J. Semicond. > Volume 36 > Issue 12 > Article Number: 122003

Correlated barrier hopping of CuO nanoparticles

Jiji Koshy , M. Soosen Samuel , Anoop Chandran and K. C. George

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The ac conduction mechanism in copper oxide nanoparticles with 8 nm size, synthesized by a precipitation method was studied by analyzing ac conductivity in the frequency range of 50 Hz-1 MHz and in the temperature range of 373-573 K. X-ray diffraction and transmission electron microscopy(TEM) were employed for the structural and morphological characterization of CuO nanoparticles. The experimental and theoretical investigations suggested that the ac conduction mechanism in CuO nanoparticles can be successfully explained by a correlated barrier hopping model, which provided reasonable values for the maximum barrier height and characteristic relaxation time. It was also found that bipolaron hopping become prominent up to a particular temperature and beyond that single polaron hopping predominates. Physical parameters such as hopping distance and density of defect states were also calculated. Photoluminescence studies confirm the presence of a surface defect in CuO nanoparticles.

Key words: CuO nanoparticlescorrelated barrier hoppingdefect statesphotoluminescence spectrumsingle polaron hopping

Abstract: The ac conduction mechanism in copper oxide nanoparticles with 8 nm size, synthesized by a precipitation method was studied by analyzing ac conductivity in the frequency range of 50 Hz-1 MHz and in the temperature range of 373-573 K. X-ray diffraction and transmission electron microscopy(TEM) were employed for the structural and morphological characterization of CuO nanoparticles. The experimental and theoretical investigations suggested that the ac conduction mechanism in CuO nanoparticles can be successfully explained by a correlated barrier hopping model, which provided reasonable values for the maximum barrier height and characteristic relaxation time. It was also found that bipolaron hopping become prominent up to a particular temperature and beyond that single polaron hopping predominates. Physical parameters such as hopping distance and density of defect states were also calculated. Photoluminescence studies confirm the presence of a surface defect in CuO nanoparticles.

Key words: CuO nanoparticlescorrelated barrier hoppingdefect statesphotoluminescence spectrumsingle polaron hopping



References:

[1]

Jiang Y, Wang P, Zang X. Uniformly embedded metal oxide nanoparticles in vertically aligned carbon nanotube forests as pseudocapacitor electrodes for enhanced energy storage[J]. Nano Lett, 2013, 13: 3524.

[2]

Zhang Y, Zhang J, Cheng Z. Morphology dependence effect of CuO nanostructures on their Cl2 sensing properties[J]. Sensor Lett, 2011, 9: 175.

[3]

Sukhorukov Y P, Loshkareva N N, Samokhvalov A. Magnetic phase transitions in optical spectrum of magnetic semiconductor CuO[J]. J Magn Magn Mater, 1998, 183: 356.

[4]

Hsieh C T, Chen J M, Lin H H. Field emission from various CuO nanostructures[J]. Appl Phys Lett, 2003, 83: 3383.

[5]

Reitz J B, Solomon E I. Propylene oxidation on copper oxide surfaces:electronic and geometric contributions to reactivity and selectivity[J]. Am Chem Soc, 1998, 120: 11467.

[6]

Austin I G, Mott N F. Polarons in crystalline and non-crystalline materials[J]. Adv Phys, 1969, 18: 41.

[7]

Pollak M, Geballe T H. Low-frequency conductivity due to hopping processes in silicon[J]. Phys Rev, 1961, 122: 1742.

[8]

Elliott S R. A theory of a.c. conduction in chalcogenide glasses.[J]. Phi Mag, 1977, 36: 1291.

[9]

Long A R. Frequency-dependent loss in amorphous semiconductors[J]. Adv Phys, 1982, 31: 553.

[10]

Sahay P P, Tewari S, Nath R K. Studies on ac response of zinc oxide pellets[J]. J Mater Sci, 2008, 43: 4534.

[11]

Pike G E. AC conductivity of scandium oxide and a new hopping model for conductivity[J]. Phys Rev B, 1972, 6: 1572.

[12]

Jose J, Khader M A. Role of grain boundaries on the electrical conductivity of nanophase zinc oxide[J]. Mater Sci Eng A, 2001, 304.

[13]

Heo Y W, Tien L C, Norton D P. Electrical transport properties of single ZnO nanorods[J]. Appl Phys Lett, 2004, 85: 2002.

