 4(4), 1208

    [75]

    Leijtens T, Prasanna R, Bush K A, et al. Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain Energy Fuels, 2018, 2(11), 2450

    [76]

    Zhao D, Chen C, Wang C, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat Energy, 2018, 3(12), 1093

    [77]

    Tong J, Song Z, Kim D H, et al. Carrier lifetimes of > 1 μs in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364(6439), 475

    [78]

    Prasanna R, Leijtens T, Dunfield S P, et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat Energy, 2019, 4(11), 939

    [79]

    Sheng R, Hörantner M T, Wang Z, et al. Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers. J Phys Chem C, 2017, 121(49), 27256

    [80]

    Ávila J, Momblona C, Boix P, et al. High voltage vacuum-deposited CH3NH3Pb3–CH3NH3PbI3 tandem solar cells. Energy Environ Sci, 2018, 11(11), 3292

    [81]

    Yan Y. All-perovskite tandem solar cell showing unprecedentedly high open-circuit voltage. Joule, 2018, 2(11), 2206

    [82]

    Zhao D, Wang C, Song Z, et al. Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett, 2018, 3(2), 305

    [83]

    Abdollahi B, Hossain I M, Jakoby M, et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv Energy Mater, 2020, 10(5), 1902583

    [84]

    Braly I L, Stoddard R J, Rajagopal A, et al. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett, 2017, 2(8), 1841

    [85]

    Stoddard R J, Rajagopal A, Palmer R L, et al. Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying. ACS Energy Lett, 2018, 3(6), 1261

    [86]

    Saparov B, Mitzi D B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev, 2016, 116(7), 4558

    [87]

    Zhao D, Yu Y, Wang C, et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat Energy, 2017, 2(4), 17018

    [88]

    Hao F, Stoumpos C C, Guo P, et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc, 2015, 137(35), 11445

    [89]

    Zhou Y, Yang M, Wu W, et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J Mater Chem A, 2015, 3(15), 8178

    [90]

    Yang Z, Yu Z, Wei H, et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat Commun, 2019, 10(1), 4498

    Search

    Advanced Search >>

    GET CITATION

    Y R Wang, M Zhang, K Xiao, R X Lin, X Luo, Q L Han, H R Tan, Recent progress in developing efficient monolithic all-perovskite tandem solar cells[J]. J. Semicond., 2020, 41(5): 051201. doi: 10.1088/1674-4926/41/5/051201.

    Export: BibTex EndNote

    Article Metrics

    Article views: 3773 Times PDF downloads: 323 Times Cited by: 0 Times

    History

    Manuscript received: 01 March 2020 Manuscript revised: 17 March 2020 Online: Accepted Manuscript: 17 April 2020 Uncorrected proof: 07 May 2020 Published: 13 May 2020

    Email This Article

    User name:
    Email:*请输入正确邮箱
    Code:*验证码错误