REVIEWS

Black phosphorus junctions and their electrical and optoelectronic applications

Ningqin Deng3, He Tian1, 2, , Jian Zhang3, Jinming Jian1, 2, Fan Wu1, 2, Yang Shen1, 2, Yi Yang1, 2 and Tian-Ling Ren1, 2,

+ Author Affiliations

 Corresponding author: He Tian, tianhe88@tsinghua.edu.cn; Tian-Ling Ren, RenTL@tsinghua.edu.cn

PDF

Turn off MathJax

Abstract: Black phosphorus (BP), an emerging two-dimensional material, is considered a promising candidate for next-generation electronic and optoelectronic devices due to in-plane anisotropy, high mobility, and direct bandgap. However, BP devices face challenges due to their limited stability, photo-response speed, and detection range. To enhance BP with powerful electrical and optical performance, the BP heterostructures can be created. In this review, the state-of-the-art heterostructures and their electrical and optoelectronic applications based on black phosphorus are discussed. Five parts introduce the performance of BP-based devices, including black phosphorus sandwich structure by hBN with better stability and higher mobility, black phosphorus homojunction by dual-gate structure for optical applications, black phosphorus heterojunction with other 2D materials for faster photo-detection, black phosphorus heterojunction integration with 3D bulk material, and BP via As-doping tunable bandgap enabling photo-detection up to 8.2 μm. Finally, we discuss the challenges and prospects for BP electrical and optical devices and applications.

