J. Semicond. > Volume 37 > Issue 10 > Article Number: 103001

The investigation of electrodeposited Cu2O/ITO layers by chronocoulometry process: effect of electrical potential

D. Mohra 1, , M. Benhaliliba 1, , , M. Serin 2, , M.R. Khelladi 3, , H. Lahmar 3, and A. Azizi 3,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The thin films of Cu2O are deposited by electrodeposition technique onto indium tin oxide (ITO)-coated glass substrate at different potentials. The precursor is an aqueous solution which contains respectively 0.05 M of CuSO4 and citric acid at kept temperature of 60℃ and the applied potential varies within the {-0.4 V,-0.7 V} SCE range. Based on the chronocoulometry (CC) process, the electrochemical, structural and optical parameters are determined. We measured the current as function of potential within the {-0.4 V,-0.7 V} range and the higher current is found to be within the {-0.7 V,-0.3 V} band. The grain sizes are of 12.12 nm and 35.47 nm according to (110) and (221) orientations respectively. The high textural coefficient of 0.943 is recorded for the potential-0.7 V. The transmittance of 72.25 %, within the visible band, is obtained for the as-grown layer at-0.4 V and the band gap is found to be 2.2 eV for the electrodeposition potential of-0.7 V.

Key words: Cu2O filmschronocoulometryelectrodepositionITO substratevoltammogramcathodic potential

Abstract: The thin films of Cu2O are deposited by electrodeposition technique onto indium tin oxide (ITO)-coated glass substrate at different potentials. The precursor is an aqueous solution which contains respectively 0.05 M of CuSO4 and citric acid at kept temperature of 60℃ and the applied potential varies within the {-0.4 V,-0.7 V} SCE range. Based on the chronocoulometry (CC) process, the electrochemical, structural and optical parameters are determined. We measured the current as function of potential within the {-0.4 V,-0.7 V} range and the higher current is found to be within the {-0.7 V,-0.3 V} band. The grain sizes are of 12.12 nm and 35.47 nm according to (110) and (221) orientations respectively. The high textural coefficient of 0.943 is recorded for the potential-0.7 V. The transmittance of 72.25 %, within the visible band, is obtained for the as-grown layer at-0.4 V and the band gap is found to be 2.2 eV for the electrodeposition potential of-0.7 V.

Key words: Cu2O filmschronocoulometryelectrodepositionITO substratevoltammogramcathodic potential



References:

[1]

Chatterjee S, Sudip K S, Amlan J P. Formation of all-oxide solar cells in atmospheric condition based on Cu2O thin-films grown through SILAR technique[J]. Solar Energy Materials & Solar Cells, 2016, 147: 17.

[2]

Hsueh H T, Chang S J, Hung F Y. Fabrication of coaxial p-Cu2O/n-ZnO nanowire photodiodes[J]. Superlattices and Microstructures, 2011, 49: 572. doi: 10.1016/j.spmi.2011.03.011

[3]

Wang L C, De Tacconi N R, Chenthamarakshan C R. Electrodeposition copper oxide films: effect of bath pH on grain orientation and orientation-dependant interfacial behavior[J]. Thin Solid Films, 2007, 515: 3090. doi: 10.1016/j.tsf.2006.08.041

[4]

Pan F, Gao S, Chen C. Recent progress in resistive random access memories: materials, switching mechanisms, and performance[J]. Materials Science and Engineering R, 2004, 83: 1.

