ARTICLES

Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: A first-principles study

Xiaoshu Guo1 and Sandong Guo2,

+ Author Affiliations

 Corresponding author: Sandong Guo, guosd@cumt.edu.cn

PDF

Turn off MathJax

Abstract: A two-dimensional (2D) MA2Z4 family with $\alpha$ and $\beta$ phases has been attracting tremendous interest, the MoSi2N4 and WSi2N4 of which have been successfully fabricated (Science 369, 670 (2020)). Janus monolayers have been achieved in many 2D families, so it is interesting to construct a Janus monolayer from the MA2Z4 family. In this work, Janus MSiGeN4 (M = Zr and Hf) monolayers are predicted from $\beta$-MA2Z4, which exhibit dynamic, mechanical and thermal stabilities. It is found that they are indirect band-gap semiconductors by using generalized gradient approximation (GGA) plus spin-orbit coupling (SOC). With biaxial strain $a/a_0$ from 0.90 to 1.10, the energy band gap shows a nonmonotonic behavior due to a change of conduction band minimum (CBM). A semiconductor to metal transition can be induced by both compressive and tensile strains, and the phase transformation point is about 0.96 for compressive strain and 1.10 for tensile strain. The tensile strain can change the positions of CBM and valence band maximum (VBM), and can also induce the weak Rashba-type spin splitting near CBM. For MSiGeN4 (M = Zr and Hf) monolayers, both an in-plane and out-of-plane piezoelectric response can be produced, when a uniaxial strain in the basal plane is applied, which reveals the potential as piezoelectric 2D materials. The high absorption coefficients in the visible light region suggest that MSiGeN4 (M = Zr and Hf) monolayers have potential photocatalytic applications. Our works provide an idea to achieve a Janus structure from the MA2Z4 family, and can hopefully inspire further research exploring Janus MA2Z4 monolayers.

