J. Semicond. > Volume 39 > Issue 1 > Article Number: 011011

Recent advances in flexible and wearable organic optoelectronic devices

Hong Zhu 1, , Yang Shen 1, , Yanqing Li 1, and Jianxin Tang 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed.

Key words: flexible electronicsoptoelectronic deviceswearable devices

Abstract: Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed.

Key words: flexible electronicsoptoelectronic deviceswearable devices



References:

[1]

Zhou L, Xiang H Y, Shen S. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrode[J]. ACS Nano, 2014, 8(12): 12796. doi: 10.1021/nn506034g

[2]

Yin D, Feng J, Ma R. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nat Commun, 2016, 7: 11573. doi: 10.1038/ncomms11573

[3]

Lee J, Han T H, Park M H. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes[J]. Nat Commun, 2016, 7: 11791. doi: 10.1038/ncomms11791

[4]

Ok K H, Kim J, Park S R. Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes[J]. Sci Rep, 2015, 5: 9464. doi: 10.1038/srep09464

[5]

White M S, Kaltenbrunner M, Glowacki E D. Ultrathin, highly flexible and stretchable PLEDs[J]. Nat Photonics, 2013, 7: 811. doi: 10.1038/nphoton.2013.188

[6]

Guo F M, Cui X, Wang K L. Stretchable and compressible strain sensors based on carbon nanotube meshes[J]. Nanoscale, 2016, 8: 19352. doi: 10.1039/C6NR06804A

[7]

Li Y W, Meng L, Yang Y. High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J]. Nat Commun, 2016, 7: 10214. doi: 10.1038/ncomms10214

[8]

Lin Q F, Huang H T, Jing Y. Flexible photovoltaic technologies[J]. J Mater Chem C, 2014, 2: 1233. doi: 10.1039/c3tc32197e

[9]

Shin S S, Yang W S, Noh J H. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C[J]. Nat Commun, 2015, 6: 7410. doi: 10.1038/ncomms8410

[10]

Kim T, Kim J H, Kang T E. Flexible, highly efficient all-polymer solar cells[J]. Nat Commun, 2015, 6: 8547. doi: 10.1038/ncomms9547

[11]

Liang J J, Li L, Chen D. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric[J]. Nat Commun, 2015, 6: 7647. doi: 10.1038/ncomms8647

[12]

Yeo W H, Kim Y S, Lee J. Multifunctional epidermal electronics printed directly onto the skin[J]. Adv Mater, 2013, 25: 2773. doi: 10.1002/adma.201204426

[13]

Roh E, Hwang B U, Kim D. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers[J]. ACS Nano, 2015, 9(6): 6252. doi: 10.1021/acsnano.5b01613

[14]

Yamada T, Hayamizu Y, Yamamoto Y. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nat Nanotechnol, 2011, 6: 296. doi: 10.1038/nnano.2011.36

[15]

Son D, Lee J, Qiao S T. Multifunctional wearable devices for diagnosis and therapy of movement disorders[J]. Nat Nanotechnol, 2014, 9: 397. doi: 10.1038/nnano.2014.38

[16]

Wang X W, Gu Y, Xiong Z P. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Adv Mater, 2014, 26: 1336. doi: 10.1002/adma.201304248

[17]

ChadWebb R, Bonifas A P, Behnaz A. Ultrathin conformal devices for precise and continuous thermal characterization of human skin[J]. Nat Mater, 2013, 12: 938. doi: 10.1038/nmat3755

[18]

Ferrand H L, Bolisetty S, Demirors A F. Magnetic assembly of transparent and conducting graphene-based fuctional composites[J]. Nat Commun, 2016, 7: 12078. doi: 10.1038/ncomms12078

[19]

Han T H, Lee Y B, Choi M R. Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nat Photonics, 2012, 6: 105. doi: 10.1038/nphoton.2011.318

[20]

Jia S, Sun H D, Du J H. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes[J]. Nanoscale, 2016, 8: 10714. doi: 10.1039/C6NR01649A

[21]

Hu L B, Kim H S, Lee J Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4(5): 2955. doi: 10.1021/nn1005232

[22]

Hwang C, An J, Choi B D. Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode[J]. J Phys Chem C, 2016, 4: 1441. doi: 10.1039/C5TC03614C