Key words: black phosphorusphotodetectorheterostructurehomojunction2D material



[1]
Van Noorden R. Moving towards a graphene world. Nature, 2006, 442(7100), 228 doi: 10.1038/442228a
[2]
Sutter P. Epitaxial graphene: How silicon leaves the scene. Nat Mater, 2009, 8(3), 171 doi: 10.1038/nmat2392
[3]
Waldrop M M. The chips are down for moore's law. Nat News, 2016, 530(7589), 144 doi: 10.1038/530144a
[4]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3), 183 doi: 10.1038/nmat1849
[5]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9/10), 351 doi: 10.1016/j.ssc.2008.02.024
[6]
Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8(3), 902 doi: 10.1021/nl0731872
[7]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8), 574 doi: 10.1038/nnano.2010.132
[8]
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385 doi: 10.1126/science.1157996
[9]
Schwierz F. Graphene transistors. Nat Nanotechnol, 2010, 5(7), 487 doi: 10.1038/nnano.2010.89
[10]
Sordan R, Traversi F, Russo V. Logic gates with a single graphene transistor. Appl Phys Lett, 2009, 94(7), 073305 doi: 10.1063/1.3079663
[11]
Deng T, Zhang Z, Liu Y, et al. Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett, 2019, 19(3), 1494 doi: 10.1021/acs.nanolett.8b04099
[12]
Fang Y, Luo B, Jia Y, et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater, 2012, 24(47), 6348 doi: 10.1002/adma.201202774
[13]
Wang H, Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett, 2011, 11(7), 2644 doi: 10.1021/nl200658a
[14]
Miao X, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping. Nano Lett, 2012, 12(6), 2745 doi: 10.1021/nl204414u
[15]
Tian H, Ren T L, Xie D, et al. Graphene-on-paper sound source devices. ACS Nano, 2011, 5(6), 4878 doi: 10.1021/nn2009535
[16]
Tian H, Xie D, Yang Y, et al. Single-layer graphene sound-emitting devices: Experiments and modeling. Nanoscale, 2012, 4(7), 2272 doi: 10.1039/c2nr11572g
[17]
Zhang G, Zhang H. Thermal conduction and rectification in few-layer graphene y junctions. Nanoscale, 2011, 3(11), 4604 doi: 10.1039/c1nr10945f
[18]
Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett, 2009, 1(1), 277 doi: 10.1021/jz9002108
[19]
Balendhran S, Walia S, Nili H, et al. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small, 2015, 11(6), 640 doi: 10.1002/smll.201402041
[20]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699 doi: 10.1038/nnano.2012.193
[21]
Wu W, De D, Chang S C, et al. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl Phys Lett, 2013, 102(14), 142106 doi: 10.1063/1.4801861
[22]
Carvalho A, Wang M, Zhu X, et al. Phosphorene: From theory to applications. Nat Rev Mater, 2016, 1(11), 1 doi: 10.1038/natrevmats.2016.61
[23]
Bridgman P W. Two new modifications of phosphorus. J Am Chem Soc, 1914, 36(7), 1344 doi: 10.1021/ja02184a002
[24]
Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. Acs Nano, 2014, 8(4), 4033 doi: 10.1021/nn501226z
[25]
Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus. 2D Mater, 2014, 1(2), 025001 doi: 10.1088/2053-1583/1/2/025001
[26]
Koenig S P, Doganov R A, Schmidt H, et al. Electric field effect in ultrathin black phosphorus. Appl Phys Lett, 2014, 104(10), 103106 doi: 10.1063/1.4868132
[27]
Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89(23), 235319 doi: 10.1103/PhysRevB.89.235319
[28]
Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett, 2014, 14(11), 6414 doi: 10.1021/nl502928y
[29]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35
[30]
Chen X, Wu Y, Wu Z, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun, 2015, 6(1), 7315 doi: 10.1038/ncomms8315
[31]
Li L, Ye G J, Tran V, et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat Nanotechnol, 2015, 10(7), 608 doi: 10.1038/nnano.2015.91
[32]
Gillgren N, Wickramaratne D, Shi Y, et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater, 2014, 2(1), 011001 doi: 10.1088/2053-1583/2/1/011001
[33]
Fei R, Faghaninia A, Soklaski R, et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett, 2014, 14(11), 6393 doi: 10.1021/nl502865s
[34]
Lee S, Yang F, Suh J, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat Commun, 2015, 6(1), 8573 doi: 10.1038/ncomms9573
[35]
Luo Z, Maassen J, Deng Y, et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat Commun, 2015, 6, 8572 doi: 10.1038/ncomms9572
[36]
Saito Y, Iizuka T, Koretsune T, et al. Gate-tuned thermoelectric power in black phosphorus. Nano Lett, 2016, 16(8), 4819 doi: 10.1021/acs.nanolett.6b00999
[37]
Jiang J W, Park H S. Negative poisson’s ratio in single-layer black phosphorus. Nat Commun, 2014, 5, 4727 doi: 10.1038/ncomms5727
[38]
Constantinescu G C, Hine N D M. Multipurpose black-phosphorus/hBN heterostructures. Nano Lett, 2016, 16(4), 2586 doi: 10.1021/acs.nanolett.6b00154
[39]
Cai Y, Zhang G, Zhang Y W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J Phys Chem C, 2015, 119(24), 13929 doi: 10.1021/acs.jpcc.5b02634
[40]
Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5(10), 722 doi: 10.1038/nnano.2010.172
[41]
Chan M Y, Komatsu K, Li S L, et al. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale, 2013, 5(20), 9572 doi: 10.1039/c3nr03220e
[42]
Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9), 7931 doi: 10.1021/nn402954e
[43]
Xue J, Sanchez-Yamagishi J, Bulmash D, et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater, 2011, 10(4), 282 doi: 10.1038/nmat2968
[44]
Lee C, Rathi S, Khan M A, et al. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates. Nanotechnology, 2018, 29(33), 335202 doi: 10.1088/1361-6528/aac6b0
[45]
Doganov R A, Koenig S P, Yeo Y, et al. Transport properties of ultrathin black phosphorus on hexagonal boron nitride. Appl Phys Lett, 2015, 106(8), 083505 doi: 10.1063/1.4913419
[46]
Cao Y, Mishchenko A, Yu G L, et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett, 2015, 15(8), 4914 doi: 10.1021/acs.nanolett.5b00648
[47]
Long G, Maryenko D, Shen J, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett, 2016, 16(12), 7768 doi: 10.1021/acs.nanolett.6b03951
[48]
Chen X, Chen C, Levi A, et al. Large-velocity saturation in thin-film black phosphorus transistors. ACS Nano, 2018, 12(5), 5003 doi: 10.1021/acsnano.8b02295
[49]
Hu T, Hong J. Anisotropic effective mass, optical property, and enhanced band gap in hBN /phosphorene/ hBN heterostructures. ACS Appl Mater Interfaces, 2015, 7(42), 23489 doi: 10.1021/acsami.5b05694
[50]
Li L, Yang F, Ye G J, et al. Quantum hall effect in black phosphorus two-dimensional electron system. Nat Nanotechnol, 2016, 11(7), 593 doi: 10.1038/nnano.2016.42
[51]
Das S, Demarteau M, Roelofs A. Ambipolar phosphorene field effect transistor. ACS Nano, 2014, 8(11), 11730 doi: 10.1021/nn505868h
[52]
Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5(1), 4458 doi: 10.1038/ncomms5458
[53]
Du Y, Liu H, Deng Y, et al. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano, 2014, 8(10), 10035 doi: 10.1021/nn502553m
[54]
Wang H, Wang X, Xia F, et al. Black phosphorus radio-frequency transistors. Nano Lett, 2014, 14(11), 6424 doi: 10.1021/nl5029717
[55]
Zhu W, Yogeesh M N, Yang S, et al. Flexible black phosphorus ambipolar transistors, circuits and am demodulator. Nano Lett, 2015, 15(3), 1883 doi: 10.1021/nl5047329
[56]
Kamalakar M V, Madhushankar B N, Dankert A, et al. Low schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Small, 2015, 11(18), 2209 doi: 10.1002/smll.201402900
[57]
Miao J, Zhang S, Cai L, et al. Ultrashort channel length black phosphorus field-effect transistors. ACS Nano, 2015, 9(9), 9236 doi: 10.1021/acsnano.5b04036
[58]
Prakash A, Cai Y, Zhang G, et al. Black phosphorus n-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small, 2017, 13(5), 1602909 doi: 10.1002/smll.201602909
[59]
Han C, Hu Z, Gomes L C, et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett, 2017, 17(7), 4122 doi: 10.1021/acs.nanolett.7b00903