Key words: Janus monolayerspiezoelectronicsMA2Z4 family



[1]
Zhang L, Yang Z, Gong T, et al. Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications. J Mater Chem A, 2020, 8, 8813 doi: 10.1039/D0TA01999B
[2]
Lu A Y, Zhu H Y, Xiao J, et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol, 2017, 12, 744 doi: 10.1038/nnano.2017.100
[3]
Zhang J, Jia S, Kholmanov I, et al. Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11, 8192 doi: 10.1021/acsnano.7b03186
[4]
Singh S, Romero A H. Giant tunable Rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures. Phys Rev B, 2017, 95, 165444 doi: 10.1103/PhysRevB.95.165444
[5]
Guo S D, Guo X S, Han R Y, et al. Predicted Janus SnSSe monolayer: A comprehensive first-principles study. Phys Chem Chem Phys, 2019, 21, 24620 doi: 10.1039/C9CP04590B
[6]
Guo Y D, Zhang H B, Zeng H L, et al. A progressive metal–semiconductor transition in two-faced Janus monolayer transition-metal chalcogenides. Phys Chem Chem Phys, 2018, 20, 21113 doi: 10.1039/C8CP02929F
[7]
Peng R, Ma Y D, Huang B B, et al. Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J Mater Chem A, 2019, 7, 603 doi: 10.1039/C8TA09177C
[8]
Mogulkoc A, Mogulkoc Y, Jahangirov S, et al. Characterization and stability of Janus TiXY (X/Y = S, Se, and Te) monolayers. J Phys Chem C, 2019, 123, 29922 doi: 10.1021/acs.jpcc.9b06925
[9]
Zhang C M, Nie Y H, Sanvito S, et al. First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett, 2019, 19, 1366 doi: 10.1021/acs.nanolett.8b05050
[10]
Cheng Y C, Zhu Z Y, Tahir M, et al. Spin-orbit–induced spin splittings in polar transition metal dichalcogenide monolayers. EPL, 2013, 102, 57001 doi: 10.1209/0295-5075/102/57001
[11]
Sun M L, Ren Q Q, Wang S K, et al. Electronic properties of Janus silicene: New direct band gap semiconductors. J Phys D, 2016, 49, 445305 doi: 10.1088/0022-3727/49/44/445305
[12]
Guo S D, Mu W Q, Zhu Y T, et al. Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J Mater Chem C, 2021, 9, 2464 doi: 10.1039/D0TC05649A
[13]
Dong L, Lou J, Shenoy V B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 2017, 11, 8242 doi: 10.1021/acsnano.7b03313
[14]
Yagmurcukardes M, Sevik C, Peeters F M. Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study. Phys Rev B, 2019, 100, 045415 doi: 10.1103/PhysRevB.100.045415
[15]
Zhou W H, Zhang S L, Guo S Y, et al. Designing sub-10-nm metal-oxide-semiconductor field-effect transistors via ballistic transport and disparate effective mass: The case of two-dimensional BiN. Phys Rev Appl, 2020, 13, 044066 doi: 10.1103/PhysRevApplied.13.044066
[16]
Zhou W H, Zhang S L, Wang Y Y, et al. Anisotropic in-plane ballistic transport in monolayer black arsenic- phosphorus FETs. Adv Electron Mater, 2020, 6, 1901281 doi: 10.1002/aelm.201901281
[17]
Hong Y L, Liu Z, Wang L, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369, 670 doi: 10.1126/science.abb7023
[18]
Wang L, Shi Y P, Liu M F, et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat Commun, 2021, 12, 2361 doi: 10.1038/s41467-021-22324-8
[19]
Li S, Wu W K, Feng X L, et al. Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4. Phys Rev B, 2020, 102, 235435 doi: 10.1103/PhysRevB.102.235435
[20]
Yang C, Song Z G, Sun X T, et al. Valley pseudospin in monolayer MoSi2N4 and MoSi2As4. Phys Rev B, 2021, 103, 035308 doi: 10.1103/PhysRevB.103.035308
[21]
Guo S D, Zhu Y T, Mu W Q, et al. Intrinsic piezoelectricity in monolayer MSi2N4 (M = Mo, W, Cr, Ti, Zr and Hf). EPL, 2020, 132, 57002 doi: 10.1209/0295-5075/132/57002
[22]
Guo S D, Zhu Y T, Mu W Q, et al. Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4 (M = Mo and W). Comput Mater Sci, 2021, 188, 110223 doi: 10.1016/j.commatsci.2020.110223
[23]
Guo S D, Mu W Q, Zhu Y T, et al. Coexistence of intrinsic piezoelectricity and ferromagnetism induced by small biaxial strain in septuple-atomic-layer VSi2P4. Phys Chem Chem Phys, 2020, 22, 28359 doi: 10.1039/D0CP05273F
[24]
Cao L M, Zhou G H, Wang Q Q, et al. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl Phys Lett, 2021, 118, 013106 doi: 10.1063/5.0033241
[25]
Yu J H, Zhou J, Wan X G, et al. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New J Phys, 2021, 23, 033005 doi: 10.1088/1367-2630/abe8f7
[26]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, B864 doi: 10.1103/PhysRev.136.B864
[27]
Kresse G. Ab initio molecular dynamics for liquid metals. J Non Cryst Solids, 1995, 192/193, 222 doi: 10.1016/0022-3093(95)00355-X
[28]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15 doi: 10.1016/0927-0256(96)00008-0
[29]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59, 1758 doi: 10.1103/PhysRevB.59.1758
[30]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[31]
Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B, 2008, 78, 134106 doi: 10.1103/PhysRevB.78.134106
[32]
Herath U, Tavadze P, He X, et al. PyProcar: A Python library for electronic structure pre/post-processing. Comput Phys Commun, 2020, 251, 107080 doi: 10.1016/j.cpc.2019.107080
[33]
Wu X F, Vanderbilt D, Hamann D R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys Rev B, 2005, 72, 035105 doi: 10.1103/PhysRevB.72.035105
[34]
Guo G Y, Chu K C, Wang D S, et al. Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys Rev B, 2004, 69, 205416 doi: 10.1103/PhysRevB.69.205416
[35]
Andrew R C, Mapasha R E, Ukpong A M, et al. Erratum: Mechanical properties of graphene and boronitrene [Phys. Rev. B 85, 125428 (2012)]. Phys Rev B, 2004, 69, 205416 doi: 10.1103/PhysRevB.100.209901
[36]
Blonsky M N, Zhuang H L, Singh A K, et al. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano, 2015, 9, 9885 doi: 10.1021/acsnano.5b03394
[37]
Fei R X, Li W B, Li J, et al. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl Phys Lett, 2015, 107, 173104 doi: 10.1063/1.4934750
[38]
Duerloo K A N, Ong M T, Reed E J. Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett, 2012, 3, 2871 doi: 10.1021/jz3012436
[39]
Fan Z Q, Jiang X W, Wei Z M, et al. Tunable electronic structures of GeSe nanosheets and nanoribbons. J Phys Chem C, 2017, 121, 14373 doi: 10.1021/acs.jpcc.7b04607
[40]
Xue X X, Feng Y X, Liao L, et al. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J Phys: Condens Matter, 2018, 30, 125001 doi: 10.1088/1361-648X/aaaea1
[41]
Guo S D, Dong J. Biaxial strain tuned electronic structures and power factor in Janus transition metal dichalchogenide monolayers. Semicond Sci Technol, 2018, 33, 085003 doi: 10.1088/1361-6641/aacb11
[42]
Gajdoš M, Hummer K, Kresse G, et al. Linear optical properties in the projector-augmented wave methodology. Phys Rev B, 2006, 73, 045112 doi: 10.1103/PhysRevB.73.045112
[43]
Huang X, Paudel T R, Dong S, et al. Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Phys Rev B, 2015, 92, 125201 doi: 10.1103/PhysRevB.92.125201
Fig. 1.  (Color online) The crystal structures of $ {\rm{MSiGe}}{{\rm{N}}_{\rm{4}}} $ (M = Zr and Hf) monolayers: (a) top view and (b) side view.