[23]

Kang H, Kang I, Han J. Flexible and mechanically robust organic light-emitting diodes based on photopatternable silver nanowire electrodes[J]. J Phys Chem C, 2016, 120: 22012. doi: 10.1021/acs.jpcc.6b06599

[24]

Maurer J H M, González-García L, Reiser B. Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics[J]. Nano Lett, 2016, 16: 2921. doi: 10.1021/acs.nanolett.5b04319

[25]

Kim H J, Song M, Jeong J H. Highly efficient and stable cupronickel nanomesh electrode for flexible organic photovoltaic devices[J]. J Power Sources, 2016, 331: 22. doi: 10.1016/j.jpowsour.2016.09.024

[26]

Cheng T, Zhang Y Z, Lai W Y. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability[J]. Adv Mater, 2015, 27: 3349. doi: 10.1002/adma.201405864

[27]

Han B, Pei K, Huang Y L. Uniform self-forming metallic network as a high-performance transparent conductive electrode[J]. Adv Mater, 2014, 26: 873. doi: 10.1002/adma.v26.6

[28]

Jeong D W, Jang N S, Kim K H. A stretchable sensor platform based on simple and scalable lift-off micropatterning of metal nanowire network[J]. RSC Adv, 2016, 6: 74418. doi: 10.1039/C6RA15385B

[29]

Lee J Y, Connor S T, Cui Y. Solution-processed metal nanowire mesh transparent electrodes[J]. Nano Lett, 2008, 8(2): 689. doi: 10.1021/nl073296g

[30]

Cho H, Yun C H, Park J W. Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes[J]. Org Electron, 2009, 10: 1163. doi: 10.1016/j.orgel.2009.06.004

[31]

Kim D Y, Han Y C, Kim H C. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes[J]. Adv Funct Mater, 2015, 25(46): 7145. doi: 10.1002/adfm.201502542

[32]

Xiang H Y, Li Y Q, Zhou L. Outcoupling-enhanced flexible organic light-emitting diodes on ameliorated plastic substrate with built-in indium-tin-oxide-free transparent electrode[J]. ACS Nano, 2015, 9(7): 7553. doi: 10.1021/acsnano.5b02826

[33]

Ou Q D, Zhou L, Li Y Q. Simultaneously enhancing color spatial uniformity and operational stability with deterministic quasi-periodic nanocone arrays for tandem organic light-emitting diodes[J]. Advd Opt Mater, 2015, 3: 87. doi: 10.1002/adom.v3.1

[34]

Xu L H, Ou Q D, Li Y Q. Microcavity-free broadband light outcoupling enhancement in flexible organic light-emitting diodes with nanostructured transparent metal-dielectric composite electrodes[J]. ACS Nano, 2016, 10: 1625. doi: 10.1021/acsnano.5b07302

[35]

Kim J J, Lee J, Yang S P. Biologically inspired organic light-emitting diodes[J]. Nano Lett, 2016, 16: 2994. doi: 10.1021/acs.nanolett.5b05183

[36]

Huh J W, Shin J W, Cho D H. A randomly nano-structured scattering layer for transparent organic light emitting diodes[J]. Nanoscale, 2014, 6: 10727. doi: 10.1039/C4NR01520G

[37]

Lee K, Shin J W, Park J H. A light scattering layer for internal light extraction of organic light-emitting diodes based on silver nanowires[J]. ACS Appl Mater Interfaces, 2016, 8: 17409. doi: 10.1021/acsami.6b02924

[38]

Oh M C, Park J H, Jeon H J. Hollow-core polymeric nanoparticles for the enhancement of OLED outcoupling efficiency[J]. Dispalys, 2015, 37: 72. doi: 10.1016/j.displa.2014.11.004

[39]

Mann V, Rastogi V. Dielectric nanoparticles for the enhancement of OLED light extraction efficiency[J]. Opt Commun, 2017, 387: 202. doi: 10.1016/j.optcom.2016.11.059

[40]

Cheng P P, Ma G F, Li J. Plasmonic backscattering enhancement for inverted polymer solar cells[J]. J Mater Chem, 2012, 22: 22781. doi: 10.1039/c2jm34856j

[41]