[5]

Zhang Z, Hu W, Zhong Y C. The effect of complexing agents on the oriented growth of electrodeposited microcrystalline cuprous oxide film[J]. Materials Research Bulletin, 2012, 47: 2561. doi: 10.1016/j.materresbull.2012.04.146

[6]

Al-Kuhaili M F. Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O)[J]. Vacuum, 2008, 82: 623. doi: 10.1016/j.vacuum.2007.10.004

[7]

Laia G, Wub Y, Linb L. Low resistivity of N-doped Cu2O thin films deposited by RF-magnetron sputtering[J]. Applied Surface Science, 2013, 285: 755. doi: 10.1016/j.apsusc.2013.08.122

[8]

Kayani Z N, Ali Y, Kiran F. Fabrication of copper oxide nanoparticles by sol-gel route[J]. Materials Today: Proceedings, 2015, 2: 5446. doi: 10.1016/j.matpr.2015.11.067

[9]

Kasmi A, Yu Tian Z, Vieker H. Innovative CVD synthesis of Cu2O catalysts for CO oxidation[J]. Applied Catalysis B, 2016, 186: 10. doi: 10.1016/j.apcatb.2015.12.034

[10]

Lva J, Xua J, Zhao M. Effect of seed layer on optical properties and visible photoresponse of ZnO/Cu2O composite thin films[J]. Ceramics International, 2015, 41: 13983. doi: 10.1016/j.ceramint.2015.07.010

[11]

Yan D, Li S, Hu M. Electrochemical synthesis and the gas sensing properties of the Cu2O nanofilms/porous silicon hybrid structure[J]. Sensors and Actuators B, 2016, 223: 626. doi: 10.1016/j.snb.2015.09.080

[12]

Khelladi M R, Mentar L, Benaiche A. A study on electrodeposited zinc oxide nanostructures[J]. J Mater Sci: Mater Electron, 2013, 24: 153. doi: 10.1007/s10854-012-0973-5

[13]

Meng H, Yang W, Yan X. A highly sensitive and fast responsive semiconductor metal oxide detector based on In2O3 nanoparticle film for portable gas chromatograph[J]. Sensors and Actuators B, 2015, 216: 511. doi: 10.1016/j.snb.2015.04.068

[14]

Benhaliliba M, Benouis C E, Yakuphanoglu F. Detailed investigation of submicrometer-sized grains of chemically sprayed (Sn1-xAlx, O2) (0 ≤qslant x ≤qslant 0.085) thin films[J]. Journal of Alloys and Compounds, 2012, 527: 40. doi: 10.1016/j.jallcom.2012.02.128

[15]

Jiang S, Wu M, Zhou Y. Effects of electrodeposition conditions on the microstructures of ZnO thin films[J]. Integrated Ferroelectrics, 2007, 88: 33. doi: 10.1080/10584580601098563

[16]

Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications. Wiley, 2001

[17]

Wang L, Tao M. Fabrication and characterization of p-n homojunction in cuprous oxide by electrochemical deposition[J]. Electrochem Solid State Lett, 2007, 10: 248. doi: 10.1149/1.2748632

[18]

Laidoudi S, Bioud A Y, Azizi A. Growth and characterization of electrodeposited Cu2O thin films[J]. Semicond Sci Technol, 2013, 28: 115005. doi: 10.1088/0268-1242/28/11/115005

[19]

Chatterjee A P, Mukhopadhyay A K, Chakraborty A K. Electrodeposition and characterization of cuprous oxide films[J]. Materials Letters, 1991, 11: 10. doi: 10.1016/0167-577X(91)90180-E

[20]

Lee Y H, Leu I C, Liao C L. The structural evolution and electrochemical properties of the textured Cu2O thin films[J]. Journal of Alloys and Compounds, 2007, 436: 241. doi: 10.1016/j.jallcom.2006.07.019

[21]

Hsu Y K, Wu J R, Chen M H. Fabrication of homojunction Cu2O solar cells by electrochemical deposition[J]. Applied Surface Science, 2015, 354: 8. doi: 10.1016/j.apsusc.2015.05.142

[22]

No Y S, Oh D H, Su K S. Structural, optical, and electrical properties of Cu2O nanocubes grown on indium-tin-oxide-coated glass substrates by using seed-layer-free electrochemical deposition method[J]. Applied Surface Science, 2012, 258: 7581. doi: 10.1016/j.apsusc.2012.04.091

[23]

Benhaliliba M, Benouis C E, Tiburcio-Silver A. Low copper doped CdO nanowires grown by sol-gel route[J]. Journal of New Technology and Materials, 2011, 1: 24.

