J. Semicond. > Volume 38 > Issue 3 > Article Number: 031003

Recent progress in synthesis of two-dimensional hexagonal boron nitride

Haolin Wang 1, 2, , Yajuan Zhao 3, , Yong Xie 1, , Xiaohua Ma 1, and Xingwang Zhang 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Two-dimensional (2D) materials have recently received a great deal of attention due to their unique structures and fascinating properties, as well as their potential applications. 2D hexagonal boron nitride (2D h-BN), an insulator with excellent thermal stability, chemical inertness, and unique electronic and optical properties, and a band gap of 5.97 eV, is considered to be an ideal candidate for integration with other 2D materials. Nevertheless, the controllable growth of high-quality 2D h-BN is still a great challenge. A comprehensive overview of the progress that has been made in the synthesis of 2D h-BN is presented, highlighting the advantages and disadvantages of various synthesis approaches. In addition, the electronic, optical, thermal, and mechanical properties, heterostructures, and related applications of 2D h-BN are discussed.

Key words: hexagonal boron nitridetwo-dimensional materialsapplicationssynthesis

Abstract: Two-dimensional (2D) materials have recently received a great deal of attention due to their unique structures and fascinating properties, as well as their potential applications. 2D hexagonal boron nitride (2D h-BN), an insulator with excellent thermal stability, chemical inertness, and unique electronic and optical properties, and a band gap of 5.97 eV, is considered to be an ideal candidate for integration with other 2D materials. Nevertheless, the controllable growth of high-quality 2D h-BN is still a great challenge. A comprehensive overview of the progress that has been made in the synthesis of 2D h-BN is presented, highlighting the advantages and disadvantages of various synthesis approaches. In addition, the electronic, optical, thermal, and mechanical properties, heterostructures, and related applications of 2D h-BN are discussed.

Key words: hexagonal boron nitridetwo-dimensional materialsapplicationssynthesis



References:

[1]

Ferrari A C, Bonaccorso F, Fal'ko V. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale, 2015, 7(11): 4598. doi: 10.1039/C4NR01600A

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183. doi: 10.1038/nmat1849

[3]

Zhang H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451. doi: 10.1021/acsnano.5b05040

[4]

Bhimanapati G R, Lin Z, Meunier V. Recent advances in twodimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12): 11509. doi: 10.1021/acsnano.5b05556

[5]

Yin J, Li J, Hang Y. Boron nitride nanostructures:fabrication, functionalization and applications[J]. Small, 2016, 12(22): 2942. doi: 10.1002/smll.201600053

[6]

Golberg D, Bando Y, Huang Y. Boron nitride nanotubes and nanosheets[J]. ACS Nano, 2010, 4(6): 2979. doi: 10.1021/nn1006495

[7]

Pakdel A, Bando Y, Golberg D. Nano boron nitride flatland[J]. Chem Soc Rev, 2014, 43(3): 934. doi: 10.1039/C3CS60260E

[8]

Kubota Y, Watanabe K, Tsuda O. Deep ultraviolet lightemitting hexagonal boron nitride synthesized at atmospheric pressure[J]. Science, 2007, 317(5840): 932. doi: 10.1126/science.1144216

[9]

Lee K H, Shin H J, Lee J. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics[J]. Nano Lett, 2012, 12(2): 714. doi: 10.1021/nl203635v

[10]

Giovannetti G, Khomyakov P, Brocks G. Substrate induced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations[J]. Phys Rev B, 2007, 76(7): 073103. doi: 10.1103/PhysRevB.76.073103

[11]

Dean C R, Young A F, Meric I. Boron nitride substrates for high-quality graphene electronics[J]. Nat Nanotechnol, 2010, 5(10): 722. doi: 10.1038/nnano.2010.172

[12]

Mayorov A S, Gorbachev R V, Morozov S V. Micrometerscale ballistic transport in encapsulated graphene at room temperature[J]. Nano Lett, 2011, 11(6): 2396. doi: 10.1021/nl200758b

[13]

Yang W, Chen G R, Shi Z W. Epitaxial growth of singledomain graphene on hexagonal boron nitride[J]. Nat Mater, 2013, 12(9): 792. doi: 10.1038/nmat3695

[14]

Gibb A L, Alem N, Chen J H. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor depositiongrown hexagonal boron nitride[J]. J Am Chem Soc, 2013, 135(18): 6758. doi: 10.1021/ja400637n

[15]

Cretu O, Lin Y C, Suenaga K. Evidence for active atomic defects in monolayer hexagonal boron nitride:a new mechanism of plasticity in two-dimensional materials[J]. Nano Lett, 2014, 14(2): 1064. doi: 10.1021/nl404735w

[16]

Bresnehan M S, Hollander M J, Wetherington M. Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene:toward wafer-scale, high-performance devices[J]. ACS Nano, 2012, 6(6): 5234. doi: 10.1021/nn300996t

[17]

Britnell L, Gorbachev R V, Jalil R. Field-effect tunneling transistor based on vertical graphene heterostructures[J]. Science, 2012, 335(6071): 947. doi: 10.1126/science.1218461

[18]

Wang J, Yao Q, Huang C W. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer[J]. Adv Mater, 2016, 28(37): 8302. doi: 10.1002/adma.v28.37

[19]

Meng J H, Liu X, Zhang X W. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer[J]. Nano Energy, 2016, 28: 44. doi: 10.1016/j.nanoen.2016.08.028

[20]

Cui X, Lee G H, Kim Y D. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[J]. Nat Nanotech, 2015, 10(6): 534. doi: 10.1038/nnano.2015.70

[21]

Li L, Ye G J, Tran V. Quantum oscillations in a twodimensional electron gas in black phosphorus thin films[J]. Nat Nanotechnol, 2015, 10(7): 608. doi: 10.1038/nnano.2015.91

[22]