[60]
Liu Y, Cai Y, Zhang G, et al. Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv Funct Mater, 2017, 27(7), 1604638 doi: 10.1002/adfm.201604638
[61]
Avsar A, Vera-Marun I J, Tan J Y, et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano, 2015, 9(4), 4138 doi: 10.1021/acsnano.5b00289
[62]
Xu J, Jia J, Lai S, et al. Tunneling field effect transistor integrated with black phosphorus-MoS2 junction and ion gel dielectric. Appl Phys Lett, 2017, 110(3), 033103 doi: 10.1063/1.4974303
[63]
Liu X, Qu D, Li H M, et al. Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p–n junction. ACS Nano, 2017, 11(9), 9143 doi: 10.1021/acsnano.7b03994
[64]
Kang J, Jariwala D, Ryder C R, et al. Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors. Nano Lett, 2016, 16(4), 2580 doi: 10.1021/acs.nanolett.6b00144
[65]
Buscema M, Groenendijk D J, Steele G A, et al. Photovoltaic effect in few-layer black phosphorus pn junctions defined by local electrostatic gating. Nat Commun, 2014, 5(1), 4651 doi: 10.1038/ncomms5651
[66]
Tian H, Li L, Mohammad M A, et al. High-quality reconfigurable black phosphorus p–n junctions. IEEE Trans Electron Devices, 2018, 65(11), 5118 doi: 10.1109/TED.2018.2869268
[67]
Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014, 14(6), 3347 doi: 10.1021/nl5008085
[68]
Wu J, Koon G K, Xiang D, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano, 2015, 9(8), 8070 doi: 10.1021/acsnano.5b01922
[69]
Huang M, Wang M, Chen C, et al. Broadband black-phosphorus photodetectors with high responsivity. Adv Mater, 2016, 28(18), 3481 doi: 10.1002/adma.201506352
[70]
Guo Q, Pospischil A, Bhuiyan M, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett, 2016, 16(7), 4648 doi: 10.1021/acs.nanolett.6b01977
[71]
Hou C, Yang L, Li B, et al. Multilayer black phosphorus near-infrared photodetectors. Sensors, 2018, 18(6), 1668 doi: 10.3390/s18061668
[72]
Deng Y, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 2014, 8(8), 8292 doi: 10.1021/nn5027388
[73]
Hong T, Chamlagain B, Wang T, et al. Anisotropic photocurrent response at black phosphorus–MoS2 p–n heterojunctions. Nanoscale, 2015, 7(44), 18537 doi: 10.1039/C5NR03400K
[74]
Ye L, Li H, Chen Z, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics, 2016, 3(4), 692 doi: 10.1021/acsphotonics.6b00079
[75]
Li H, Ye L, Xu J. High-performance broadband floating-base bipolar phototransistor based on WSe2/bp/MoS2 heterostructure. ACS Photonics, 2017, 4(4), 823 doi: 10.1021/acsphotonics.6b00778
[76]
Srivastava P K, Hassan Y, Gebredingle Y, et al. Van der waals broken-gap p–n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl Mater Interfaces, 2019, 11(8), 8266 doi: 10.1021/acsami.8b22103
[77]
Huang L, Huo N, Li Y, et al. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals p–n heterostructure. J Phys Chem Lett, 2015, 6(13), 2483 doi: 10.1021/acs.jpclett.5b00976
[78]
Wang X, Lan S. Optical properties of black phosphorus. Adv Opt Photonics, 2016, 8(4), 618 doi: 10.1364/AOP.8.000618
[79]
Liu H, Du Y, Deng Y, et al. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem Soc Rev, 2015, 44(9), 2732 doi: 10.1039/C4CS00257A
[80]
Chen H, Liu H, Zhang Z, et al. Nanostructured photodetectors: From ultraviolet to terahertz. Adv Mater, 2016, 28(3), 403 doi: 10.1002/adma.201503534
[81]
Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photonics, 2015, 9(4), 247 doi: 10.1038/nphoton.2015.23
[82]
Hu W, Wang T, Yang J. Tunable schottky contacts in hybrid graphene–phosphorene nanocomposites. J Mater Chem C, 2015, 3(18), 4756 doi: 10.1039/C5TC00759C
[83]
Song J, Yu Z, Gordin M L, et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett, 2014, 14(11), 6329 doi: 10.1021/nl502759z
[84]
Yu Z, Song J, Gordin M L, et al. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv Sci, 2015, 2(1/2), 1400020 doi: 10.1002/advs.201400020
[85]
Li M, Muralidharan N, Moyer K, et al. Solvent mediated hybrid 2D materials: Black phosphorus – graphene heterostructured building blocks assembled for sodium ion batteries. Nanoscale, 2018, 10(22), 10443 doi: 10.1039/C8NR01400K
[86]
Liu Y, Liu Q, Zhang A, et al. Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes. ACS Nano, 2018, 12(8), 8323 doi: 10.1021/acsnano.8b03615
[87]
Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2(8), 17033 doi: 10.1038/natrevmats.2017.33
[88]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8(7), 497 doi: 10.1038/nnano.2013.100
[89]
Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6(1), 74 doi: 10.1021/nn2024557
[90]
Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett, 2012, 12(7), 3695 doi: 10.1021/nl301485q
[91]
Kwak D H, Ra H S, Jeong M H, et al. High-performance photovoltaic effect with electrically balanced charge carriers in black phosphorus and WS2 heterojunction. Adv Mater Interfaces, 2018, 5(18), 1800671 doi: 10.1002/admi.201800671
[92]
Miao J, Xu Z, Li Q, et al. Vertically stacked and self-encapsulated van der Waals heterojunction diodes using two-dimensional layered semiconductors. ACS Nano, 2017, 11(10), 10472 doi: 10.1021/acsnano.7b05755
[93]
Jariwala D, Marks T J, Hersam M C. Mixed-dimensional van der Waals heterostructures. Nat Mater, 2017, 16(2), 170 doi: 10.1038/nmat4703
[94]
Gehring P, Urcuyo R, Duong D L, et al. Thin-layer black phosphorus/gaas heterojunction p –n diodes. Appl Phys Lett, 2015, 106(23), 233110 doi: 10.1063/1.4922531
[95]
Liu B, Kopf M, Abbas A N, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater, 2015, 27(30), 4423 doi: 10.1002/adma.201501758
[96]
Li C, Chen C, Chen J, et al. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure. J Semicond, 2020, 41(8), 082002 doi: 10.1088/1674-4926/41/8/082002
[97]
Long M, Gao A, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 2017, 3(6), e1700589 doi: 10.1126/sciadv.1700589
[98]
Yuan S, Shen C, Deng B, et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/ hBN heterostructures. Nano Lett, 2018, 18(5), 3172 doi: 10.1021/acs.nanolett.8b00835
[99]
Koenig S P, Doganov R A, Seixas L, et al. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett, 2016, 16(4), 2145 doi: 10.1021/acs.nanolett.5b03278
[100]
Chen L, Li S, Feng X W, et al. Gigahertz integrated circuits based on complementary black phosphorus transistors. Adv Electron Mater, 2018, 4(9), 1800274 doi: 10.1002/aelm.201800274
[101]
Gao G, Wan B, Liu X, et al. Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv Mater, 2018, 30(13), 1705088 doi: 10.1002/adma.201705088
[102]
Perello D J, Chae S H, Song S, et al. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat Commun, 2015, 6(1), 7809 doi: 10.1038/ncomms8809
[103]
Favron A, Gaufrès E, Fossard F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater, 2015, 14(8), 826 doi: 10.1038/nmat4299
[104]
Tian H, Guo Q, Xie Y, et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv Mater, 2016, 28(25), 4991 doi: 10.1002/adma.201600166
[105]
Wood J D, Wells S A, Jariwala D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett, 2014, 14(12), 6964 doi: 10.1021/nl5032293
[106]
Ryder C R, Wood J D, Wells S A, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem, 2016, 8(6), 597 doi: 10.1038/nchem.2505
[107]
Xu Y, Shi X, Zhang Y, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun, 2020, 11(1), 1330 doi: 10.1038/s41467-020-14902-z
[108]
Wachter S, Polyushkin D K, Bethge O, et al. A microprocessor based on a two-dimensional semiconductor. Nat Commun, 2017, 8(1), 14948 doi: 10.1038/ncomms14948
[109]
Bi J, Zou X, Lv Y, et al. Ingazno tunnel and junction transistors based on vertically stacked black phosphorus/ingazno heterojunctions. Adv Electron Mater, 2020, 6(8), 2000291 doi: 10.1002/aelm.202000291
Fig. 1.  (Color online) Overview of BP crystal structure and BP devices.