Fig. 2.  (Color online)The phonon dispersion curves of $ {\rm{MSiGe}}{{\rm{N}}_{\rm{4}}} $ (M = Zr and Hf) monolayers with GGA.

Fig. 3.  (Color online) (a) The fluctuations of temperature and total energy with the time obtained from MD simulation of $ {\rm{ZrSiGe}}{{\rm{N}}_{\rm{4}}} $ monolayer at 600 K. (b, c) The snapshot of $ {\rm{ZrSiGe}}{{\rm{N}}_{\rm{4}}} $ monolayer at the end of MD simulation at 600 K ((b): Top views, (c): Side views).

Fig. 4.  (Color online) Band structures of $ {\rm{MSiGe}}{{\rm{N}}_{\rm{4}}} $ (M = Zr and Hf) monolayers without/with SOC (GGA/GGA+SOC).

Fig. 5.  (Color online) Band structures of $ {\rm{HfSiGe}}{{\rm{N}}_{\rm{4}}} $ monolayer with SOC ($ a/a_0 $ from 0.90 to 1.10).

Fig. 6.  (Color online) The band gaps of $ {\rm{MSiGe}}{{\rm{N}}_{\rm{4}}} $ (M = Zr and Hf) monolayers vs $ a/a_0 $ with SOC.

Fig. 7.  The larger version around CBM for $ {\rm{MSiGe}}{{\rm{N}}_{\rm{4}}} $ (M = Zr and Hf) monolayers with SOC at 1.04 strain.

Fig. 8.  (Color online) In-plane spin textures calculated at the iso-energy surface of 1.5 eV above the Fermi level for $ {\rm{HfSiGe}}{{\rm{N}}_{\rm{4}}} $ monolayer with red/blue colours being spin-up/spin-down states.