Jeong H, Bang S, Oh H M. Semiconductor-insulator- semiconductor diode consisting of monolayer MoS2, h-BN, and GaN heterostructure[J]. ACS Nano, 2015, 9(10): 10032. doi: 10.1021/acsnano.5b04233

[23]

Li D, Wang X, Zhang Q. Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures[J]. Adv Funct Mater, 2015, 25(47): 7360. doi: 10.1002/adfm.v25.47

[24]

Britnell L, Gorbachev R V, Jalil R. Electron tunneling through ultrathin boron nitride crystalline barriers[J]. Nano Lett, 2012, 12(3): 1707. doi: 10.1021/nl3002205

[25]

Tang S, Wang H, Wang H S. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride[J]. Nat Commun, 2015, 6: 6499. doi: 10.1038/ncomms7499

[26]

Levendorf M P, Kim C J, Brown L. Graphene and boron nitride lateral heterostructures for atomically thin circuitry[J]. Nature, 2012, 488(7413): 627. doi: 10.1038/nature11408

[27]

Liu Z, Ma L L, Shi G. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[J]. Nat Nanotechnol, 2013, 8(2): 119. doi: 10.1038/nnano.2012.256

[28]

Liu Z, Song L, Zhao S Z. Direct growth of graphene/hexagonal boron nitride stacked layers[J]. Nano Lett, 2011, 11(5): 2032. doi: 10.1021/nl200464j

[29]

Wang M, Jang S K, Jang W J. A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride[J]. Adv Mater, 2013, 25(19): 2746. doi: 10.1002/adma.v25.19

[30]

Meng J H, Zhang X W, Wang H L. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition[J]. Nanoscale, 2015, 7(38): 16046. doi: 10.1039/C5NR04490A

[31]

Gorbachev R V, Riaz I, Nair R R. Hunting for monolayer boron nitride:optical and Raman signatures[J]. Small, 2011, 7: 465. doi: 10.1002/smll.201001628

[32]

Wang H L, Zhang X W, Liu H. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition[J]. Adv Mater, 2015, 27(48): 8109. doi: 10.1002/adma.201504042

[33]

Jo I, Pettes M T, Kim J. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride[J]. Nano Lett, 2013, 13(2): 550. doi: 10.1021/nl304060g

[34]

Lindsay L, Broido D A. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride[J]. Phys Rev B, 2012, 85(15): 035436.

[35]

Alam M T, Bresnehan M S, Robinson J A. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films[J]. Appl Phys Lett, 2014, 104(1): 013113. doi: 10.1063/1.4861468

[36]

Song W L, Wang P, Cao L. Polymer/boron nitride nanocomposite materials for superior thermal transport performance[J]. Angew Chem Int Ed, 2012, 51(26): 6498. doi: 10.1002/anie.201201689

[37]

Taha-Tijerina J, Narayanan T N, Gao G H. Electrically insulating thermal nano-oils using 2D fillers[J]. ACS Nano, 2012, 6(2): 1214. doi: 10.1021/nn203862p

[38]

Lee C, Wei X D, Kysar J W. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385. doi: 10.1126/science.1157996

[39]

Bosak A, Serrano J, Krisch M. Elasticity of hexagonal boron nitride:inelastic X-ray scattering measurements[J]. Phys Rev B, 2006, 73(4): 041402.

[40]

Wang Y, Shi Z, Yin J. Boron nitride nanosheets:large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole[J]. J Mater Chem, 2011, 21(30): 11371. doi: 10.1039/c1jm10342c

[41]

Jin X, Fu N, Ding H. Effects of h-BN on the thermal and mechanical properties of PBT/PC/ABS blend based composites[J]. RSC Adv, 2015, 5(72): 58171. doi: 10.1039/C5RA09746K

[42]

Liu Z, Gong Y, Zhou W. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride[J]. Nat Commun, 2013, 4: 2541.

[43]

Li X, Yin J, Zhou J. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation[J]. Nanotechnology, 2014, 25(10): 105701. doi: 10.1088/0957-4484/25/10/105701

[44]

Qi J, Qian X, Qi L. Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons[J]. Nano Lett, 2012, 12(3): 1224. doi: 10.1021/nl2035749

[45]

Duerloo K A N, Reed E J. Flexural electromechanical coupling:a nanoscale emergent property of boron nitride bilayers[J]. Nano Lett, 2013, 13(4): 1681. doi: 10.1021/nl4001635

[46]

Gao M, Lyalin A, Taketsugu T. Catalytic activity of Au and Au2 on the h-BN surface:adsorption and activation of O2[J]. J Phys Chem C, 2012, 116(16): 9054. doi: 10.1021/jp300684v

[47]

Lin Y, Bunker C E, Fernando K A S. Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices[J]. ACS Appl Mater Interfaces, 2012, 4(2): 1110. doi: 10.1021/am201747d

[48]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. doi: 10.1126/science.1102896

[49]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proc Nat Acad Sci USA, 2005, 102(30): 10451. doi: 10.1073/pnas.0502848102

[50]

Pacile D, Meyer J C, Girit C O. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes[J]. Appl Phys Lett, 2008, 92(13): 133107. doi: 10.1063/1.2903702

[51]

Pakdel A, Zhi C Y, Bando Y. Low-dimensional boron nitride nanomaterials[J]. Mater Today, 2012, 15(6): 256. doi: 10.1016/S1369-7021(12)70116-5

[52]

Xu M S, Liang T, Shi M M. Graphene-like two-dimensional materials[J]. Chem Rev, 2013, 113(5): 3766. doi: 10.1021/cr300263a

[53]

Li L H, Chen Y, Behan G. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling[J]. J Mater Chem, 2011, 21(32): 11862. doi: 10.1039/c1jm11192b

[54]

Han W Q, Wu L, Zhu Y. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets[J]. Appl Phys Lett, 2008, 93(22): 223103. doi: 10.1063/1.3041639

[55]

Coleman J N, Lotya M, O'Neill A. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568. doi: 10.1126/science.1194975

[56]

Smith R J, King P J, Lotya M. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Adv Mater, 2011, 23(24): 3944.