Fig. 2.  (Color online) Black phosphorus sandwich structure integration with hBN and its band structure. (a) A 3D schematic of hBN/BP/hBN heterostructure. (b) The HSE06 calculation results of the band structure and the local density of states (LDOS) for the hBN/BP heterostructure. Modified with permission from Ref. [38] Copyright 2016 American Chemical Society, (b) Ref. [39] Copyright 2015 American Chemical Society.

Fig. 3.  (Color online) Fabrication process and mobility of hBN/BP/hBN heterostructure devices. (a) A 3D schematic of hBN/BP/hBN heterostructure device fabrication process. (b) Mobility results of the different structures including BP/SiO2 (red), BP/hBN (green), and hBN/BP/hBN (blue). (c) Mobility results of the trilayer and 20-layer were measured at liquid helium temperatures. (d) Mobility as a function of temperature for different carrier densities were measured. (e) Quantum Hall states with filling factors from 2 to 12 are observed. (f) FET and Hall mobilities at different temperature. Modified with permission from (a) Ref. [30] Copyright Nature publishing group, (b) Ref. [45] Copyright AIP Publishing, (c) Ref. [46] Copyright 2015 American Chemical Society, (d) and (e) Ref. [47] Copyright 2016 American Chemical Society, (f) Ref. [48] Copyright 2018 American Chemical Society.

Fig. 4.  (Color online) Drain current mapping and band diagrams of the few-layer black phosphorus PN junction. Drain current mapping at (a) + 100 mV and (b) –100 mV as a function of Vrg and VIg, respectively. (c) Schematic energy band diagrams of the different device configurations. Modified with permission from Ref. [65] Copyright 2014 Springer Nature.

Fig. 5.  (Color online) Bandgap and structure of graphene/BP heterojunction. (a) The top and side views of schematics of BP (violet)/graphene (gray) heterojunction. (b) The HSE06 calculation results of the band structure are graphene, phosphorene and graphene/BP heterojunction, respectively. (c) Transfer characteristic curves for an encapsulated device by measuring under both vacuum and ambient conditions. The inset shows a nonencapsulated device test. (d) Transfer characteristic curves at ranging various temperatures from 300 to 30 K in 30 K steps. Modified with permission from (a) and (b) Ref. [82] Copyright Royal Society of Chemistry, (c) Ref. [61] Copyright 2015 American Chemical Society, (d) Ref. [64] Copyright 2016 American Chemical Society.

Fig. 6.  (Color online) The photodetectors based on TMDCs/BP heterojunctions. (a) A 3D schematic of the BP/MoS2 heterojunction device. (b) On/off switching characteristics of the BP/MoS2 junction device under illumination of 1.55 μm laser (Laser power 96.2 μW) at different bias voltages. The rise time and the decay were 15 μs and 70 μs, respectively. (c) A 3D schematic of the WSe2/BP/MoS2 heterojunction device. (d) Photoresponsivity and photogain of the WSe2/BP/MoS2 heterojunction device as a function of wavelength, respectively. (e) A 3D schematic diagram of the ReS2/BP heterojunction device. (f) Current rectifying output characteristics as a function of incident laser power values under illumination of 532 nm laser. Modified with permission from (a) and (b) Ref. [74] Copyright 2016 American Chemical Society, (c) and (d) Ref. [75] Copyright 2017 American Chemical Society, (e) and (f) Ref. [76] Copyright 2019 American Chemical Society.

Fig. 7.  (Color online) Structure and performance of the lateral and vertical BP/MoS2 heterostructures. (a) A 3D schematic of the BP/MoS2 heterojunction device. (b) The diode current (Id) as a function of the voltage across the diode at different thicknesses of BP which are 9, 36 and 61 nm, respectively. (c) A schematic diagram of the BP/MoS2 heterostructure device cross-section. (d) I–V characteristics of vertical and lateral BP/MoS2 heterojunction diodes. The inset shows semilogarithmic scale plot of the same I–V curves. Modified with permission from (a) and (b) Ref. [63] Copyright 2017 American Chemical Society, (c) and (d) Ref. [92] Copyright 2017 American Chemical Society.

Fig. 8.  (Color online) Performance of BP/ 3D bulk material heterojunction device. (a) EQE as a function of laser power for different laser light wavelengths at zero source–drain bias based on BP/GaAs heterojunction. (b) Semi-log plot of the transfer characteristics of the JFET based on BP/β-Ga2O3 heterojunction. (c) The transfer characteristics of BP/InGaZnO JFET. The inset shows the corresponding µFE value. Modified with permission from (a) Ref. [94] Copyright AIP publishing, (b) Ref. [96] Copyright 2020 IOP, (c) Ref. [109] Copyright 2020 John Wiley and Sons.