[24]

Messaoudi O, Makhlouf H, Souissi A. Correlation between optical and structural properties of copper oxide electrodeposited on ITO glass[J]. Journal of Alloys and Compounds, 2014, 611: 142. doi: 10.1016/j.jallcom.2014.05.055

[25]

Tounsi N, Barhoumi A, Akkari F C. Structural and optical characterization of copper oxide composite thin films elaborated by GLAD technique[J]. Vacuum, 2015, 121: 9. doi: 10.1016/j.vacuum.2015.07.011

[26]

Kim M S, Kim D Y, Cho M Y. Effects of buffer layer thickness on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy[J]. Vacuum, 2012, 86: 1373. doi: 10.1016/j.vacuum.2012.01.006

[27]

Zhang D K, Liu Y C, Liu Y L. The electrical properties and the interfaces of Cu2O/ZnO/ITO p-i-n heterojunction[J]. Physica B, 2004, 351: 178. doi: 10.1016/j.physb.2004.06.003

[28]

Han K. Electrodeposited cuprous oxide solar cells. The University of Texas At Arlington, December 2009

[29]

Tombak A, Benhaliliba M, Ocak Y S. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications[J]. Results in Physics, 2015, 5: 314. doi: 10.1016/j.rinp.2015.11.001

[30]

Benouis C E, Benhaliliba M, Yakuphanoglu F. Physical properties of ultrasonic sprayed nanosized indium doped SnO2 films[J]. Synthetic Metals, 2011, 161: 1509. doi: 10.1016/j.synthmet.2011.04.017

[31]

Brandt I S, Martins C A, Zoldan V C. Structural and optical properties of Cu2O crystalline electrodeposited films[J]. Thin Solid Films, 2014, 562: 144. doi: 10.1016/j.tsf.2014.04.013

[32]

Ravindra N M, Srivastava V K. Variation of refractive index with energy gap in semiconductors[J]. Infrared Phys, 1979, 19: 603. doi: 10.1016/0020-0891(79)90081-2

[33]

Gupta V P, Ravindra N M. Comments on the moss formula[J]. Phys Stat Sol B, 1980, 100: 715. doi: 10.1002/(ISSN)1521-3951

[1]

Chatterjee S, Sudip K S, Amlan J P. Formation of all-oxide solar cells in atmospheric condition based on Cu2O thin-films grown through SILAR technique[J]. Solar Energy Materials & Solar Cells, 2016, 147: 17.

[2]

Hsueh H T, Chang S J, Hung F Y. Fabrication of coaxial p-Cu2O/n-ZnO nanowire photodiodes[J]. Superlattices and Microstructures, 2011, 49: 572. doi: 10.1016/j.spmi.2011.03.011

[3]

Wang L C, De Tacconi N R, Chenthamarakshan C R. Electrodeposition copper oxide films: effect of bath pH on grain orientation and orientation-dependant interfacial behavior[J]. Thin Solid Films, 2007, 515: 3090. doi: 10.1016/j.tsf.2006.08.041

[4]

Pan F, Gao S, Chen C. Recent progress in resistive random access memories: materials, switching mechanisms, and performance[J]. Materials Science and Engineering R, 2004, 83: 1.