Fig. 9.  (Color online) The calculated optical dielectric function of $ {\rm{MSiGe}}{{\rm{N}}_{\rm{4}}} $ (M = Zr and Hf) monolayers with real parts (Left) and imaginary parts (Right) along xx/yy and $ zz $ directions.

Fig. 10.  (Color online) The optical absorption coefficients of $ {\rm{MSiGe}}{{\rm{N}}_{\rm{4}}} $ (M = Zr and Hf) monolayers along xx/yy and zz directions from 0 to 4 eV, and the visible light region (1.6–3.1 eV) is shown.

Table 1.   For the ${\rm{ZrSiGe}}{{\rm{N}}_{\rm{4}}}$(${\rm{HfSiGe}}{{\rm{N}}_{\rm{4}}}$) monolayer, the lattice constants $a_0$; the physical quantities associated with elasticity (the elastic constants $C_{ij}$, shear modulus $G_{\rm{2D}}$, Young's modulus $C_{\rm{2D}}$ and Poisson's ratio $\nu$); the gaps without/with SOC.

ParameterValue
$a_0$ (Å)3.110 (3.097)
$C_{11}$403.92 (465.93)
$C_{12}$ (N/m)110.58 (135.19)
$G_{2\rm{D}}$146.67 (165.37)
$C_{2\rm{D}}$ (N/m)373.65 (426.71)
$\nu$0.274 (0.290)
Gap (eV)1.134 (1.336)
Gap-SOC (eV)1.115 (1.282)
DownLoad: CSV

Table 2.   Piezoelectric Coefficients $e_{11}/e_{31}$ ($10^{-10}$ C/m) and $d_{11}/d_{31}$ (pm/V) of $\beta$-${\rm{MSiGe}}{{\rm{N}}_{\rm{4}}}$ (M = Zr and Hf) and $\alpha$-${\rm{MSiGe}}{{\rm{N}}_{\rm{4}}}$ (M = Mo and W) monolayers.