[57]

Zhi C Y, Bando Y, Tang C C. Large-scale fabrication of few-atomic-layer boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Adv Mater, 2009, 21(28): 288.

[58]

Warner J H, Rummeli M H, Bachmatiuk A. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation[J]. ACS Nano, 2010, 4(3): 1299. doi: 10.1021/nn901648q

[59]

Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. J Phys Chem Lett, 2010, 1(1): 277. doi: 10.1021/jz9002108

[60]

Li X L, Hao X P, Zhao M W. Exfoliation of hexagonal boron nitride by molten hydroxides[J]. Adv Mater, 2013, 25(15): 2200. doi: 10.1002/adma.201204031

[61]

Bao J, Jeppson K, Edwards M. Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing[J]. Electron Mater Lett, 2016, 12(1): 1. doi: 10.1007/s13391-015-5308-2

[62]

Paffett M T, Simonson R J, Papin P. Borazine adsorption and decomposition at Pt(111) and Ru(001) surfaces[J]. Surf Sci, 1990, 232(3): 286. doi: 10.1016/0039-6028(90)90121-N

[63]

Nagashima A, Tejima N, Gamou Y. Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces[J]. Phys Rev Lett, 1995, 75(21): 3918. doi: 10.1103/PhysRevLett.75.3918

[64]

Corso M, Auwarter W, Muntwiler M. Boron nitride nanomesh[J]. Science, 2004, 303(5655): 217. doi: 10.1126/science.1091979

[65]

Auwarter W, Kreutz T J, Greber T. XPD and STM investigation of hexagonal boron nitride on Ni(111)[J]. Surf Sci, 1999, 429(1-3): 229. doi: 10.1016/S0039-6028(99)00381-7

[66]

Shi Y, Hamsen C, Jia X. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition[J]. Nano Lett, 2010, 10(10): 4134. doi: 10.1021/nl1023707

[67]

Song L, Ci L, Lu H. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Lett, 2010, 10(8): 3209. doi: 10.1021/nl1022139

[68]

Kim K K, Hsu A, Jia X. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Lett, 2012, 12(1): 161. doi: 10.1021/nl203249a

[69]

Kim G, Jang A R, Jeong H Y. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil[J]. Nano Lett, 2013, 13(4): 1834. doi: 10.1021/nl400559s

[70]

Kidambi P R, Blume R, Kling J. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper[J]. Chem Mater, 2014, 26(22): 6380. doi: 10.1021/cm502603n

[71]

Pierson H O. Boron nitride composites by chemical vapor deposition[J]. J Compos Mater, 1975, 9(3): 228. doi: 10.1177/002199837500900302

[72]

Rozenberg A S, Sinenko Y A, Chukanov N V. Regularities of pyrolytic boron nitride coating formation on a graphite matrix[J]. J Mater Sci, 1993, 28(20): 5528. doi: 10.1007/BF00367825

[73]

Middleman S. The role of gas-phase reactions in boron nitride growth by chemical vapor deposition[J]. Mater Sci Eng A, 1993, 163(1): 135. doi: 10.1016/0921-5093(93)90587-5

[74]

Chatterjee S, Luo Z, Acerce M. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions[J]. Chem Mater, 2011, 23(20): 4414. doi: 10.1021/cm201955v

[75]

Adams A C. Characterization of films formed by pyrolysis of borazine[J]. J Electrochem Soc, 1981, 128(6): 1378. doi: 10.1149/1.2127639

[76]

Auwarter W, Suter H U, Sachdev H. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from BTrichloroborazine (ClBNH)3[J]. Chem Mater, 2004, 16(2): 343. doi: 10.1021/cm034805s

[77]

Muller F, Stowe K, Sachdev H. Symmetry versus commensurability:epitaxial growth of hexagonal boron nitride on Pt(111) from B-trichloroborazine (ClBNH)3[J]. Chem Mater, 2005, 17(13): 3464. doi: 10.1021/cm048629e

[78]

Constant G, Feurer R. Preparation and characterization of thin protective films in silica tubes by thermal decomposition of hexachloroborazine[J]. J Less-Common Met, 1981, 82(1/2): 113.

[79]

Wolf G, Baumann J, Baitalow F. Calorimetric process monitoring of thermal decomposition of B-N-H compounds[J]. Thermochim Acta, 2000, 343(1/2): 19.

[80]

Kim K K, Hsu A, Jia X. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices[J]. ACS Nano, 2012, 6(10): 8583. doi: 10.1021/nn301675f

[81]

Han J, Lee J Y, Kwon H. Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition[J]. Nanotechnology, 2014, 25(14): 145604. doi: 10.1088/0957-4484/25/14/145604

[82]

Tay R Y, Wang X, Tsang S H. A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film[J]. J Mater Chem C, 2014, 2(9): 1650. doi: 10.1039/c3tc32011a

[83]

Park J H, Park J C, Yun S J. Large-area monolayer hexagonal boron nitride on Pt foil[J]. ACS Nano, 2014, 8(8): 8520. doi: 10.1021/nn503140y

[84]

Orofeo C M, Suzuki S, Kageshima H. Growth and low-energy electron microscopy characterization of monolayer hexagonal boron nitride on epitaxial cobalt[J]. Nano Res, 2013, 6(5): 335. doi: 10.1007/s12274-013-0310-1

[85]

Koepke J C, Wood J D, Chen Y. Role of pressure in the growth of hexagonal boron nitride thin films from ammoniaborane[J]. Chem Mater, 2016, 28(12): 4169. doi: 10.1021/acs.chemmater.6b00396

[86]

Wu Q, Park J H, Park S. Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains[J]. Sci Rep, 2015, 5: 16159. doi: 10.1038/srep16159

[87]

Gao Y, Ren W, Ma T. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils[J]. ACS Nano, 2013, 7(6): 5199. doi: 10.1021/nn4009356

[88]