Fig. 9.  (Color online) Performance of the related b-AsP photodetectors. (a) Infrared absorption as a function of wavenumber for different samples including b-P, b-As0.25P0.75, b-As0.4P0.6 and b-As0.83P0.17, respectively. (b) Bandgap and wavelength as a function of different composition-tunable b-AsxP1−x or different polarization angle of the same composition, respectively. (c) Response curve as a function of time under illumination of 4.034 μm of the b-AsP photodetector. (d) Specific detectivity of different detectors as a function of wavelength including a thermistor bolometer, a PbSe detector, a b-AsP FET device and a b-AsP/MoS2 heterostructure. Modified with permission from (a) and (b) Ref. [95] Copyright John Wiley and Sons, (c) and (d) Ref. [97] Copyright AAAS.

Table 1.   Comparison of performance of FETs based on BP and BP heterostructures, including BP film thickness, structure, mobility, on/off ratio.

Film thickness (nm)StructureMobility (cm2/(V·s))On/off ratioExperimental temperature (K)Ref.
10BP286104Room temperature[24]
10BP984105Room temperature[29]
1.9BP1722.7×104Room temperature[51]
5BP205105Room temperature[52]
15BP1000104120 K
18.7BP170.5102Room temperature[53]
8.5BP4002×103Room temperature[54]
15BP310103~104Room temperature[55]
5BP180104~105Room temperature
5BP155104Room temperature[56]
8hBN/BP/hBN1350105Room temperature[30]
2700/1.7 K
/hBN/BP/hBN5200/Room temperature[47]
/45000/2 K
11hBN/BP/hBN1432103Room temperature[48]
3388/77 K
10BP17102Room temperature[57]
5BP1495103260 K[58]
6.5BP(K-doped)262104Room temperature[59]
2.5BP(Al-doped)1055.6×103Room temperature[60]
4.5hBN/graphene/BP63100Room temperature[61]
30BP/MoS2/104Room temperature[62]
72BP/MoS2/105Room temperature[63]
10–15Graphene/BP/80030 K[64]
DownLoad: CSV

Table 2.   Comparison of performance of photodetectors based on BP and BP-related heterostructures, including film thickness, structure, spectral range, responsivity, specific detectivity and response time.