[5]

Zhang Z, Hu W, Zhong Y C. The effect of complexing agents on the oriented growth of electrodeposited microcrystalline cuprous oxide film[J]. Materials Research Bulletin, 2012, 47: 2561. doi: 10.1016/j.materresbull.2012.04.146

[6]

Al-Kuhaili M F. Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O)[J]. Vacuum, 2008, 82: 623. doi: 10.1016/j.vacuum.2007.10.004

[7]

Laia G, Wub Y, Linb L. Low resistivity of N-doped Cu2O thin films deposited by RF-magnetron sputtering[J]. Applied Surface Science, 2013, 285: 755. doi: 10.1016/j.apsusc.2013.08.122

[8]

Kayani Z N, Ali Y, Kiran F. Fabrication of copper oxide nanoparticles by sol-gel route[J]. Materials Today: Proceedings, 2015, 2: 5446. doi: 10.1016/j.matpr.2015.11.067

[9]

Kasmi A, Yu Tian Z, Vieker H. Innovative CVD synthesis of Cu2O catalysts for CO oxidation[J]. Applied Catalysis B, 2016, 186: 10. doi: 10.1016/j.apcatb.2015.12.034

[10]

Lva J, Xua J, Zhao M. Effect of seed layer on optical properties and visible photoresponse of ZnO/Cu2O composite thin films[J]. Ceramics International, 2015, 41: 13983. doi: 10.1016/j.ceramint.2015.07.010

[11]

Yan D, Li S, Hu M. Electrochemical synthesis and the gas sensing properties of the Cu2O nanofilms/porous silicon hybrid structure[J]. Sensors and Actuators B, 2016, 223: 626. doi: 10.1016/j.snb.2015.09.080

[12]

Khelladi M R, Mentar L, Benaiche A. A study on electrodeposited zinc oxide nanostructures[J]. J Mater Sci: Mater Electron, 2013, 24: 153. doi: 10.1007/s10854-012-0973-5

[13]

Meng H, Yang W, Yan X. A highly sensitive and fast responsive semiconductor metal oxide detector based on In2O3 nanoparticle film for portable gas chromatograph[J]. Sensors and Actuators B, 2015, 216: 511. doi: 10.1016/j.snb.2015.04.068

[14]

Benhaliliba M, Benouis C E, Yakuphanoglu F. Detailed investigation of submicrometer-sized grains of chemically sprayed (Sn1-xAlx, O2) (0 ≤qslant x ≤qslant 0.085) thin films[J]. Journal of Alloys and Compounds, 2012, 527: 40. doi: 10.1016/j.jallcom.2012.02.128

[15]

Jiang S, Wu M, Zhou Y. Effects of electrodeposition conditions on the microstructures of ZnO thin films[J]. Integrated Ferroelectrics, 2007, 88: 33. doi: 10.1080/10584580601098563

[16]

Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications. Wiley, 2001

[17]

Wang L, Tao M. Fabrication and characterization of p-n homojunction in cuprous oxide by electrochemical deposition[J]. Electrochem Solid State Lett, 2007, 10: 248. doi: 10.1149/1.2748632

[18]

Laidoudi S, Bioud A Y, Azizi A. Growth and characterization of electrodeposited Cu2O thin films[J]. Semicond Sci Technol, 2013, 28: 115005. doi: 10.1088/0268-1242/28/11/115005

[19]

Chatterjee A P, Mukhopadhyay A K, Chakraborty A K. Electrodeposition and characterization of cuprous oxide films[J]. Materials Letters, 1991, 11: 10. doi: 10.1016/0167-577X(91)90180-E

[20]

Lee Y H, Leu I C, Liao C L. The structural evolution and electrochemical properties of the textured Cu2O thin films[J]. Journal of Alloys and Compounds, 2007, 436: 241. doi: 10.1016/j.jallcom.2006.07.019

[21]

Hsu Y K, Wu J R, Chen M H. Fabrication of homojunction Cu2O solar cells by electrochemical deposition[J]. Applied Surface Science, 2015, 354: 8. doi: 10.1016/j.apsusc.2015.05.142

[22]

No Y S, Oh D H, Su K S. Structural, optical, and electrical properties of Cu2O nanocubes grown on indium-tin-oxide-coated glass substrates by using seed-layer-free electrochemical deposition method[J]. Applied Surface Science, 2012, 258: 7581. doi: 10.1016/j.apsusc.2012.04.091

[23]

Benhaliliba M, Benouis C E, Tiburcio-Silver A. Low copper doped CdO nanowires grown by sol-gel route[J]. Journal of New Technology and Materials, 2011, 1: 24.