[14]

Ibrahim I M, Salman M O, Ahmed S. Electrical behavior and optical properties of copper oxide thin films[J]. Bagdad Science Journal, 2011, 8: 2.

[15]

Zhu J, Li D, Chen H. Highly dispersed CuO nanoparti-cles prepared by a novel quick-precipitation method[J]. Mater Lett, 2004, 58: 3324.

[16]

Birks L S, Friedman H. Particle size determination from X-ray line broadening[J]. J Appl Phys, 1946, 17: 687.

[17]

Lanje A S, Sharma S J, Pode R B. Synthesis and optical characterization of copper oxide nanoparticles[J]. Advances in Applied Science Research, 2010, 1: 36.

[18]

Mallick K, Witcomb M J, Scurrell M S. In situ synthesis of copper nanoparticles and poly(o-toluidine):a metal-polymer composite material[J]. Eur Polym J, 2006, 42: 670.

[19]

Zhao X, Wang P, Yan Z. Room temperature photoluminescence properties of CuO nanowire arrays[J]. Opt Mater, 2015, 42: 544.

[20]

Sayer M, Mansingh A, Webb J B. Long-range potential centres in disordered solids[J]. J Phys C Solid State Phys, 1978, 11: 315.

[21]

Bosman A J, Van Daal H. Small-polaron versus band conduction in some transition-metal oxides[J]. J Adv Phys, 1970, 77: 1.

[22]

Lukenheimer P, Loidl A, Ottermann C R. Correlated barrier hopping in NiO films[J]. Phys Rev B, 1991, 44: 5927.

[23]

Elliott S R. A.C.. conduction in amorphous chalcogenide and pnictide semiconductors.[J]. Adv Phys,, 1987, 36: 135.

[24]

Roberts G G, Zallens R. Quenching of photoconductivity and luminescence in natural crystals of mercury sulphide[J]. J Phys C:Solid State Phys, 1971, 4: 1890.

[25]

Deepthi K R, Pandiyarajan T, Karthikeyan B. Vibrational, giant dielectric and AC conductivity properties of agglomerated CuO nanostructures[J]. J Mater Sci Mater Electron, 2013, 24: 1045.

[26]

Zhao G M, Hunt M B, Keller H. Evidence for polaronic supercarriers in the copper oxide superconductors La2-x SrxCuO4[J]. Nature, 1997, 385: 236.

[27]

Zheng X G, Tstsumi N, Tanaka S. Electronic state of CuO[J]. Adv Superconductivity XI, Springer Japan, 1998: 69.

[28]

Shimakawa K. On the temperature dependence of a.c. conduction in chalcogenide glasses[J]. Phil Mag B,, 1982, 46: 123.

[29]

Chandran A, Samuel M S, Koshy J. Correlated barrier hopping in CdS nanoparticles and nanowires[J]. J Appl Phys, 2011, 109: 84314.

[1]

Jiang Y, Wang P, Zang X. Uniformly embedded metal oxide nanoparticles in vertically aligned carbon nanotube forests as pseudocapacitor electrodes for enhanced energy storage[J]. Nano Lett, 2013, 13: 3524.

[2]

Zhang Y, Zhang J, Cheng Z. Morphology dependence effect of CuO nanostructures on their Cl2 sensing properties[J]. Sensor Lett, 2011, 9: 175.

[3]

Sukhorukov Y P, Loshkareva N N, Samokhvalov A. Magnetic phase transitions in optical spectrum of magnetic semiconductor CuO[J]. J Magn Magn Mater, 1998, 183: 356.

[4]

Hsieh C T, Chen J M, Lin H H. Field emission from various CuO nanostructures[J]. Appl Phys Lett, 2003, 83: 3383.

[5]

Reitz J B, Solomon E I. Propylene oxidation on copper oxide surfaces:electronic and geometric contributions to reactivity and selectivity[J]. Am Chem Soc, 1998, 120: 11467.

[6]

Austin I G, Mott N F. Polarons in crystalline and non-crystalline materials[J]. Adv Phys, 1969, 18: 41.

[7]

Pollak M, Geballe T H. Low-frequency conductivity due to hopping processes in silicon[J]. Phys Rev, 1961, 122: 1742.

[8]

Elliott S R. A theory of a.c. conduction in chalcogenide glasses.[J]. Phi Mag, 1977, 36: 1291.

[9]

Long A R. Frequency-dependent loss in amorphous semiconductors[J]. Adv Phys, 1982, 31: 553.