Kim S M, Hsu A, Park M H. Synthesis of large-area multilayer hexagonal boron nitride for high material performance[J]. Nat Commun, 2015, 6: 8662. doi: 10.1038/ncomms9662

[89]

Fu L, Sun Y, Wu N. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy[J]. ACS Nano, 2016, 10(2): 2063. doi: 10.1021/acsnano.5b06254

[90]

Lee Y H, Liu K K, Lu A Y. Growth selectivity of hexagonalboron nitride layers on Ni with various crystal orientations[J]. RSC Adv, 2012, 2(1): 111. doi: 10.1039/C1RA00703C

[91]

Khan M H, Huang Z, Xiao F. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper[J]. Sci Rep, 2015, 5: 7743. doi: 10.1038/srep07743

[92]

Stehle Y, Meyer Ⅲ H M, Unocic R R. Synthesis of hexagonal boron nitride monolayer:control of nucleation and crystal morphology[J]. Chem Mater, 2015, 27(23): 8041. doi: 10.1021/acs.chemmater.5b03607

[93]

Liu Y, Bhowmick S, Yakobson B I. BN white graphene with "colorful" edges:the energies and morphology[J]. Nano Lett, 2011, 11(8): 3113. doi: 10.1021/nl2011142

[94]

Zhang Z, Liu Y, Yang Y. Growth mechanism and morphology of hexagonal boron nitride[J]. Nano Lett, 2016, 16(2): 1398. doi: 10.1021/acs.nanolett.5b04874

[95]

Liu L, Siegelb D A, Chen W. Unusual role of epilayersubstrate interactions in determining orientational relations in van der Waals epitaxy[J]. Proc Natl Acad Sci USA, 2014, 111(47): 16670. doi: 10.1073/pnas.1405613111

[96]

Song X, Gao J, Nie Y. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation[J]. Nano Res, 2015, 8(10): 3164. doi: 10.1007/s12274-015-0816-9

[97]

Tay R Y, Park H J, Ryu G H. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper[J]. Nanoscale, 2016, 8(4): 2434. doi: 10.1039/C5NR08036C

[98]

Yin J, Liu X, Lu W. Aligned growth of hexagonal boron nitride monolayer on germanium[J]. Small, 2015, 11(40): 5375. doi: 10.1002/smll.v11.40

[99]

Li J D, Li Y, Yin J. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation[J]. Small, 2016, 12(27): 3645. doi: 10.1002/smll.v12.27

[100]

Tay R Y, Griep M H, Mallick G. Growth of large singlecrystalline two-dimensional boron nitride hexagons on electropolished copper[J]. Nano Lett, 2014, 14(2): 839. doi: 10.1021/nl404207f

[101]

Wang L, Wu B, Chen J. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors[J]. Adv Mater, 2014, 26(10): 1559. doi: 10.1002/adma.201304937

[102]

Lu G, Wu T, Yuan Q. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy[J]. Nat Commun, 2015, 6: 6160. doi: 10.1038/ncomms7160

[103]

Caneva S, Weatherup R S, Bayer B C. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts[J]. Nano Lett, 2015, 15(3): 1867. doi: 10.1021/nl5046632

[104]

Yu J, Qin L, Hao Y. Vertically aligned boron nitride nanosheets:chemical vapor synthesis, ultraviolet light emission and superhydrophobicity[J]. ACS Nano, 2010, 4(1): 414. doi: 10.1021/nn901204c

[105]

Qin L, Yu J, Li M. Catalyst-free growth of mono- and fewatomic-layer boron nitride sheets by chemical vapor deposition[J]. Nanotechnology, 2011, 22(21): 215602. doi: 10.1088/0957-4484/22/21/215602

[106]

Tay R Y, Tsang S H, Loeblein M. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates[J]. Appl Phys Lett, 2015, 106(10): 101901. doi: 10.1063/1.4914474

[107]

Jang A R, Hong S, Hyun C. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire[J]. Nano Lett, 2016, 16(5): 3360. doi: 10.1021/acs.nanolett.6b01051

[108]

Suzuki S, Pallares R M, Hibino H. Growth of atomically thin hexagonal boron nitride films by diffusion through a metal film and precipitation[J]. J Phys D, 2012, 45: 385304. doi: 10.1088/0022-3727/45/38/385304

[109]

Suzuki S, Pallares R M, Orofeo C M. Boron nitride growth on metal foil using solid sources[J]. J Vac Sci Technol B, 2013, 31(4): 041804. doi: 10.1116/1.4810965

[110]

Zhang C, Fu L, Zhao S. Controllable co-segregation synthesis of wafer-scale hexagonal boron nitride thin films[J]. Adv Mater, 2014, 26(11): 1776. doi: 10.1002/adma.201304301

[111]

Nakhaie S, Wofford J M, Schumann T. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy[J]. Appl Phys Lett, 2015, 106(21): 213108. doi: 10.1063/1.4921921

[112]

Yang X, Guan Z, Zeng M. Facile synthesis of large-area ultrathin hexagonal BN films via self-limiting growth at the molten B2O3 surface[J]. Small, 2013, 9(8): 1353. doi: 10.1002/smll.201203126

[113]

Wang H L, Zhang X W, Meng J H. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition[J]. Small, 2015, 11(13): 1542. doi: 10.1002/smll.v11.13

[114]

Sutter P, Lahiri J, Zahl P. Scalable synthesis of uniform fewlayer hexagonal boron nitride dielectric films[J]. Nano Lett, 2013, 13(1): 276. doi: 10.1021/nl304080y

[1]

Ferrari A C, Bonaccorso F, Fal'ko V. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale, 2015, 7(11): 4598. doi: 10.1039/C4NR01600A

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183. doi: 10.1038/nmat1849

[3]

Zhang H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451. doi: 10.1021/acsnano.5b05040

[4]

Bhimanapati G R, Lin Z, Meunier V. Recent advances in twodimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12): 11509. doi: 10.1021/acsnano.5b05556

