RESEARCH HIGHLIGHTS

Organic semiconductors: commercialization and market

Xi Yang1, 3, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Xi Yang, xiyang@chasinglight.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Yokota T, Fukuda K, Someya T. Recent progress of flexible image sensors for biomedical applications. Adv Mater, 2021, 33, 2004416 doi: 10.1002/adma.202004416
[2]
Tang C W, VanSlyke S A. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51, 913 doi: 10.1063/1.98799
[3]
Chen H W, Lee J H, Lin B Y, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci Appl, 2018, 7, 17168 doi: 10.1038/lsa.2017.168
[4]
[5]
Kim J U, Park I S, Chan C Y, et al. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency roll off. Nat Commun, 2020, 11, 1765 doi: 10.1038/s41467-020-15558-5
[6]
Chan C Y, Tanaka M, Lee Y T, et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat Photonics, 2021, 15, 203 doi: 10.1038/s41566-020-00745-z
[7]
Ai X, Evans E W, Dong S Z, et al. Efficient radical-based light-emitting diodes with doublet emission. Nature, 2018, 563, 536 doi: 10.1038/s41586-018-0695-9
[8]
Yao Y, Shi C, Li G, et al. Effects of C70 derivative in low band gap polymer photovoltaic devices: Spectral complementation and morphology optimization. Appl Phys Lett, 2006, 89, 153507 doi: 10.1063/1.2361082
[9]
He Y, Chen H Y, Hou J H, et al. Indene-C60 bisadduct: A new acceptor for high-performance polymer solar cells. J Am Chem Soc, 2010, 132, 1377 doi: 10.1021/ja908602j
[10]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 4, 1140 doi: 10.1016/j.joule.2019.01.004
[11]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[12]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[13]
Distler A, Brabec C J, Egelhaaf H J. Organic photovoltaic modules with new world record efficiencies. Prog Photovolt Res Appl, 2021, 29, 24 doi: 10.1002/pip.3336
[14]
Cui Y, Wang Y M, Bergqvist J, et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat Energy, 2019, 4, 768 doi: 10.1038/s41560-019-0448-5
[15]
Zhen H Y, Li K, Zhang Y K, et al. Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells. J Semicond, 2018, 39, 014002 doi: 10.1088/1674-4926/39/1/014002
[16]
Sokolov A N, Tee B C K, Bettinger C J, et al. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc Chem Res, 2012, 45, 361 doi: 10.1021/ar2001233
[17]
Yang D Z, Ma D G. Development of organic semiconductor photodetectors: from mechanism to applications. Adv Opt Mater, 2019, 7, 1800522 doi: 10.1002/adom.201800522
Fig. 1.  (Color online) (a) OLED panel revenue from UBI Research[4]. (b) OLED materials revenue from UBI Research[4]. (c) Chemical structure of D18[11] and Y6[10]. (d) Customer markets for OPV.

[1]
Yokota T, Fukuda K, Someya T. Recent progress of flexible image sensors for biomedical applications. Adv Mater, 2021, 33, 2004416 doi: 10.1002/adma.202004416
[2]
Tang C W, VanSlyke S A. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51, 913 doi: 10.1063/1.98799
[3]
Chen H W, Lee J H, Lin B Y, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci Appl, 2018, 7, 17168 doi: 10.1038/lsa.2017.168
[4]
[5]
Kim J U, Park I S, Chan C Y, et al. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency roll off. Nat Commun, 2020, 11, 1765 doi: 10.1038/s41467-020-15558-5
[6]
Chan C Y, Tanaka M, Lee Y T, et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat Photonics, 2021, 15, 203 doi: 10.1038/s41566-020-00745-z
[7]
Ai X, Evans E W, Dong S Z, et al. Efficient radical-based light-emitting diodes with doublet emission. Nature, 2018, 563, 536 doi: 10.1038/s41586-018-0695-9
[8]
Yao Y, Shi C, Li G, et al. Effects of C70 derivative in low band gap polymer photovoltaic devices: Spectral complementation and morphology optimization. Appl Phys Lett, 2006, 89, 153507 doi: 10.1063/1.2361082
[9]
He Y, Chen H Y, Hou J H, et al. Indene-C60 bisadduct: A new acceptor for high-performance polymer solar cells. J Am Chem Soc, 2010, 132, 1377 doi: 10.1021/ja908602j
[10]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 4, 1140 doi: 10.1016/j.joule.2019.01.004
[11]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[12]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[13]
Distler A, Brabec C J, Egelhaaf H J. Organic photovoltaic modules with new world record efficiencies. Prog Photovolt Res Appl, 2021, 29, 24 doi: 10.1002/pip.3336
[14]
Cui Y, Wang Y M, Bergqvist J, et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat Energy, 2019, 4, 768 doi: 10.1038/s41560-019-0448-5
[15]
Zhen H Y, Li K, Zhang Y K, et al. Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells. J Semicond, 2018, 39, 014002 doi: 10.1088/1674-4926/39/1/014002
[16]
Sokolov A N, Tee B C K, Bettinger C J, et al. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc Chem Res, 2012, 45, 361 doi: 10.1021/ar2001233
[17]
Yang D Z, Ma D G. Development of organic semiconductor photodetectors: from mechanism to applications. Adv Opt Mater, 2019, 7, 1800522 doi: 10.1002/adom.201800522
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2463 Times PDF downloads: 127 Times Cited by: 0 Times

    History

    Received: 16 May 2021 Revised: Online: Accepted Manuscript: 17 May 2021Uncorrected proof: 17 May 2021Corrected proof: 09 August 2021Published: 01 September 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xi Yang, Liming Ding. Organic semiconductors: commercialization and market[J]. Journal of Semiconductors, 2021, 42(9): 090201. doi: 10.1088/1674-4926/42/9/090201 X Yang, L M Ding, Organic semiconductors: commercialization and market[J]. J. Semicond., 2021, 42(9): 090201. doi: 10.1088/1674-4926/42/9/090201.Export: BibTex EndNote
      Citation:
      Xi Yang, Liming Ding. Organic semiconductors: commercialization and market[J]. Journal of Semiconductors, 2021, 42(9): 090201. doi: 10.1088/1674-4926/42/9/090201

      X Yang, L M Ding, Organic semiconductors: commercialization and market[J]. J. Semicond., 2021, 42(9): 090201. doi: 10.1088/1674-4926/42/9/090201.
      Export: BibTex EndNote

      Organic semiconductors: commercialization and market

      doi: 10.1088/1674-4926/42/9/090201
      More Information
      • Author Bio:

        Xi Yang got his PhD from Zhejiang University in 2014 (was a joint student at University of Washington). Then, he worked in TCL as a R&D director to develop OLED materials. In 2020, he founded ChasingLight Technology. Now he is pushing OPV commercialization

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors

      • Corresponding author: xiyang@chasinglight.cnding@nanoctr.cn
      • Received Date: 2021-05-16
      • Published Date: 2021-09-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return