${\rm{MSiGe}}{{\rm{N}}_{\rm{4}}}$$e_{11}$$d_{11}$$e_{31}$$d_{31}$
Zr2.9501.0060.0940.018
Hf2.2510.6800.0680.011
Mo5.1161.494−0.087−0.014
W3.7901.0500.0730.011
DownLoad: CSV
[1]
Zhang L, Yang Z, Gong T, et al. Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications. J Mater Chem A, 2020, 8, 8813 doi: 10.1039/D0TA01999B
[2]
Lu A Y, Zhu H Y, Xiao J, et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol, 2017, 12, 744 doi: 10.1038/nnano.2017.100
[3]
Zhang J, Jia S, Kholmanov I, et al. Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11, 8192 doi: 10.1021/acsnano.7b03186
[4]
Singh S, Romero A H. Giant tunable Rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures. Phys Rev B, 2017, 95, 165444 doi: 10.1103/PhysRevB.95.165444
[5]
Guo S D, Guo X S, Han R Y, et al. Predicted Janus SnSSe monolayer: A comprehensive first-principles study. Phys Chem Chem Phys, 2019, 21, 24620 doi: 10.1039/C9CP04590B
[6]
Guo Y D, Zhang H B, Zeng H L, et al. A progressive metal–semiconductor transition in two-faced Janus monolayer transition-metal chalcogenides. Phys Chem Chem Phys, 2018, 20, 21113 doi: 10.1039/C8CP02929F
[7]
Peng R, Ma Y D, Huang B B, et al. Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J Mater Chem A, 2019, 7, 603 doi: 10.1039/C8TA09177C
[8]
Mogulkoc A, Mogulkoc Y, Jahangirov S, et al. Characterization and stability of Janus TiXY (X/Y = S, Se, and Te) monolayers. J Phys Chem C, 2019, 123, 29922 doi: 10.1021/acs.jpcc.9b06925
[9]
Zhang C M, Nie Y H, Sanvito S, et al. First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett, 2019, 19, 1366 doi: 10.1021/acs.nanolett.8b05050
[10]
Cheng Y C, Zhu Z Y, Tahir M, et al. Spin-orbit–induced spin splittings in polar transition metal dichalcogenide monolayers. EPL, 2013, 102, 57001 doi: 10.1209/0295-5075/102/57001
[11]
Sun M L, Ren Q Q, Wang S K, et al. Electronic properties of Janus silicene: New direct band gap semiconductors. J Phys D, 2016, 49, 445305 doi: 10.1088/0022-3727/49/44/445305
[12]
Guo S D, Mu W Q, Zhu Y T, et al. Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J Mater Chem C, 2021, 9, 2464 doi: 10.1039/D0TC05649A
[13]
Dong L, Lou J, Shenoy V B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 2017, 11, 8242 doi: 10.1021/acsnano.7b03313
[14]
Yagmurcukardes M, Sevik C, Peeters F M. Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study. Phys Rev B, 2019, 100, 045415 doi: 10.1103/PhysRevB.100.045415
[15]
Zhou W H, Zhang S L, Guo S Y, et al. Designing sub-10-nm metal-oxide-semiconductor field-effect transistors via ballistic transport and disparate effective mass: The case of two-dimensional BiN. Phys Rev Appl, 2020, 13, 044066 doi: 10.1103/PhysRevApplied.13.044066
[16]
Zhou W H, Zhang S L, Wang Y Y, et al. Anisotropic in-plane ballistic transport in monolayer black arsenic- phosphorus FETs. Adv Electron Mater, 2020, 6, 1901281 doi: 10.1002/aelm.201901281
[17]
Hong Y L, Liu Z, Wang L, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369, 670 doi: 10.1126/science.abb7023
[18]
Wang L, Shi Y P, Liu M F, et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat Commun, 2021, 12, 2361 doi: 10.1038/s41467-021-22324-8
[19]
Li S, Wu W K, Feng X L, et al. Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4. Phys Rev B, 2020, 102, 235435 doi: 10.1103/PhysRevB.102.235435
[20]
Yang C, Song Z G, Sun X T, et al. Valley pseudospin in monolayer MoSi2N4 and MoSi2As4. Phys Rev B, 2021, 103, 035308 doi: 10.1103/PhysRevB.103.035308
[21]
Guo S D, Zhu Y T, Mu W Q, et al. Intrinsic piezoelectricity in monolayer MSi2N4 (M = Mo, W, Cr, Ti, Zr and Hf). EPL, 2020, 132, 57002 doi: 10.1209/0295-5075/132/57002
[22]
Guo S D, Zhu Y T, Mu W Q, et al. Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4 (M = Mo and W). Comput Mater Sci, 2021, 188, 110223 doi: 10.1016/j.commatsci.2020.110223
[23]
Guo S D, Mu W Q, Zhu Y T, et al. Coexistence of intrinsic piezoelectricity and ferromagnetism induced by small biaxial strain in septuple-atomic-layer VSi2P4. Phys Chem Chem Phys, 2020, 22, 28359 doi: 10.1039/D0CP05273F
[24]
Cao L M, Zhou G H, Wang Q Q, et al. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl Phys Lett, 2021, 118, 013106 doi: 10.1063/5.0033241
[25]
Yu J H, Zhou J, Wan X G, et al. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New J Phys, 2021, 23, 033005 doi: 10.1088/1367-2630/abe8f7
[26]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, B864 doi: 10.1103/PhysRev.136.B864
[27]
Kresse G. Ab initio molecular dynamics for liquid metals. J Non Cryst Solids, 1995, 192/193, 222 doi: 10.1016/0022-3093(95)00355-X
[28]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15 doi: 10.1016/0927-0256(96)00008-0
[29]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59, 1758 doi: 10.1103/PhysRevB.59.1758
[30]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[31]
Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B, 2008, 78, 134106 doi: 10.1103/PhysRevB.78.134106
[32]
Herath U, Tavadze P, He X, et al. PyProcar: A Python library for electronic structure pre/post-processing. Comput Phys Commun, 2020, 251, 107080 doi: 10.1016/j.cpc.2019.107080
[33]
Wu X F, Vanderbilt D, Hamann D R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys Rev B, 2005, 72, 035105 doi: 10.1103/PhysRevB.72.035105
[34]
Guo G Y, Chu K C, Wang D S, et al. Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys Rev B, 2004, 69, 205416 doi: 10.1103/PhysRevB.69.205416
[35]
Andrew R C, Mapasha R E, Ukpong A M, et al. Erratum: Mechanical properties of graphene and boronitrene [Phys. Rev. B 85, 125428 (2012)]. Phys Rev B, 2004, 69, 205416 doi: 10.1103/PhysRevB.100.209901
[36]
Blonsky M N, Zhuang H L, Singh A K, et al. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano, 2015, 9, 9885 doi: 10.1021/acsnano.5b03394
[37]
Fei R X, Li W B, Li J, et al. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl Phys Lett, 2015, 107, 173104 doi: 10.1063/1.4934750
[38]
Duerloo K A N, Ong M T, Reed E J. Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett, 2012, 3, 2871 doi: 10.1021/jz3012436
[39]
Fan Z Q, Jiang X W, Wei Z M, et al. Tunable electronic structures of GeSe nanosheets and nanoribbons. J Phys Chem C, 2017, 121, 14373 doi: 10.1021/acs.jpcc.7b04607
[40]
Xue X X, Feng Y X, Liao L, et al. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J Phys: Condens Matter, 2018, 30, 125001 doi: 10.1088/1361-648X/aaaea1
[41]
Guo S D, Dong J. Biaxial strain tuned electronic structures and power factor in Janus transition metal dichalchogenide monolayers. Semicond Sci Technol, 2018, 33, 085003 doi: 10.1088/1361-6641/aacb11
[42]
Gajdoš M, Hummer K, Kresse G, et al. Linear optical properties in the projector-augmented wave methodology. Phys Rev B, 2006, 73, 045112 doi: 10.1103/PhysRevB.73.045112
[43]
Huang X, Paudel T R, Dong S, et al. Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Phys Rev B, 2015, 92, 125201 doi: 10.1103/PhysRevB.92.125201
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1980 Times PDF downloads: 102 Times Cited by: 0 Times