Chen K S, Yip H L, Salinas J F. Strong photocurrent enhancements in highly efficient flexible organic solar cells by adopting a microcavity configuration[J]. Adv Mater, 2014, 26(20): 3349. doi: 10.1002/adma.v26.20

[42]

Tsujimura T, Fukawa J, Endoh K. Development of flexible organic light-emitting diode on barrier film and roll-to-roll manufacturing[J]. J Soc Inform Display, 2014, 22(8): 412. doi: 10.1002/jsid.261

[43]

Yao Y G, Tao J S, Zou J H. Light management in plastic-paper hybrid substrate towards high-performance optoelectronics[J]. Energy Environm Sci, 2016, 9: 2278. doi: 10.1039/C6EE01011C

[44]

Hsieh Y C, Yano H, Nogi M. An estimation of the Young’s modulus of bacterial cellulose filaments[J]. Cellulose, 2008, 15: 507. doi: 10.1007/s10570-008-9206-8

[45]

Czaja W, Romanovicz D, Brown R M Jr. Structural investigations of microbial cellulose produced in stationary and agitated culture[J]. Cellulose, 2004, 11: 403. doi: 10.1023/B:CELL.0000046412.11983.61

[46]

Nakagaito A H, Yano H. Novel high-strength biocomposite based on microfibrillated cellulose having nano-order-unit web-like network structure[J]. Appl Phys A, 2005, 80: 155. doi: 10.1007/s00339-003-2225-2

[47]

Ummartyotin S, Juntaro J, Sain M. Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display[J]. Industr Crops Prod, 2012, 35: 92. doi: 10.1016/j.indcrop.2011.06.025

[48]

Okahisa Y, Yoshida A, Miyaguchi S. Optical transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays[J]. Compos Sci Technol, 2009, 69: 1958. doi: 10.1016/j.compscitech.2009.04.017

[49]

Ji S Y, Hyun B G, Kim K. Photo-patternable and transparent films using cellulos nanofibers for stretchable origami electronics[J]. NPG Asia Mater, 2016, 8: e299. doi: 10.1038/am.2016.113

[50]

Zhou Y H, Khan T M, Liu J C. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination[J]. Org Electron, 2014, 15: 661. doi: 10.1016/j.orgel.2013.12.018

[51]

Jung Y H, Chang T H, Zhang H L. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper[J]. Nat Commun, 2015, 6: 7170. doi: 10.1038/ncomms8170

[52]

Liu Y F, Feng J, Yin D. Highly flexible and efficient top-emittingd organic light-emitting devices with ultrasmooth Ag anode[J]. Opt Lett, 2012, 37(11): 1796. doi: 10.1364/OL.37.001796

[53]

Lee H, Yoo J K, Park J H. A stretchable polymer-carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation[J]. Adv Energy Mater, 2012, 2(8): 976. doi: 10.1002/aenm.v2.8

[54]

Cao W R, Li J, Chen H Z. Transparent electrodes for organic optoelectronic devices: a review[J]. J Photonics Energy, 2014, 4(1): 040990. doi: 10.1117/1.JPE.4.040990

[55]

Lee H, Yoo J K, Park J H. Transfer-printed PEDOT: PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells[J]. ACS Appl Mater Interfaces, 2016, 8: 14029. doi: 10.1021/acsami.6b01389

[56]

Fallahzadeh A, Saghaei J, Saghaei T. Ultra-smoothpoly (3,4- ethylene dioxythiophene): poly (styrene sulfonate) films for flexible indium tin oxide- free organic light-emitting diodes[J]. J Lumin, 2016, 169: 251. doi: 10.1016/j.jlumin.2015.09.021

[57]

Aleksandrova M, Kurtev N, Videkov V. Material alternative to ITO for transparent conductive electrode in flexible display and photovoltaic devices[J]. Microelectron Eng, 2015, 145: 112. doi: 10.1016/j.mee.2015.03.053

[58]

Hsu C T, Wu C, Chuang C N. Synthesis and characterization of nano silver-modified graphene/PEDOT:PSS for highly conductive and transparent nanocomposite films[J]. J Polym Res, 2015, 22: 200. doi: 10.1007/s10965-015-0847-7

[59]