[5]

Yin J, Li J, Hang Y. Boron nitride nanostructures:fabrication, functionalization and applications[J]. Small, 2016, 12(22): 2942. doi: 10.1002/smll.201600053

[6]

Golberg D, Bando Y, Huang Y. Boron nitride nanotubes and nanosheets[J]. ACS Nano, 2010, 4(6): 2979. doi: 10.1021/nn1006495

[7]

Pakdel A, Bando Y, Golberg D. Nano boron nitride flatland[J]. Chem Soc Rev, 2014, 43(3): 934. doi: 10.1039/C3CS60260E

[8]

Kubota Y, Watanabe K, Tsuda O. Deep ultraviolet lightemitting hexagonal boron nitride synthesized at atmospheric pressure[J]. Science, 2007, 317(5840): 932. doi: 10.1126/science.1144216

[9]

Lee K H, Shin H J, Lee J. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics[J]. Nano Lett, 2012, 12(2): 714. doi: 10.1021/nl203635v

[10]

Giovannetti G, Khomyakov P, Brocks G. Substrate induced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations[J]. Phys Rev B, 2007, 76(7): 073103. doi: 10.1103/PhysRevB.76.073103

[11]

Dean C R, Young A F, Meric I. Boron nitride substrates for high-quality graphene electronics[J]. Nat Nanotechnol, 2010, 5(10): 722. doi: 10.1038/nnano.2010.172

[12]

Mayorov A S, Gorbachev R V, Morozov S V. Micrometerscale ballistic transport in encapsulated graphene at room temperature[J]. Nano Lett, 2011, 11(6): 2396. doi: 10.1021/nl200758b

[13]

Yang W, Chen G R, Shi Z W. Epitaxial growth of singledomain graphene on hexagonal boron nitride[J]. Nat Mater, 2013, 12(9): 792. doi: 10.1038/nmat3695

[14]

Gibb A L, Alem N, Chen J H. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor depositiongrown hexagonal boron nitride[J]. J Am Chem Soc, 2013, 135(18): 6758. doi: 10.1021/ja400637n

[15]

Cretu O, Lin Y C, Suenaga K. Evidence for active atomic defects in monolayer hexagonal boron nitride:a new mechanism of plasticity in two-dimensional materials[J]. Nano Lett, 2014, 14(2): 1064. doi: 10.1021/nl404735w

[16]

Bresnehan M S, Hollander M J, Wetherington M. Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene:toward wafer-scale, high-performance devices[J]. ACS Nano, 2012, 6(6): 5234. doi: 10.1021/nn300996t

[17]

Britnell L, Gorbachev R V, Jalil R. Field-effect tunneling transistor based on vertical graphene heterostructures[J]. Science, 2012, 335(6071): 947. doi: 10.1126/science.1218461

[18]

Wang J, Yao Q, Huang C W. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer[J]. Adv Mater, 2016, 28(37): 8302. doi: 10.1002/adma.v28.37

[19]

Meng J H, Liu X, Zhang X W. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer[J]. Nano Energy, 2016, 28: 44. doi: 10.1016/j.nanoen.2016.08.028

[20]

Cui X, Lee G H, Kim Y D. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[J]. Nat Nanotech, 2015, 10(6): 534. doi: 10.1038/nnano.2015.70

[21]

Li L, Ye G J, Tran V. Quantum oscillations in a twodimensional electron gas in black phosphorus thin films[J]. Nat Nanotechnol, 2015, 10(7): 608. doi: 10.1038/nnano.2015.91

[22]

Jeong H, Bang S, Oh H M. Semiconductor-insulator- semiconductor diode consisting of monolayer MoS2, h-BN, and GaN heterostructure[J]. ACS Nano, 2015, 9(10): 10032. doi: 10.1021/acsnano.5b04233

[23]

Li D, Wang X, Zhang Q. Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures[J]. Adv Funct Mater, 2015, 25(47): 7360. doi: 10.1002/adfm.v25.47

[24]

Britnell L, Gorbachev R V, Jalil R. Electron tunneling through ultrathin boron nitride crystalline barriers[J]. Nano Lett, 2012, 12(3): 1707. doi: 10.1021/nl3002205

[25]

Tang S, Wang H, Wang H S. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride[J]. Nat Commun, 2015, 6: 6499. doi: 10.1038/ncomms7499

[26]

Levendorf M P, Kim C J, Brown L. Graphene and boron nitride lateral heterostructures for atomically thin circuitry[J]. Nature, 2012, 488(7413): 627. doi: 10.1038/nature11408

[27]

Liu Z, Ma L L, Shi G. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[J]. Nat Nanotechnol, 2013, 8(2): 119. doi: 10.1038/nnano.2012.256

[28]

Liu Z, Song L, Zhao S Z. Direct growth of graphene/hexagonal boron nitride stacked layers[J]. Nano Lett, 2011, 11(5): 2032. doi: 10.1021/nl200464j

[29]

Wang M, Jang S K, Jang W J. A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride[J]. Adv Mater, 2013, 25(19): 2746. doi: 10.1002/adma.v25.19

[30]

Meng J H, Zhang X W, Wang H L. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition[J]. Nanoscale, 2015, 7(38): 16046. doi: 10.1039/C5NR04490A

[31]

Gorbachev R V, Riaz I, Nair R R. Hunting for monolayer boron nitride:optical and Raman signatures[J]. Small, 2011, 7: 465. doi: 10.1002/smll.201001628

[32]

Wang H L, Zhang X W, Liu H. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition[J]. Adv Mater, 2015, 27(48): 8109. doi: 10.1002/adma.201504042

[33]

Jo I, Pettes M T, Kim J. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride[J]. Nano Lett, 2013, 13(2): 550. doi: 10.1021/nl304060g

[34]

Lindsay L, Broido D A. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride[J]. Phys Rev B, 2012, 85(15): 035436.