Film thickness (nm)StructureSpectral rangeResponsivity (A/W)Specific detectivity (Jones)Response time (ms)Ref.
BP: 3–8BPVisible to near-infrared4.8 × 10–3 (640 nm)>103~1 [67]
BP: ~4.5BPNear-ultraviolet to near-infrared9 × 104 (405 nm)3 × 1013~1 [68]
BP: 8BPVisible to near-infrared4.3 × 106 (633 nm, 300 K)
7 × 106 (633 nm, 20 K)
/5 [69]
BP: ~12BP532 nm82//[70]
BP: 28, 47, 302BP830 nm2.421.833 × 1082.5 [71]
BP: ~22BP/MoS2633 nm0.418//[72]
BP: ~10, MoS2: ~4.8BP/MoS2532 nm~0.17//[73]
BP: ~22, MoS2: ~12BP/MoS2Visible to near-infrared22.3 (532 nm)
153.4 (1.55 μm)
3.1 × 1011 (532 nm)
2.13 × 109 (1.55 μm)
0.015
/
[74]
BP: 5, ReS2: 12BP/ReS2532 nm8//[75]
WSe2: ~43, BP: ~40, MoS2: ~34WSe2/BP/MoS2Visible to near-infrared6.32 (532 nm)
1.12 (1.55 μm)
1.25 × 1011 (532 nm)
2.21 × 1010 (1.55 μm)
/[76]
DownLoad: CSV
[1]
Van Noorden R. Moving towards a graphene world. Nature, 2006, 442(7100), 228 doi: 10.1038/442228a
[2]
Sutter P. Epitaxial graphene: How silicon leaves the scene. Nat Mater, 2009, 8(3), 171 doi: 10.1038/nmat2392
[3]
Waldrop M M. The chips are down for moore's law. Nat News, 2016, 530(7589), 144 doi: 10.1038/530144a
[4]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3), 183 doi: 10.1038/nmat1849
[5]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9/10), 351 doi: 10.1016/j.ssc.2008.02.024
[6]
Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8(3), 902 doi: 10.1021/nl0731872
[7]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8), 574 doi: 10.1038/nnano.2010.132
[8]
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385 doi: 10.1126/science.1157996
[9]
Schwierz F. Graphene transistors. Nat Nanotechnol, 2010, 5(7), 487 doi: 10.1038/nnano.2010.89
[10]
Sordan R, Traversi F, Russo V. Logic gates with a single graphene transistor. Appl Phys Lett, 2009, 94(7), 073305 doi: 10.1063/1.3079663
[11]
Deng T, Zhang Z, Liu Y, et al. Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett, 2019, 19(3), 1494 doi: 10.1021/acs.nanolett.8b04099
[12]
Fang Y, Luo B, Jia Y, et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater, 2012, 24(47), 6348 doi: 10.1002/adma.201202774
[13]
Wang H, Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett, 2011, 11(7), 2644 doi: 10.1021/nl200658a
[14]
Miao X, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping. Nano Lett, 2012, 12(6), 2745 doi: 10.1021/nl204414u
[15]
Tian H, Ren T L, Xie D, et al. Graphene-on-paper sound source devices. ACS Nano, 2011, 5(6), 4878 doi: 10.1021/nn2009535
[16]
Tian H, Xie D, Yang Y, et al. Single-layer graphene sound-emitting devices: Experiments and modeling. Nanoscale, 2012, 4(7), 2272 doi: 10.1039/c2nr11572g
[17]
Zhang G, Zhang H. Thermal conduction and rectification in few-layer graphene y junctions. Nanoscale, 2011, 3(11), 4604 doi: 10.1039/c1nr10945f
[18]
Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett, 2009, 1(1), 277 doi: 10.1021/jz9002108
[19]
Balendhran S, Walia S, Nili H, et al. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small, 2015, 11(6), 640 doi: 10.1002/smll.201402041
[20]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699 doi: 10.1038/nnano.2012.193
[21]
Wu W, De D, Chang S C, et al. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl Phys Lett, 2013, 102(14), 142106 doi: 10.1063/1.4801861
[22]
Carvalho A, Wang M, Zhu X, et al. Phosphorene: From theory to applications. Nat Rev Mater, 2016, 1(11), 1 doi: 10.1038/natrevmats.2016.61
[23]
Bridgman P W. Two new modifications of phosphorus. J Am Chem Soc, 1914, 36(7), 1344 doi: 10.1021/ja02184a002
[24]
Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. Acs Nano, 2014, 8(4), 4033 doi: 10.1021/nn501226z
[25]
Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus. 2D Mater, 2014, 1(2), 025001 doi: 10.1088/2053-1583/1/2/025001
[26]
Koenig S P, Doganov R A, Schmidt H, et al. Electric field effect in ultrathin black phosphorus. Appl Phys Lett, 2014, 104(10), 103106 doi: 10.1063/1.4868132
[27]
Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89(23), 235319 doi: 10.1103/PhysRevB.89.235319
[28]
Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett, 2014, 14(11), 6414 doi: 10.1021/nl502928y
[29]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35
[30]
Chen X, Wu Y, Wu Z, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun, 2015, 6(1), 7315 doi: 10.1038/ncomms8315
[31]
Li L, Ye G J, Tran V, et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat Nanotechnol, 2015, 10(7), 608 doi: 10.1038/nnano.2015.91
[32]
Gillgren N, Wickramaratne D, Shi Y, et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater, 2014, 2(1), 011001 doi: 10.1088/2053-1583/2/1/011001
[33]
Fei R, Faghaninia A, Soklaski R, et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett, 2014, 14(11), 6393 doi: 10.1021/nl502865s
[34]
Lee S, Yang F, Suh J, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat Commun, 2015, 6(1), 8573 doi: 10.1038/ncomms9573
[35]
Luo Z, Maassen J, Deng Y, et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat Commun, 2015, 6, 8572 doi: 10.1038/ncomms9572
[36]
Saito Y, Iizuka T, Koretsune T, et al. Gate-tuned thermoelectric power in black phosphorus. Nano Lett, 2016, 16(8), 4819 doi: 10.1021/acs.nanolett.6b00999
[37]
Jiang J W, Park H S. Negative poisson’s ratio in single-layer black phosphorus. Nat Commun, 2014, 5, 4727 doi: 10.1038/ncomms5727
[38]
Constantinescu G C, Hine N D M. Multipurpose black-phosphorus/hBN heterostructures. Nano Lett, 2016, 16(4), 2586 doi: 10.1021/acs.nanolett.6b00154
[39]
Cai Y, Zhang G, Zhang Y W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J Phys Chem C, 2015, 119(24), 13929 doi: 10.1021/acs.jpcc.5b02634
[40]
Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5(10), 722 doi: 10.1038/nnano.2010.172
[41]
Chan M Y, Komatsu K, Li S L, et al. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale, 2013, 5(20), 9572 doi: 10.1039/c3nr03220e
[42]
Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9), 7931 doi: 10.1021/nn402954e
[43]
Xue J, Sanchez-Yamagishi J, Bulmash D, et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater, 2011, 10(4), 282 doi: 10.1038/nmat2968
[44]
Lee C, Rathi S, Khan M A, et al. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates. Nanotechnology, 2018, 29(33), 335202 doi: 10.1088/1361-6528/aac6b0
[45]
Doganov R A, Koenig S P, Yeo Y, et al. Transport properties of ultrathin black phosphorus on hexagonal boron nitride. Appl Phys Lett, 2015, 106(8), 083505 doi: 10.1063/1.4913419
[46]
Cao Y, Mishchenko A, Yu G L, et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett, 2015, 15(8), 4914 doi: 10.1021/acs.nanolett.5b00648
[47]
Long G, Maryenko D, Shen J, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett, 2016, 16(12), 7768 doi: 10.1021/acs.nanolett.6b03951
[48]
Chen X, Chen C, Levi A, et al. Large-velocity saturation in thin-film black phosphorus transistors. ACS Nano, 2018, 12(5), 5003 doi: 10.1021/acsnano.8b02295
[49]
Hu T, Hong J. Anisotropic effective mass, optical property, and enhanced band gap in hBN /phosphorene/ hBN heterostructures. ACS Appl Mater Interfaces, 2015, 7(42), 23489 doi: 10.1021/acsami.5b05694
[50]
Li L, Yang F, Ye G J, et al. Quantum hall effect in black phosphorus two-dimensional electron system. Nat Nanotechnol, 2016, 11(7), 593 doi: 10.1038/nnano.2016.42
[51]
Das S, Demarteau M, Roelofs A. Ambipolar phosphorene field effect transistor. ACS Nano, 2014, 8(11), 11730 doi: 10.1021/nn505868h
[52]
Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5(1), 4458 doi: 10.1038/ncomms5458
[53]
Du Y, Liu H, Deng Y, et al. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano, 2014, 8(10), 10035 doi: 10.1021/nn502553m
[54]
Wang H, Wang X, Xia F, et al. Black phosphorus radio-frequency transistors. Nano Lett, 2014, 14(11), 6424 doi: 10.1021/nl5029717
[55]
Zhu W, Yogeesh M N, Yang S, et al. Flexible black phosphorus ambipolar transistors, circuits and am demodulator. Nano Lett, 2015, 15(3), 1883 doi: 10.1021/nl5047329
[56]
Kamalakar M V, Madhushankar B N, Dankert A, et al. Low schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Small, 2015, 11(18), 2209 doi: 10.1002/smll.201402900
[57]