Lee H J, Song Y S, An T K. Ultrasmooth transparent conductive hybrid films of reduced graphene oxide and single-walled carbon nanotube by ultrasonic spraying[J]. Synth Metals, 2016, 221: 340. doi: 10.1016/j.synthmet.2016.10.012

[60]

Liu Z K, You P, Xie C. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J]. Nano Energy, 2016, 28: 151. doi: 10.1016/j.nanoen.2016.08.038

[61]

Huang J H, Fang J H, Liu C C. Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics[J]. ACS Nano, 2011, 5(8): 6262. doi: 10.1021/nn201253w

[62]

Anuj R, Madaria A R, Akshay Kumar A. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens[J]. Nanotechnology, 2011, 22: 245201. doi: 10.1088/0957-4484/22/24/245201

[63]

Yang Y, Ding S, Arak T. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light[J]. Nano Res, 2016, 9: 401. doi: 10.1007/s12274-015-0921-9

[64]

Altin Y, Tas M, Borazan I. Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT: PSS as alternative to ITO[J]. Surf Coat Technol, 2016, 302: 75. doi: 10.1016/j.surfcoat.2016.05.058

[65]

Lee M S, Lee K, Kim S Y. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures[J]. Nano Lett, 2013, 13: 2814. doi: 10.1021/nl401070p

[66]

An B W, Hyun B G, Kim S Y. Stretchable and transparent electrodes using structures of graphene-metal nanothrough networks with high performances and ultimate uniformity[J]. Nano Lett, 2014, 14: 6322. doi: 10.1021/nl502755y

[67]

Chen J H, Jang C, Xiao S D. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nat Nanotechnol, 2008, 3: 206. doi: 10.1038/nnano.2008.58

[68]

Huang X, Zeng Z Y, Fan Z X. Graphene-based electrodes[J]. Adv Mater, 2012, 24: 5979. doi: 10.1002/adma.201201587

[69]

Lee C G, Wei X D, Kysar J W. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321: 385. doi: 10.1126/science.1157996

[70]

Stankovich S S, Dikin D A, Dommett G H B. Graphene-based composite materials[J]. Nature, 2006, 442: 282. doi: 10.1038/nature04969

[71]

Sun T, Wang Z L, Shi Z J. Multilayered graphene used as anode of organic light emitting devices[J]. Appl Phys Lett, 2010, 96: 133301. doi: 10.1063/1.3373855

[72]

Wu J B, Agrawal M, Becerril H A. Organic light-emitting diodes on solution-processed graphene transparent electrodes[J]. ACS Nano, 2010, 4(1): 43. doi: 10.1021/nn900728d

[73]

Li N, Oida S, Tulevski G S. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes[J]. Nat Commun, 2013, 4: 2294. doi: 10.1038/ncomms3294

[74]

Song M, Dae You D S, Lim K. Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes[J]. Adv Funct Mater, 2013, 23: 4177. doi: 10.1002/adfm.v23.34

[75]

Madaria A R, Kumar A, Ishikawa F N. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique[J]. Nano Res, 2010, 3: 564. doi: 10.1007/s12274-010-0017-5

[76]

Kim J, Nam Y S, Song M H. Large pulsed electron beam welded percolation networks of silver nanowires for transparent and flexible electrodes[J]. ACS Appl Mater Interfaces, 2016, 8: 20938. doi: 10.1021/acsami.6b05874

[77]

Wei B W, Wu X K, Lian L. A highly conductive and smooth AgNW/PEDOT: PSS film treated by hot-pressing as electrode for organic light emitting diode[J]. Org Electron, 2017, 43: 182. doi: 10.1016/j.orgel.2017.01.030

[78]

Xiong X X, Liu H L, Chen Y Z. Highly conductive, air-stable silver nanowire@ iongel composite films toward flexible transparent electrodes[J]. Adv Mater, 2016, 28: 7167. doi: 10.1002/adma.201600358

[79]

Yun H J, Kim S J, Hwang J H. Silver nanowire- IZO- conducting polymer hybrids for flexible and transparent conductive electrodes for organic light-emitting diodes[J]. Sci Rep, 2016, 6: 34150. doi: 10.1038/srep34150

[80]