[35]

Alam M T, Bresnehan M S, Robinson J A. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films[J]. Appl Phys Lett, 2014, 104(1): 013113. doi: 10.1063/1.4861468

[36]

Song W L, Wang P, Cao L. Polymer/boron nitride nanocomposite materials for superior thermal transport performance[J]. Angew Chem Int Ed, 2012, 51(26): 6498. doi: 10.1002/anie.201201689

[37]

Taha-Tijerina J, Narayanan T N, Gao G H. Electrically insulating thermal nano-oils using 2D fillers[J]. ACS Nano, 2012, 6(2): 1214. doi: 10.1021/nn203862p

[38]

Lee C, Wei X D, Kysar J W. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385. doi: 10.1126/science.1157996

[39]

Bosak A, Serrano J, Krisch M. Elasticity of hexagonal boron nitride:inelastic X-ray scattering measurements[J]. Phys Rev B, 2006, 73(4): 041402.

[40]

Wang Y, Shi Z, Yin J. Boron nitride nanosheets:large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole[J]. J Mater Chem, 2011, 21(30): 11371. doi: 10.1039/c1jm10342c

[41]

Jin X, Fu N, Ding H. Effects of h-BN on the thermal and mechanical properties of PBT/PC/ABS blend based composites[J]. RSC Adv, 2015, 5(72): 58171. doi: 10.1039/C5RA09746K

[42]

Liu Z, Gong Y, Zhou W. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride[J]. Nat Commun, 2013, 4: 2541.

[43]

Li X, Yin J, Zhou J. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation[J]. Nanotechnology, 2014, 25(10): 105701. doi: 10.1088/0957-4484/25/10/105701

[44]

Qi J, Qian X, Qi L. Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons[J]. Nano Lett, 2012, 12(3): 1224. doi: 10.1021/nl2035749

[45]

Duerloo K A N, Reed E J. Flexural electromechanical coupling:a nanoscale emergent property of boron nitride bilayers[J]. Nano Lett, 2013, 13(4): 1681. doi: 10.1021/nl4001635

[46]

Gao M, Lyalin A, Taketsugu T. Catalytic activity of Au and Au2 on the h-BN surface:adsorption and activation of O2[J]. J Phys Chem C, 2012, 116(16): 9054. doi: 10.1021/jp300684v

[47]

Lin Y, Bunker C E, Fernando K A S. Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices[J]. ACS Appl Mater Interfaces, 2012, 4(2): 1110. doi: 10.1021/am201747d

[48]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. doi: 10.1126/science.1102896

[49]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proc Nat Acad Sci USA, 2005, 102(30): 10451. doi: 10.1073/pnas.0502848102

[50]

Pacile D, Meyer J C, Girit C O. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes[J]. Appl Phys Lett, 2008, 92(13): 133107. doi: 10.1063/1.2903702

[51]

Pakdel A, Zhi C Y, Bando Y. Low-dimensional boron nitride nanomaterials[J]. Mater Today, 2012, 15(6): 256. doi: 10.1016/S1369-7021(12)70116-5

[52]

Xu M S, Liang T, Shi M M. Graphene-like two-dimensional materials[J]. Chem Rev, 2013, 113(5): 3766. doi: 10.1021/cr300263a

[53]

Li L H, Chen Y, Behan G. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling[J]. J Mater Chem, 2011, 21(32): 11862. doi: 10.1039/c1jm11192b

[54]

Han W Q, Wu L, Zhu Y. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets[J]. Appl Phys Lett, 2008, 93(22): 223103. doi: 10.1063/1.3041639

[55]

Coleman J N, Lotya M, O'Neill A. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568. doi: 10.1126/science.1194975

[56]

Smith R J, King P J, Lotya M. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Adv Mater, 2011, 23(24): 3944.

[57]

Zhi C Y, Bando Y, Tang C C. Large-scale fabrication of few-atomic-layer boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Adv Mater, 2009, 21(28): 288.

[58]

Warner J H, Rummeli M H, Bachmatiuk A. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation[J]. ACS Nano, 2010, 4(3): 1299. doi: 10.1021/nn901648q

[59]

Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. J Phys Chem Lett, 2010, 1(1): 277. doi: 10.1021/jz9002108

[60]

Li X L, Hao X P, Zhao M W. Exfoliation of hexagonal boron nitride by molten hydroxides[J]. Adv Mater, 2013, 25(15): 2200. doi: 10.1002/adma.201204031

[61]

Bao J, Jeppson K, Edwards M. Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing[J]. Electron Mater Lett, 2016, 12(1): 1. doi: 10.1007/s13391-015-5308-2

[62]

Paffett M T, Simonson R J, Papin P. Borazine adsorption and decomposition at Pt(111) and Ru(001) surfaces[J]. Surf Sci, 1990, 232(3): 286. doi: 10.1016/0039-6028(90)90121-N

[63]

Nagashima A, Tejima N, Gamou Y. Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces[J]. Phys Rev Lett, 1995, 75(21): 3918. doi: 10.1103/PhysRevLett.75.3918

[64]

Corso M, Auwarter W, Muntwiler M. Boron nitride nanomesh[J]. Science, 2004, 303(5655): 217. doi: 10.1126/science.1091979

[65]

Auwarter W, Kreutz T J, Greber T. XPD and STM investigation of hexagonal boron nitride on Ni(111)[J]. Surf Sci, 1999, 429(1-3): 229. doi: 10.1016/S0039-6028(99)00381-7

[66]

Shi Y, Hamsen C, Jia X. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition[J]. Nano Lett, 2010, 10(10): 4134. doi: 10.1021/nl1023707

[67]

Song L, Ci L, Lu H. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Lett, 2010, 10(8): 3209. doi: 10.1021/nl1022139

[68]

Kim K K, Hsu A, Jia X. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Lett, 2012, 12(1): 161. doi: 10.1021/nl203249a

[69]

Kim G, Jang A R, Jeong H Y. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil[J]. Nano Lett, 2013, 13(4): 1834. doi: 10.1021/nl400559s