[24]

Messaoudi O, Makhlouf H, Souissi A. Correlation between optical and structural properties of copper oxide electrodeposited on ITO glass[J]. Journal of Alloys and Compounds, 2014, 611: 142. doi: 10.1016/j.jallcom.2014.05.055

[25]

Tounsi N, Barhoumi A, Akkari F C. Structural and optical characterization of copper oxide composite thin films elaborated by GLAD technique[J]. Vacuum, 2015, 121: 9. doi: 10.1016/j.vacuum.2015.07.011

[26]

Kim M S, Kim D Y, Cho M Y. Effects of buffer layer thickness on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy[J]. Vacuum, 2012, 86: 1373. doi: 10.1016/j.vacuum.2012.01.006

[27]

Zhang D K, Liu Y C, Liu Y L. The electrical properties and the interfaces of Cu2O/ZnO/ITO p-i-n heterojunction[J]. Physica B, 2004, 351: 178. doi: 10.1016/j.physb.2004.06.003

[28]

Han K. Electrodeposited cuprous oxide solar cells. The University of Texas At Arlington, December 2009

[29]

Tombak A, Benhaliliba M, Ocak Y S. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications[J]. Results in Physics, 2015, 5: 314. doi: 10.1016/j.rinp.2015.11.001

[30]

Benouis C E, Benhaliliba M, Yakuphanoglu F. Physical properties of ultrasonic sprayed nanosized indium doped SnO2 films[J]. Synthetic Metals, 2011, 161: 1509. doi: 10.1016/j.synthmet.2011.04.017

[31]

Brandt I S, Martins C A, Zoldan V C. Structural and optical properties of Cu2O crystalline electrodeposited films[J]. Thin Solid Films, 2014, 562: 144. doi: 10.1016/j.tsf.2014.04.013

[32]

Ravindra N M, Srivastava V K. Variation of refractive index with energy gap in semiconductors[J]. Infrared Phys, 1979, 19: 603. doi: 10.1016/0020-0891(79)90081-2

[33]

Gupta V P, Ravindra N M. Comments on the moss formula[J]. Phys Stat Sol B, 1980, 100: 715. doi: 10.1002/(ISSN)1521-3951

[1]

Hassiba Rahal, Rafiaa Kihal, Abed Mohamed Affoune, Mokhtar Ghers, Faycal Djazi. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells. J. Semicond., 2017, 38(5): 053002. doi: 10.1088/1674-4926/38/5/053002

[2]

A.A. Khurram, M. Imran, Nawazish A. Khan, M. Nasir Mehmood. ZnSe/ITO thin films:candidate for CdTe solar cell window layer. J. Semicond., 2017, 38(9): 093001. doi: 10.1088/1674-4926/38/9/093001

[3]

J.V. Thombare, S.K. Shinde, G.M. Lohar, U.M. Chougale, S.S. Dhasade, H.D. Dhaygude, B.P. Relekar, V.J. Fulari. Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect. J. Semicond., 2014, 35(6): 063001. doi: 10.1088/1674-4926/35/6/063001

[4]

S. S. Dhasade, S. H. Han, V. J. Fulari. A nanostructured copper telluride thin film grown at room temperature by an electrodeposition method. J. Semicond., 2012, 33(9): 093002. doi: 10.1088/1674-4926/33/9/093002

[5]

Yang Yongli, Cheng Shuying. Preparation of SnS∶Ag Thin Films by Pulse Electrodeposition. J. Semicond., 2008, 29(12): 2322.