Kim D H, Ko E H, Kim K H. Transparent and flexible Ag nanowire network covered by a thin ITO layer for flexible organic light emitting diodes[J]. ECS J Solid State Technol, 2016, 5(7): 124. doi: 10.1149/2.0221607jss

[81]

Triambulo R E, Cheong H G, Park J W. All-solution-processed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics[J]. Org Electron, 2014, 15: 2685. doi: 10.1016/j.orgel.2014.07.039

[82]

Lin X Z, Chen S M, Yu J N. Enhanced conductivity of transparent and flexible silver nanowire electrodes fabricated by a solution-processed method at room temperature[J]. Thin Solid Films, 2017, 624: 54. doi: 10.1016/j.tsf.2017.01.027

[83]

Tao Y, Li J, Li K. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics[J]. Org Electron, 2017, 41: 179. doi: 10.1016/j.orgel.2016.10.046

[84]

Chiang K M, Huang Z Y, Tsai W L. Orthogonally weaved silver nanowire networks for very efficient organic optoelectronic devices[J]. Org Electron, 2017, 43: 15. doi: 10.1016/j.orgel.2016.12.054

[85]

Duan Y H, Duan Y, Wang W. Highly flexible peeled-off silver nanowire transparent anode using in organic light-emitting devices[J]. Appl Surf Sci, 2015, 351: 445. doi: 10.1016/j.apsusc.2015.05.161

[86]

Liu Y S, Feng J, Ou X L. Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices[J]. Org Electron, 2016, 31: 247. doi: 10.1016/j.orgel.2016.01.014

[87]

Liu S Y, Ho S H, So F. Novel patterning method for silver nanowire electrodes for thermal-evaporated organic light emitting diodes[J]. ACS Appl Mater Interfaces, 2016, 8: 9268. doi: 10.1021/acsami.6b00719

[88]

Jin W Y, Ginting R T, Ko K J. Ultra-smooth, fully solution-processed large-area transparent conducting electrodes for organic devices[J]. Sci Rep, 2016, 6: 36475.

[89]

Wang R L, Ruan H B. Synthesis of copper nanowires and its application to flexible transparent electrode[J]. J Alloys Compd, 2016, 656: 936. doi: 10.1016/j.jallcom.2015.09.279

[90]

Zhong Z Y, Lee H J, Kan D W. Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications[J]. ACS Nano, 2016, 10: 7847. doi: 10.1021/acsnano.6b03626

[91]

Won Y, Kim A, Lee D. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics[J]. NPG Asia Mater, 2014, 6: e105. doi: 10.1038/am.2014.36

[92]

Gong S, Zhao Y M, Yap L W. Fabrication of highly transparent and flexible nanomesh electrode via self-assembly of ultrathin gold nanowires[J]. Adv Electron Mater, 2016, 1: 1600121. doi: 10.1002/aelm.201600121

[93]

Dong H, Wu Z X, Jiang Y Q. A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices[J]. ACS Appl Mater Interfaces, 2016, 8: 31212. doi: 10.1021/acsami.6b09056

[94]

Chen R Y, Das S R, Jeong C. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes[J]. Adv Funct Mater, 2013, 23: 5150. doi: 10.1002/adfm.v23.41

[95]

Pang H Q, Yuan Y B, Zhou Y F. ZnS/Ag/ZnS coating as transparent anode for organic light emitting diodes[J]. J Lumin, 2007, 122: 587.

[96]

Yoon Ryu S Y, Noh J H, Hwang B H. Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode[J]. Appl Phys Lett, 2008, 92: 023306. doi: 10.1063/1.2835044

[97]

Han Y C, Lim M S, Park J H. ITO-free flexible organic light-emitting diode using ZnS/Ag/MoO3 anode incorporating a quasi-perfect Ag thin film[J]. Org Electron, 2013, 14: 3437. doi: 10.1016/j.orgel.2013.09.014

[98]

Ou Q D, Xu L H, Zhang W Y. Light outcoupling enhanced flexible organic light-emitting diodes[J]. Opt Express, 2016, 24(6): A674. doi: 10.1364/OE.24.00A674

[99]

Uoyama H, Goushi K, Shizu K. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012, 492(7428): 234. doi: 10.1038/nature11687

[100]

Baldo M A, O'Brien D F, You Y. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151. doi: 10.1038/25954

[101]

Minaev B, Baryshnikov G, Agren H. Principles of phosphorescent organic light emitting devices[J]. Phys Chem Chem Phys, 2013, 16(5): 1719.