[70]

Kidambi P R, Blume R, Kling J. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper[J]. Chem Mater, 2014, 26(22): 6380. doi: 10.1021/cm502603n

[71]

Pierson H O. Boron nitride composites by chemical vapor deposition[J]. J Compos Mater, 1975, 9(3): 228. doi: 10.1177/002199837500900302

[72]

Rozenberg A S, Sinenko Y A, Chukanov N V. Regularities of pyrolytic boron nitride coating formation on a graphite matrix[J]. J Mater Sci, 1993, 28(20): 5528. doi: 10.1007/BF00367825

[73]

Middleman S. The role of gas-phase reactions in boron nitride growth by chemical vapor deposition[J]. Mater Sci Eng A, 1993, 163(1): 135. doi: 10.1016/0921-5093(93)90587-5

[74]

Chatterjee S, Luo Z, Acerce M. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions[J]. Chem Mater, 2011, 23(20): 4414. doi: 10.1021/cm201955v

[75]

Adams A C. Characterization of films formed by pyrolysis of borazine[J]. J Electrochem Soc, 1981, 128(6): 1378. doi: 10.1149/1.2127639

[76]

Auwarter W, Suter H U, Sachdev H. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from BTrichloroborazine (ClBNH)3[J]. Chem Mater, 2004, 16(2): 343. doi: 10.1021/cm034805s

[77]

Muller F, Stowe K, Sachdev H. Symmetry versus commensurability:epitaxial growth of hexagonal boron nitride on Pt(111) from B-trichloroborazine (ClBNH)3[J]. Chem Mater, 2005, 17(13): 3464. doi: 10.1021/cm048629e

[78]

Constant G, Feurer R. Preparation and characterization of thin protective films in silica tubes by thermal decomposition of hexachloroborazine[J]. J Less-Common Met, 1981, 82(1/2): 113.

[79]

Wolf G, Baumann J, Baitalow F. Calorimetric process monitoring of thermal decomposition of B-N-H compounds[J]. Thermochim Acta, 2000, 343(1/2): 19.

[80]

Kim K K, Hsu A, Jia X. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices[J]. ACS Nano, 2012, 6(10): 8583. doi: 10.1021/nn301675f

[81]

Han J, Lee J Y, Kwon H. Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition[J]. Nanotechnology, 2014, 25(14): 145604. doi: 10.1088/0957-4484/25/14/145604

[82]

Tay R Y, Wang X, Tsang S H. A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film[J]. J Mater Chem C, 2014, 2(9): 1650. doi: 10.1039/c3tc32011a

[83]

Park J H, Park J C, Yun S J. Large-area monolayer hexagonal boron nitride on Pt foil[J]. ACS Nano, 2014, 8(8): 8520. doi: 10.1021/nn503140y

[84]

Orofeo C M, Suzuki S, Kageshima H. Growth and low-energy electron microscopy characterization of monolayer hexagonal boron nitride on epitaxial cobalt[J]. Nano Res, 2013, 6(5): 335. doi: 10.1007/s12274-013-0310-1

[85]

Koepke J C, Wood J D, Chen Y. Role of pressure in the growth of hexagonal boron nitride thin films from ammoniaborane[J]. Chem Mater, 2016, 28(12): 4169. doi: 10.1021/acs.chemmater.6b00396

[86]

Wu Q, Park J H, Park S. Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains[J]. Sci Rep, 2015, 5: 16159. doi: 10.1038/srep16159

[87]

Gao Y, Ren W, Ma T. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils[J]. ACS Nano, 2013, 7(6): 5199. doi: 10.1021/nn4009356

[88]

Kim S M, Hsu A, Park M H. Synthesis of large-area multilayer hexagonal boron nitride for high material performance[J]. Nat Commun, 2015, 6: 8662. doi: 10.1038/ncomms9662

[89]

Fu L, Sun Y, Wu N. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy[J]. ACS Nano, 2016, 10(2): 2063. doi: 10.1021/acsnano.5b06254

[90]

Lee Y H, Liu K K, Lu A Y. Growth selectivity of hexagonalboron nitride layers on Ni with various crystal orientations[J]. RSC Adv, 2012, 2(1): 111. doi: 10.1039/C1RA00703C

[91]

Khan M H, Huang Z, Xiao F. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper[J]. Sci Rep, 2015, 5: 7743. doi: 10.1038/srep07743

[92]

Stehle Y, Meyer Ⅲ H M, Unocic R R. Synthesis of hexagonal boron nitride monolayer:control of nucleation and crystal morphology[J]. Chem Mater, 2015, 27(23): 8041. doi: 10.1021/acs.chemmater.5b03607

[93]

Liu Y, Bhowmick S, Yakobson B I. BN white graphene with "colorful" edges:the energies and morphology[J]. Nano Lett, 2011, 11(8): 3113. doi: 10.1021/nl2011142

[94]

Zhang Z, Liu Y, Yang Y. Growth mechanism and morphology of hexagonal boron nitride[J]. Nano Lett, 2016, 16(2): 1398. doi: 10.1021/acs.nanolett.5b04874

[95]

Liu L, Siegelb D A, Chen W. Unusual role of epilayersubstrate interactions in determining orientational relations in van der Waals epitaxy[J]. Proc Natl Acad Sci USA, 2014, 111(47): 16670. doi: 10.1073/pnas.1405613111

[96]

Song X, Gao J, Nie Y. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation[J]. Nano Res, 2015, 8(10): 3164. doi: 10.1007/s12274-015-0816-9

[97]

Tay R Y, Park H J, Ryu G H. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper[J]. Nanoscale, 2016, 8(4): 2434. doi: 10.1039/C5NR08036C

[98]

Yin J, Liu X, Lu W. Aligned growth of hexagonal boron nitride monolayer on germanium[J]. Small, 2015, 11(40): 5375. doi: 10.1002/smll.v11.40

[99]