    History

    Received: 10 June 2021 Revised: 21 July 2021 Online: Accepted Manuscript: 21 October 2021Uncorrected proof: 04 November 2021Published: 03 December 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaoshu Guo, Sandong Guo. Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: A first-principles study[J]. Journal of Semiconductors, 2021, 42(12): 122002. doi: 10.1088/1674-4926/42/12/122002 X S Guo, S D Guo, Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: A first-principles study[J]. J. Semicond., 2021, 42(12): 122002. doi: 10.1088/1674-4926/42/12/122002.Export: BibTex EndNote
      Citation:
      Xiaoshu Guo, Sandong Guo. Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: A first-principles study[J]. Journal of Semiconductors, 2021, 42(12): 122002. doi: 10.1088/1674-4926/42/12/122002

      X S Guo, S D Guo, Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: A first-principles study[J]. J. Semicond., 2021, 42(12): 122002. doi: 10.1088/1674-4926/42/12/122002.
      Export: BibTex EndNote

      Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: A first-principles study

      doi: 10.1088/1674-4926/42/12/122002
      More Information
      • Author Bio:

        Xiaoshu Guo received his MS from Yanshan University in 2011. She is currently a junior engineer. Her research focuses on thermoelectricity, piezoelectricity and optical properties of 2D materials

        Sandong Guo received his PhD from Institute of Physics, Chinese Academy of Sciences in 2012. He is currently an Associate Professor. His research focuses on physical and chemical properties of 2D materials, such as thermoelectricity, piezoelectricity, topological properties and so on

      • Corresponding author: guosd@cumt.edu.cn
      • Received Date: 2021-06-10
      • Revised Date: 2021-07-21
      • Published Date: 2021-12-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return