[102]

Li Y, Xie G, Gong S. Dendronized delayed fluorescence emitters for non-doped, solution-processed organic light-emitting diodes with high efficiency and low efficiency roll-off simultaneously: two parallel emissive channels[J]. Chem Sci, 2016, 7: 1. doi: 10.1039/C6SC90001A

[103]

Koh T W, Choi J M, Lee S. Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes[J]. Adv Mater, 2010, 22(16): 1849. doi: 10.1002/adma.v22:16

[104]

Hong K, Lee J L. Review paper: recent developments in light extraction technologies of organic light emitting diodes[J]. Electron Mater Lett, 2011, 7(2): 77. doi: 10.1007/s13391-011-0601-1

[105]

Gu Y, Zhang D D, Ou Q D. Light extraction enhancement in organic light-emitting diodes based on localized surface plasmon and light scattering double-effect[J]. J Mater Chem C, 2013, 1(28): 4319. doi: 10.1039/c3tc30197d

[106]

Wang R, Xu L H, Li Y Q. Broadband light out-coupling enhancement of flexible organic light-emitting diodes using biomimetic quasirandom nanostructures[J]. Adv Opt Mater, 2015, 3: 203. doi: 10.1002/adom.201400391

[107]

Xu R P, Li Y Q, Tang J X. Recent advanced in flexible organic light-emitting diodes[J]. J Mater Chem C, 2016, 4: 9116. doi: 10.1039/C6TC03230C

[108]

Ko D H, Tumbleston J R, Gadisa A. Light-trapping nano-structures in organic photovoltaic cells[J]. J Mater Chem, 2011, 21(41): 16293. doi: 10.1039/c1jm12300a

[109]

Susrutha B, Giribabu L, Singh S P. Recent advances in flexible perovskite solar cells[J]. Chem Commun, 2015, 51(79): 14696. doi: 10.1039/C5CC03666F

[110]

Li G, Shrotriya V, Huang J. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat Mater, 2005, 4(11): 864. doi: 10.1038/nmat1500

[111]

Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells[J]. Chem Mater, 2004, 16(23): 4533. doi: 10.1021/cm049654n

[112]

Ou Q D, Zhou L, Li Y Q. Extremely efficient white organic light-emitting diodes for general lighting[J]. Adv Funct Mater, 2014, 24(46): 7249. doi: 10.1002/adfm.v24.46

[113]

Lu M H, Sturm J C. Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment[J]. J Appl Phys, 2002, 91(2): 595. doi: 10.1063/1.1425448

[114]

Bulović V, Khalfin V B, Gu G. Weak microcavity effects in organic light-emitting devices[J]. Phys Rev B, 1998, 58(7): 3730. doi: 10.1103/PhysRevB.58.3730

[115]

Sun Y, Forrest S R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids[J]. Nat Photonics, 2008, 2(8): 483. doi: 10.1038/nphoton.2008.132

[116]

Jang J H, Oh M C. Outcoupling enhancement of OLEDs with a randomly distributed ITO pattern fabricated by maskless wet etching method[J]. J Display Technol, 2013, 9(11): 900. doi: 10.1109/JDT.2013.2265696

[117]

Koo W H, Jeong S M, Araoka F. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles[J]. Nat Photonics, 2010, 4(4): 222.

[118]

Chang H W, Lee J, Hofmann S. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells[J]. J Appl Phys, 2013, 113(20): 204502. doi: 10.1063/1.4807000

[119]

Kim Y H, Lee J, Kim W M. We want our photons back: simple nanostructures for white organic light-emitting diode outcoupling[J]. Adv Funct Mater, 2014, 24: 2553. doi: 10.1002/adfm.201303401

[120]

He X, Wang W, Li S. Localized surface plasmon-enhanced electroluminescence in OLEDs by self-assembly Ag nanoparticle film[J]. Nanoscale Res Lett, 2015, 10(1): 468. doi: 10.1186/s11671-015-1176-9

[121]