Miao J, Zhang S, Cai L, et al. Ultrashort channel length black phosphorus field-effect transistors. ACS Nano, 2015, 9(9), 9236 doi: 10.1021/acsnano.5b04036
[58]
Prakash A, Cai Y, Zhang G, et al. Black phosphorus n-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small, 2017, 13(5), 1602909 doi: 10.1002/smll.201602909
[59]
Han C, Hu Z, Gomes L C, et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett, 2017, 17(7), 4122 doi: 10.1021/acs.nanolett.7b00903
[60]
Liu Y, Cai Y, Zhang G, et al. Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv Funct Mater, 2017, 27(7), 1604638 doi: 10.1002/adfm.201604638
[61]
Avsar A, Vera-Marun I J, Tan J Y, et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano, 2015, 9(4), 4138 doi: 10.1021/acsnano.5b00289
[62]
Xu J, Jia J, Lai S, et al. Tunneling field effect transistor integrated with black phosphorus-MoS2 junction and ion gel dielectric. Appl Phys Lett, 2017, 110(3), 033103 doi: 10.1063/1.4974303
[63]
Liu X, Qu D, Li H M, et al. Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p–n junction. ACS Nano, 2017, 11(9), 9143 doi: 10.1021/acsnano.7b03994
[64]
Kang J, Jariwala D, Ryder C R, et al. Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors. Nano Lett, 2016, 16(4), 2580 doi: 10.1021/acs.nanolett.6b00144
[65]
Buscema M, Groenendijk D J, Steele G A, et al. Photovoltaic effect in few-layer black phosphorus pn junctions defined by local electrostatic gating. Nat Commun, 2014, 5(1), 4651 doi: 10.1038/ncomms5651
[66]
Tian H, Li L, Mohammad M A, et al. High-quality reconfigurable black phosphorus p–n junctions. IEEE Trans Electron Devices, 2018, 65(11), 5118 doi: 10.1109/TED.2018.2869268
[67]
Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014, 14(6), 3347 doi: 10.1021/nl5008085
[68]
Wu J, Koon G K, Xiang D, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano, 2015, 9(8), 8070 doi: 10.1021/acsnano.5b01922
[69]
Huang M, Wang M, Chen C, et al. Broadband black-phosphorus photodetectors with high responsivity. Adv Mater, 2016, 28(18), 3481 doi: 10.1002/adma.201506352
[70]
Guo Q, Pospischil A, Bhuiyan M, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett, 2016, 16(7), 4648 doi: 10.1021/acs.nanolett.6b01977
[71]
Hou C, Yang L, Li B, et al. Multilayer black phosphorus near-infrared photodetectors. Sensors, 2018, 18(6), 1668 doi: 10.3390/s18061668
[72]
Deng Y, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 2014, 8(8), 8292 doi: 10.1021/nn5027388
[73]
Hong T, Chamlagain B, Wang T, et al. Anisotropic photocurrent response at black phosphorus–MoS2 p–n heterojunctions. Nanoscale, 2015, 7(44), 18537 doi: 10.1039/C5NR03400K
[74]
Ye L, Li H, Chen Z, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics, 2016, 3(4), 692 doi: 10.1021/acsphotonics.6b00079
[75]
Li H, Ye L, Xu J. High-performance broadband floating-base bipolar phototransistor based on WSe2/bp/MoS2 heterostructure. ACS Photonics, 2017, 4(4), 823 doi: 10.1021/acsphotonics.6b00778
[76]
Srivastava P K, Hassan Y, Gebredingle Y, et al. Van der waals broken-gap p–n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl Mater Interfaces, 2019, 11(8), 8266 doi: 10.1021/acsami.8b22103
[77]
Huang L, Huo N, Li Y, et al. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals p–n heterostructure. J Phys Chem Lett, 2015, 6(13), 2483 doi: 10.1021/acs.jpclett.5b00976
[78]
Wang X, Lan S. Optical properties of black phosphorus. Adv Opt Photonics, 2016, 8(4), 618 doi: 10.1364/AOP.8.000618
[79]
Liu H, Du Y, Deng Y, et al. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem Soc Rev, 2015, 44(9), 2732 doi: 10.1039/C4CS00257A
[80]
Chen H, Liu H, Zhang Z, et al. Nanostructured photodetectors: From ultraviolet to terahertz. Adv Mater, 2016, 28(3), 403 doi: 10.1002/adma.201503534
[81]
Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photonics, 2015, 9(4), 247 doi: 10.1038/nphoton.2015.23
[82]
Hu W, Wang T, Yang J. Tunable schottky contacts in hybrid graphene–phosphorene nanocomposites. J Mater Chem C, 2015, 3(18), 4756 doi: 10.1039/C5TC00759C
[83]
Song J, Yu Z, Gordin M L, et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett, 2014, 14(11), 6329 doi: 10.1021/nl502759z
[84]
Yu Z, Song J, Gordin M L, et al. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv Sci, 2015, 2(1/2), 1400020 doi: 10.1002/advs.201400020
[85]
Li M, Muralidharan N, Moyer K, et al. Solvent mediated hybrid 2D materials: Black phosphorus – graphene heterostructured building blocks assembled for sodium ion batteries. Nanoscale, 2018, 10(22), 10443 doi: 10.1039/C8NR01400K
[86]
Liu Y, Liu Q, Zhang A, et al. Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes. ACS Nano, 2018, 12(8), 8323 doi: 10.1021/acsnano.8b03615
[87]
Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2(8), 17033 doi: 10.1038/natrevmats.2017.33
[88]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8(7), 497 doi: 10.1038/nnano.2013.100
[89]
Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6(1), 74 doi: 10.1021/nn2024557
[90]
Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett, 2012, 12(7), 3695 doi: 10.1021/nl301485q
[91]
Kwak D H, Ra H S, Jeong M H, et al. High-performance photovoltaic effect with electrically balanced charge carriers in black phosphorus and WS2 heterojunction. Adv Mater Interfaces, 2018, 5(18), 1800671 doi: 10.1002/admi.201800671
[92]
Miao J, Xu Z, Li Q, et al. Vertically stacked and self-encapsulated van der Waals heterojunction diodes using two-dimensional layered semiconductors. ACS Nano, 2017, 11(10), 10472 doi: 10.1021/acsnano.7b05755
[93]
Jariwala D, Marks T J, Hersam M C. Mixed-dimensional van der Waals heterostructures. Nat Mater, 2017, 16(2), 170 doi: 10.1038/nmat4703
[94]
Gehring P, Urcuyo R, Duong D L, et al. Thin-layer black phosphorus/gaas heterojunction p –n diodes. Appl Phys Lett, 2015, 106(23), 233110 doi: 10.1063/1.4922531
[95]
Liu B, Kopf M, Abbas A N, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater, 2015, 27(30), 4423 doi: 10.1002/adma.201501758
[96]
Li C, Chen C, Chen J, et al. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure. J Semicond, 2020, 41(8), 082002 doi: 10.1088/1674-4926/41/8/082002
[97]
Long M, Gao A, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 2017, 3(6), e1700589 doi: 10.1126/sciadv.1700589
[98]
Yuan S, Shen C, Deng B, et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/ hBN heterostructures. Nano Lett, 2018, 18(5), 3172 doi: 10.1021/acs.nanolett.8b00835
[99]
Koenig S P, Doganov R A, Seixas L, et al. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett, 2016, 16(4), 2145 doi: 10.1021/acs.nanolett.5b03278
[100]
Chen L, Li S, Feng X W, et al. Gigahertz integrated circuits based on complementary black phosphorus transistors. Adv Electron Mater, 2018, 4(9), 1800274 doi: 10.1002/aelm.201800274
[101]
Gao G, Wan B, Liu X, et al. Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv Mater, 2018, 30(13), 1705088 doi: 10.1002/adma.201705088
[102]
Perello D J, Chae S H, Song S, et al. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat Commun, 2015, 6(1), 7809 doi: 10.1038/ncomms8809
[103]
Favron A, Gaufrès E, Fossard F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater, 2015, 14(8), 826 doi: 10.1038/nmat4299
[104]
Tian H, Guo Q, Xie Y, et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv Mater, 2016, 28(25), 4991 doi: 10.1002/adma.201600166
[105]
Wood J D, Wells S A, Jariwala D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett, 2014, 14(12), 6964 doi: 10.1021/nl5032293
[106]
Ryder C R, Wood J D, Wells S A, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem, 2016, 8(6), 597 doi: 10.1038/nchem.2505
[107]
Xu Y, Shi X, Zhang Y, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun, 2020, 11(1), 1330 doi: 10.1038/s41467-020-14902-z
[108]
Wachter S, Polyushkin D K, Bethge O, et al. A microprocessor based on a two-dimensional semiconductor. Nat Commun, 2017, 8(1), 14948 doi: 10.1038/ncomms14948
[109]
Bi J, Zou X, Lv Y, et al. Ingazno tunnel and junction transistors based on vertically stacked black phosphorus/ingazno heterojunctions. Adv Electron Mater, 2020, 6(8), 2000291 doi: 10.1002/aelm.202000291
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3518 Times PDF downloads: 229 Times Cited by: 0 Times