[10]

Sahay P P, Tewari S, Nath R K. Studies on ac response of zinc oxide pellets[J]. J Mater Sci, 2008, 43: 4534.

[11]

Pike G E. AC conductivity of scandium oxide and a new hopping model for conductivity[J]. Phys Rev B, 1972, 6: 1572.

[12]

Jose J, Khader M A. Role of grain boundaries on the electrical conductivity of nanophase zinc oxide[J]. Mater Sci Eng A, 2001, 304.

[13]

Heo Y W, Tien L C, Norton D P. Electrical transport properties of single ZnO nanorods[J]. Appl Phys Lett, 2004, 85: 2002.

[14]

Ibrahim I M, Salman M O, Ahmed S. Electrical behavior and optical properties of copper oxide thin films[J]. Bagdad Science Journal, 2011, 8: 2.

[15]

Zhu J, Li D, Chen H. Highly dispersed CuO nanoparti-cles prepared by a novel quick-precipitation method[J]. Mater Lett, 2004, 58: 3324.

[16]

Birks L S, Friedman H. Particle size determination from X-ray line broadening[J]. J Appl Phys, 1946, 17: 687.

[17]

Lanje A S, Sharma S J, Pode R B. Synthesis and optical characterization of copper oxide nanoparticles[J]. Advances in Applied Science Research, 2010, 1: 36.

[18]

Mallick K, Witcomb M J, Scurrell M S. In situ synthesis of copper nanoparticles and poly(o-toluidine):a metal-polymer composite material[J]. Eur Polym J, 2006, 42: 670.

[19]

Zhao X, Wang P, Yan Z. Room temperature photoluminescence properties of CuO nanowire arrays[J]. Opt Mater, 2015, 42: 544.

[20]

Sayer M, Mansingh A, Webb J B. Long-range potential centres in disordered solids[J]. J Phys C Solid State Phys, 1978, 11: 315.

[21]

Bosman A J, Van Daal H. Small-polaron versus band conduction in some transition-metal oxides[J]. J Adv Phys, 1970, 77: 1.

[22]

Lukenheimer P, Loidl A, Ottermann C R. Correlated barrier hopping in NiO films[J]. Phys Rev B, 1991, 44: 5927.

[23]

Elliott S R. A.C.. conduction in amorphous chalcogenide and pnictide semiconductors.[J]. Adv Phys,, 1987, 36: 135.

[24]

Roberts G G, Zallens R. Quenching of photoconductivity and luminescence in natural crystals of mercury sulphide[J]. J Phys C:Solid State Phys, 1971, 4: 1890.

[25]

Deepthi K R, Pandiyarajan T, Karthikeyan B. Vibrational, giant dielectric and AC conductivity properties of agglomerated CuO nanostructures[J]. J Mater Sci Mater Electron, 2013, 24: 1045.

[26]

Zhao G M, Hunt M B, Keller H. Evidence for polaronic supercarriers in the copper oxide superconductors La2-x SrxCuO4[J]. Nature, 1997, 385: 236.

[27]

Zheng X G, Tstsumi N, Tanaka S. Electronic state of CuO[J]. Adv Superconductivity XI, Springer Japan, 1998: 69.

[28]

Shimakawa K. On the temperature dependence of a.c. conduction in chalcogenide glasses[J]. Phil Mag B,, 1982, 46: 123.

[29]

Chandran A, Samuel M S, Koshy J. Correlated barrier hopping in CdS nanoparticles and nanowires[J]. J Appl Phys, 2011, 109: 84314.

[1]

Shen Wenjuan, Wang Jun, Duan Yao, Wang Qiyuan, Zeng Yiping. Effects of Thickness on Properties of ZnO Films Grown on Si by MOCVD. J. Semicond., 2005, 26(11): 2069.