Li J D, Li Y, Yin J. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation[J]. Small, 2016, 12(27): 3645. doi: 10.1002/smll.v12.27

[100]

Tay R Y, Griep M H, Mallick G. Growth of large singlecrystalline two-dimensional boron nitride hexagons on electropolished copper[J]. Nano Lett, 2014, 14(2): 839. doi: 10.1021/nl404207f

[101]

Wang L, Wu B, Chen J. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors[J]. Adv Mater, 2014, 26(10): 1559. doi: 10.1002/adma.201304937

[102]

Lu G, Wu T, Yuan Q. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy[J]. Nat Commun, 2015, 6: 6160. doi: 10.1038/ncomms7160

[103]

Caneva S, Weatherup R S, Bayer B C. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts[J]. Nano Lett, 2015, 15(3): 1867. doi: 10.1021/nl5046632

[104]

Yu J, Qin L, Hao Y. Vertically aligned boron nitride nanosheets:chemical vapor synthesis, ultraviolet light emission and superhydrophobicity[J]. ACS Nano, 2010, 4(1): 414. doi: 10.1021/nn901204c

[105]

Qin L, Yu J, Li M. Catalyst-free growth of mono- and fewatomic-layer boron nitride sheets by chemical vapor deposition[J]. Nanotechnology, 2011, 22(21): 215602. doi: 10.1088/0957-4484/22/21/215602

[106]

Tay R Y, Tsang S H, Loeblein M. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates[J]. Appl Phys Lett, 2015, 106(10): 101901. doi: 10.1063/1.4914474

[107]

Jang A R, Hong S, Hyun C. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire[J]. Nano Lett, 2016, 16(5): 3360. doi: 10.1021/acs.nanolett.6b01051

[108]

Suzuki S, Pallares R M, Hibino H. Growth of atomically thin hexagonal boron nitride films by diffusion through a metal film and precipitation[J]. J Phys D, 2012, 45: 385304. doi: 10.1088/0022-3727/45/38/385304

[109]

Suzuki S, Pallares R M, Orofeo C M. Boron nitride growth on metal foil using solid sources[J]. J Vac Sci Technol B, 2013, 31(4): 041804. doi: 10.1116/1.4810965

[110]

Zhang C, Fu L, Zhao S. Controllable co-segregation synthesis of wafer-scale hexagonal boron nitride thin films[J]. Adv Mater, 2014, 26(11): 1776. doi: 10.1002/adma.201304301

[111]

Nakhaie S, Wofford J M, Schumann T. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy[J]. Appl Phys Lett, 2015, 106(21): 213108. doi: 10.1063/1.4921921

[112]

Yang X, Guan Z, Zeng M. Facile synthesis of large-area ultrathin hexagonal BN films via self-limiting growth at the molten B2O3 surface[J]. Small, 2013, 9(8): 1353. doi: 10.1002/smll.201203126

[113]

Wang H L, Zhang X W, Meng J H. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition[J]. Small, 2015, 11(13): 1542. doi: 10.1002/smll.v11.13

[114]

Sutter P, Lahiri J, Zahl P. Scalable synthesis of uniform fewlayer hexagonal boron nitride dielectric films[J]. Nano Lett, 2013, 13(1): 276. doi: 10.1021/nl304080y

[1]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[2]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[3]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[4]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[5]

Liu Haijun, Yan Yonggao, Tang Xinfeng, Yin Lingling, Zhang Qingjie. Synthesis and Thermoelectric Properties of AgIn Codoped (AgIn)xPb1-2xTe Compounds. J. Semicond., 2007, 28(5): 705.

[6]

H. F. Mohamed, Changtai Xia, Qinglin Sai, Huiyuan Cui, Mingyan Pan, Hongji Qi. Growth and fundamentals of bulk β-Ga2O3 single crystals. J. Semicond., 2019, 40(1): 011801. doi: 10.1088/1674-4926/40/1/011801

[7]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[8]

Wang Kun, Tang Xinfeng, Zhang Qingjie. Thermoelectric Properties of p-Type Rare-Earth Element Cerium-Filled Skutterudite CeyFexCo4-xSb12. J. Semicond., 2006, 27(6): 1021.

[9]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[10]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[11]

Yan Wang, Le Huang, Zhongming Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond., 2017, 38(3): 034001. doi: 10.1088/1674-4926/38/3/034001

[12]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[13]

Xinzhe Min, Pengchen Zhu, Shuai Gu, Jia Zhu. Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. J. Semicond., 2017, 38(1): 011004. doi: 10.1088/1674-4926/38/1/011004

[14]

Congxin Xia, Jingbo Li. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J. Semicond., 2016, 37(5): 051001. doi: 10.1088/1674-4926/37/5/051001

[15]

Jie Jiang, Zhenhua Ni. Defect engineering in two-dimensional materials. J. Semicond., 2019, 40(7): 070403. doi: 10.1088/1674-4926/40/7/070403

[16]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[17]

Ziqi Zhou, Yu Cui, Ping-Heng Tan, Xuelu Liu, Zhongming Wei. Optical and electrical properties of two-dimensional anisotropic materials. J. Semicond., 2019, 40(6): 061001. doi: 10.1088/1674-4926/40/6/061001

[18]

Lun Dai. Room-temperature stable two-dimensional ferroelectric materials. J. Semicond., 2019, 40(6): 060402. doi: 10.1088/1674-4926/40/6/060402

[19]

Xian Huang. Materials and applications of bioresorbable electronics. J. Semicond., 2018, 39(1): 011003. doi: 10.1088/1674-4926/39/1/011003

[20]

Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study. J. Semicond., 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509

Search

Advanced Search >>

GET CITATION

H L Wang, Y J Zhao, Y Xie, X H Ma, X W Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride[J]. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003.

Export: BibTex EndNote

Article Metrics

Article views: 2669 Times PDF downloads: 57 Times Cited by: 0 Times

History

Manuscript received: 28 October 2016 Manuscript revised: 25 November 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误