Zhang D D, Wang R, Ma Y Y. Realizing both improved luminance and stability in organic light-emitting devices based on a solution-processed inter-layer composed of MoOX and Au nanoparticles mixture[J]. Org Electron, 2014, 15(4): 961. doi: 10.1016/j.orgel.2014.02.007

[122]

Fukuura T. Plasmons excited in a large dense silver nanoparticle layer enhance the luminescence intensity of organic light emitting diodes[J]. Appl Surf Sci, 2015, 346: 451. doi: 10.1016/j.apsusc.2015.04.044

[123]

Reineke S, Lindner F, Schwartz G. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244): 234. doi: 10.1038/nature08003

[124]

Kim E, Cho H, Kim K. A facile route to efficient, low-cost flexible organic light-emitting diodes: utilizing the high refractive index and built-in scattering properties of industrial-grade PEN substrates[J]. Adv Mater, 2015, 27: 1624. doi: 10.1002/adma.201404862

[125]

Mladenovski S, Neyts K, Pavicic D. Exceptionally efficient organic light emitting devices using high refractive index substrates[J]. Opt Express, 2009, 17(9): 7562. doi: 10.1364/OE.17.007562

[126]

Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428(6986): 911. doi: 10.1038/nature02498

[127]

Wang Z B, Helander M G, Qiu J. Unlocking the full potential of organic light-emitting diodes on flexible plastic[J]. Nat Photonics, 2011, 5(12): 753. doi: 10.1038/nphoton.2011.259

[128]

Dodabalapur A, Rothberg L J, Jordan R H. Physics and applications of organic microcavity light emitting diodes[J]. J Appl Phys, 1996, 80(12): 6954. doi: 10.1063/1.363768

[129]

Michaelidis C I, Demary K C, Lewis S M. Male courtship signals and female signal assessment in Photinus greeni fireflies[J]. Behavioral Ecology, 2006, 17(3): 329. doi: 10.1093/beheco/arj035

[130]

Moiseff A, Copeland J. Firefly synchrony: a behavioral strategy to minimize visual clutter[J]. Science, 2010, 329(5988): 181. doi: 10.1126/science.1190421

[131]

Ohba N. Flash communication systems of Japanese Fireflies1[J]. Integrative and Comparative Biology, 2004, 44(3): 225. doi: 10.1093/icb/44.3.225

[132]

Niggemann M, Riede M, Gombert A. Light trapping in organic solar cells[J]. Physica Status Solidi A, 2008, 205(12): 2862. doi: 10.1002/pssa.v205:12

[133]

Stratakis E, Kymakis E. Nanoparticle-based plasmonic organic photovoltaic devices[J]. Mater Today, 2013, 16(4): 133. doi: 10.1016/j.mattod.2013.04.006

[134]

Gan Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier[J]. Adv Mater, 2013, 25(17): 2385. doi: 10.1002/adma.v25.17

[135]

Chou C H, Chen F C. Plasmonic nanostructures for light trapping in organic photovoltaic devices[J]. Nanoscale, 2014, 6(15): 8444. doi: 10.1039/C4NR02191F

[136]

Choy W C H, Chan W K, Yuan Y. Recent advances in transition metal complexes and light-management engineering in organic optoelectronic devices[J]. Adv Mater, 2014, 26(31): 5368. doi: 10.1002/adma.201306133

[137]

Chueh C C, Crump M, Jen A K J. Optical enhancement via electrode designs for high-performance polymer solar cells[J]. Adv Funct Mater, 2016, 26(3): 321. doi: 10.1002/adfm.v26.3

[138]

Esfandyarpour M, Garnett E C, Cui Y. Metamaterial mirrors in optoelectronic devices[J]. Nat Nanotechnol, 2014, 9(7): 542. doi: 10.1038/nnano.2014.117

[139]

Kang M G, Xu T, Park H J. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes[J]. Adv Mater, 2010, 22(39): 4378. doi: 10.1002/adma.v22:39

[140]

Kim S S, Na S I, Jo J. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles[J]. Appl Phys Lett, 2008, 93(7): 305.