    History

    Received: 30 January 2021 Revised: 17 March 2021 Online: Accepted Manuscript: 21 April 2021Uncorrected proof: 22 April 2021Published: 01 August 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ningqin Deng, He Tian, Jian Zhang, Jinming Jian, Fan Wu, Yang Shen, Yi Yang, Tian-Ling Ren. Black phosphorus junctions and their electrical and optoelectronic applications[J]. Journal of Semiconductors, 2021, 42(8): 081001. doi: 10.1088/1674-4926/42/8/081001 N Q Deng, H Tian, J Zhang, J M Jian, F Wu, Y Shen, Y Yang, T L Ren, Black phosphorus junctions and their electrical and optoelectronic applications[J]. J. Semicond., 2021, 42(8): 081001. doi: 10.1088/1674-4926/42/8/081001.Export: BibTex EndNote
      Citation:
      Ningqin Deng, He Tian, Jian Zhang, Jinming Jian, Fan Wu, Yang Shen, Yi Yang, Tian-Ling Ren. Black phosphorus junctions and their electrical and optoelectronic applications[J]. Journal of Semiconductors, 2021, 42(8): 081001. doi: 10.1088/1674-4926/42/8/081001

      N Q Deng, H Tian, J Zhang, J M Jian, F Wu, Y Shen, Y Yang, T L Ren, Black phosphorus junctions and their electrical and optoelectronic applications[J]. J. Semicond., 2021, 42(8): 081001. doi: 10.1088/1674-4926/42/8/081001.
      Export: BibTex EndNote

      Black phosphorus junctions and their electrical and optoelectronic applications

      doi: 10.1088/1674-4926/42/8/081001
      More Information
      • Author Bio:

        Ningqin Deng received his M.D. from Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, China, in 2013, and Ph.D. in Department of Micro&Nano Electronics, Tsinghua University, China, in 2019. In 2019, he was awarded “Outstanding Graduates of Beijing”. His research focuses on development and application of novel 2D-material-based electronic devices

        He Tian received the Ph.D. degree from the Institute of Microelectronics, Tsinghua University, in 2015. He is currently an associate professor in Tsinghua University. He was a recipient of the National Science Foundation for outstanding young scholars. He has co-authored over 100 papers and has over 4500 citations. He has been researching on various 2D material-based novel nanodevices

        Tian-Ling Ren received the Ph.D. degree in solid-state physics from the Department of Modern Applied Physics, Tsinghua University, Beijing, China, in 1997, where he has been a Full Professor with the Institute of Microelectronics since 2003. He was a recipient of the National Science Foundation for distinguished young scholars and Changjiang distinguished professor. His main research interests include 2D-material-based devices and novel nanoelectronic devices, intelligent sensors and integrated micro-electromechanical systems, and critical technology for advanced micro-and nano-electronics

      • Corresponding author: tianhe88@tsinghua.edu.cnRenTL@tsinghua.edu.cn
      • Received Date: 2021-01-30
      • Revised Date: 2021-03-17
      • Published Date: 2021-08-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return