[2]

Fucheng Wan, Fuling Tang, Hongtao Xue, Wenjiang Lu, Yudong Feng, Zhiyuan Rui. Effects of defect states on the performance of CuInGaSe2 solar cells. J. Semicond., 2014, 35(2): 024011. doi: 10.1088/1674-4926/35/2/024011

[3]

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi. Effects of defect states on the performance of perovskite solar cells. J. Semicond., 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[4]

D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, M. Maaza. Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation. J. Semicond., 2018, 39(3): 033001. doi: 10.1088/1674-4926/39/3/033001

[5]

Yang Dingyu, Zhu Xinghua, Wei Zhaorong, Yang Weiqing, Li Lezhong, Yang Jun, Gao Xiuying. Structural and optical properties of polycrystalline CdS thin films depositedby electron beam evaporation. J. Semicond., 2011, 32(2): 023001. doi: 10.1088/1674-4926/32/2/023001

[6]

Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Youwen Zhao. Carbon agent chemical vapor transport growth of Ga2O3 crystal. J. Semicond., 2016, 37(10): 103004. doi: 10.1088/1674-4926/37/10/103004

[7]

He Guorong, Zheng Wanhua, Qu Hongwei, Yang Guohua, Wang Qing, Wu Xuming, Cao Yulian, Chen Lianghui. Analysis of the Fabrication of a Surface Emitting Laser by the Bonding Method. J. Semicond., 2007, 28(3): 444.

[8]

Qi Lei, Hairong Li, Huan Zhang, Jianan Wang, Wenhao Fan, Lina Cai. Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles. J. Semicond., 2019, 40(2): 022101. doi: 10.1088/1674-4926/40/2/022101

[9]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[10]

T. Tibermacine, A. Merazga, M. Ledra, N. Ouhabab. Extraction of the defect density of states in microcrystalline silicon from experimental results and simulation studies. J. Semicond., 2015, 36(9): 093001. doi: 10.1088/1674-4926/36/9/093001

[11]

M Errai, A El Kaaouachi, H El Idrissi. Variable range hopping conduction in n-CdSe samples at very low temperature. J. Semicond., 2015, 36(12): 122001. doi: 10.1088/1674-4926/36/12/122001

[12]

Zheng Yongzheng, Xia Lingli, Li Weinan, Huang Yumei, Hong Zhiliang. A fast-hopping 3-band CMOS frequency synthesizer for MB-OFDM UWB system. J. Semicond., 2009, 30(9): 095006. doi: 10.1088/1674-4926/30/9/095006

[13]

Zheng Yongzheng, Li Weinan, Xia Lingli, Huang Yumei, Hong Zhiliang. A 3.96 GHz phase-locked loop for mode-1 MB-OFDM UWB hopping carrier generation. J. Semicond., 2009, 30(7): 075003. doi: 10.1088/1674-4926/30/7/075003

[14]

Chen Danfeng, Li Wei, Li Ning, Ren Junyan. A low-spurious fast-hopping MB-OFDM UWB synthesizer. J. Semicond., 2010, 31(6): 065003. doi: 10.1088/1674-4926/31/6/065003

[15]

Xinyu Wu, Weihua Han, Xiaosong Zhao, Yangyan Guo, Xiaodi Zhang, Fuhua Yang. Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors. J. Semicond., 2020, 41(7): 072905. doi: 10.1088/1674-4926/41/7/072905

[16]

S. Dlimi, A. El kaaouachi, L. Limouny, B. A. Hammou. A crossover from Efros–Shklovskii hopping to activated transport in a GaAs two-dimensional hole system at low temperatures. J. Semicond., 2020, 41(12): -1.

[17]

Tang Haixia, Wang Qiming. Numerical Simulation and Theoretical Analysis of Photonic Crystal Single-Defect Cavity Based on nc-Ge/Si Islands. J. Semicond., 2006, 27(12): 2139.

[18]

Baoxing Sun, Ruobing Xie, Cun Yu, Cheng Li, Hongjie Xu. Structural characterization of SiC nanoparticles. J. Semicond., 2017, 38(10): 103002. doi: 10.1088/1674-4926/38/10/103002

[19]

Yu Dongliang, Ge Chuannan, Du Youwei. Preparation and characterization of CuO nanowire arrays. J. Semicond., 2009, 30(7): 072003. doi: 10.1088/1674-4926/30/7/072003

[20]

Zhao Jing, Xia Qinglin, Li Jinmin. Ferromagnetism in Fe-doped CuO nanopowder. J. Semicond., 2012, 33(1): 013001. doi: 10.1088/1674-4926/33/1/013001

Search

Advanced Search >>

GET CITATION

J Koshy,M S. Samuel, A. Chandran, K. C. George. Correlated barrier hopping of CuO nanoparticles[J]. J. Semicond., 2015, 36(12): 122003. doi: 10.1088/1674-4926/36/12/122003.

Export: BibTex EndNote

Article Metrics

Article views: 1589 Times PDF downloads: 24 Times Cited by: 0 Times

History

Manuscript received: 10 February 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误