[6]

Huihui Zhuang, Jinliang Yan, Chengyang Xu, Delan Meng. Effect of Ga2O3 buffer layer thickness on the properties of Cu/ITO thin films deposited on flexible substrates. J. Semicond., 2014, 35(5): 053001. doi: 10.1088/1674-4926/35/5/053001

[7]

Cao Jie, Qu Shengchun, Liu Kong, Wang Zhanguo. Effect of bath temperature on the properties of CuInxGa1–x Se2 thin films grown by the electrodeposition technique. J. Semicond., 2010, 31(8): 083003. doi: 10.1088/1674-4926/31/8/083003

[8]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

[9]

Liu Jianjun, Yan Jinliang, Shi Liang, Li Ting. Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering. J. Semicond., 2010, 31(10): 103001. doi: 10.1088/1674-4926/31/10/103001

[10]

Ping Zhang, Yurong Zhou, Qingbo Yan, Fengzhen Liu, Jingwen Li, Gangqiang Dong. A combined experimental-computational study on nitrogen doped Cu2O as the wide-spectrum absorption material. J. Semicond., 2014, 35(10): 103001. doi: 10.1088/1674-4926/35/10/103001

[11]

M. R. Fadavieslam. Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis. J. Semicond., 2018, 39(12): 123005. doi: 10.1088/1674-4926/39/12/123005

[12]

Chengyang Xu, Jinliang Yan, Chao Li, Huihui Zhuang. The effect of the multi-period on the properties of deep-ultraviolet transparent conductive Ga2O3/ITO alternating multilayer films. J. Semicond., 2013, 34(10): 103004. doi: 10.1088/1674-4926/34/10/103004

[13]

Nasori Nasori, Tianyi Dai, Xiaohao Jia, Agus Rubiyanto, Dawei Cao, Shengchun Qu, Zhanguo Wang, Zhijie Wang, Yong Lei. Realizing super-long Cu2O nanowires arrays for high-efficient water splitting applications with a convenient approach. J. Semicond., 2019, 40(5): 052701. doi: 10.1088/1674-4926/40/5/052701

[14]

Kh. S. Karimov, M. Saleem, Z. M. Karieva, A. Mateen, M. Tariq Saeed Chani, Q. Zafar. Humidity sensing properties of Cu2O-PEPC nanocomposite films. J. Semicond., 2012, 33(7): 073001. doi: 10.1088/1674-4926/33/7/073001

[15]

Zhang Zhiguo. Energy Band Structure and Conducting Characteristics of ITO Films. J. Semicond., 2006, 27(5): 840.

[16]

Lei Li, Zhao Gaoyang, Xu Hui, Zhao Juanjuan. Growth orientation and superconducting properties of YBa2Cu3O7 - δ films prepared by the low-fluorine sol–gel process. J. Semicond., 2010, 31(8): 083004. doi: 10.1088/1674-4926/31/8/083004

[17]

Liu Wei, Cheng Shuying. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering. J. Semicond., 2011, 32(1): 013002. doi: 10.1088/1674-4926/32/1/013002

[18]

Jiaqi Wei, Kumsong Kim, Fang Liu, Ping Wang, Xiantong Zheng, Zhaoying Chen, Ding Wang, Ali Imran, Xin Rong, Xuelin Yang, Fujun Xu, Jing Yang, Bo Shen, Xinqiang Wang. β-Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy. J. Semicond., 2019, 40(1): 012802. doi: 10.1088/1674-4926/40/1/012802

[19]

Tadatsugu Minami, Yuki Nishi, Toshihiro Miyata. Cu2O-based solar cells using oxide semiconductors. J. Semicond., 2016, 37(1): 014002. doi: 10.1088/1674-4926/37/1/014002

[20]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

Search

Advanced Search >>

GET CITATION

D. Mohra, M. Benhaliliba, M. Serin, M.R. Khelladi, H. Lahmar, A. Azizi. The investigation of electrodeposited Cu2O/ITO layers by chronocoulometry process: effect of electrical potential[J]. J. Semicond., 2016, 37(10): 103001. doi: 10.1088/1674-4926/37/10/103001.

Export: BibTex EndNote

Article Metrics

Article views: 580 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 17 February 2016 Manuscript revised: 18 May 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误