[141]

Fung D D S, Qiao L, Choy W C H. Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer[J]. J Maters Chem, 2011, 21(41): 16349. doi: 10.1039/c1jm12820e

[142]

Lee J H, Park J H, Kim J S. High efficiency polymer solar cells with wet deposited plasmonic gold nanodots[J]. Org Electron, 2009, 10(3): 416. doi: 10.1016/j.orgel.2009.01.004

[143]

Niesen B, Rand B P, Van Dorpe P. Plasmonic efficiency enhancement of high performance organic solar cells with a nanostructured rear electrode[J]. Adv Energy Mater, 2013, 3(2): 145. doi: 10.1002/aenm.v3.2

[144]

Ou Q D, Li Y Q, Tang J X. Light manipulation in organic photovoltaics[J]. Adv Sci, 2016, 3(7): 1600123. doi: 10.1002/advs.201600123

[145]

Chen J D, Zhou L, Ou Q D. Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating[J]. Adv Energy Mater, 2014, 4(9): 1301777. doi: 10.1002/aenm.201301777

[146]

Dal Z S, Tvingstedt K, Inganäs O. Fabrication of a light trapping system for organic solar cells[J]. Microelectron Eng, 2009, 86(4): 1150.

[147]

Tvingstedt K, Dal Z S, Inganäs O. Trapping light with micro lenses in thin film organic photovoltaic cells[J]. Optics Express, 2008, 16(26): 21608. doi: 10.1364/OE.16.021608

[148]

Myers J D, Cao W, Cassidy V. A universal optical approach to enhancing efficiency of organic-based photovoltaic devices[J]. Energy Environm Sci, 2012, 5(5): 6900. doi: 10.1039/c2ee21254d

[149]

Cho C, Jeong S, Choi H J. Toward perfect light trapping in thin-film photovoltaic cells: full utilization of the dual characteristics of light[J]. Adv Opt Mater, 2015, 3(12): 1697. doi: 10.1002/adom.v3.12

[150]

Sergeant N P, Hadipour A, Niesen B. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells[J]. Adv Mater, 2012, 24(6): 728. doi: 10.1002/adma.201104273

[151]

Yu W, Shen L, Meng F. Effects of the optical microcavity on the performance of ITO-free polymer solar cells with WO3/Ag/WO3 transparent electrode[J]. Solar Energy Mater Solar Cells, 2012, 100: 226. doi: 10.1016/j.solmat.2012.01.021

[152]

Chen Y H, Chen C W, Huang Z Y. Microcavity-embedded, colour-tuneable, transparent organic solar cells[J]. Adv Mater, 2014, 26(7): 1129. doi: 10.1002/adma.201304658

[153]

Jin H, Tao C, Velusamy M. Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules[J]. Adv Mater, 2012, 24(19): 2572. doi: 10.1002/adma.v24.19

[154]

Salinas J F, Yip H L, Chueh C C. Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells[J]. Adv Mater, 2012, 24(47): 6362. doi: 10.1002/adma.201203099

[155]

Huang J, Li C Z, Chueh C C. 10.4% power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration[J]. Adv Energy Mater, 2015, 5(15): 1500406. doi: 10.1002/aenm.201500406

[156]

Magliulo M, Mulla M Y, Singh M. Printable and flexible electronics: from TFTs to bioelectronic devices[J]. J Mater Chem C, 2015, 3(48): 12347. doi: 10.1039/C5TC02737C

[157]

Orgiu E, Samorì P. Organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices[J]. Adv Mater, 2014, 26(12): 1827. doi: 10.1002/adma.v26.12

[158]

Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973): 1603. doi: 10.1126/science.1182383

[159]

Sekitani T, Someya T. Stretchable, large-area organic electronics[J]. Adv Mater, 2010, 22(20): 2228. doi: 10.1002/adma.200904054

[160]

Fukuda K, Takeda Y, Yoshimura Y. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films[J]. Nat Commun, 2014, 5: 1.

[161]

Yu C, Masarapu C, Rong J. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms[J]. Adv Mater, 2009, 21(47): 4793. doi: 10.1002/adma.200901775

[162]

Yin D, Feng J, Jiang N R. Two-dimensional stretchable organic light-emitting devices with high efficiency[J]. ACS Appl Mater Interfaces, 2016, 8(45): 31166. doi: 10.1021/acsami.6b10328

[163]

Lipomi D J, Bao Z. Stretchable, elastic materials and devices for solar energy conversion[J]. Energy Environm Sci, 2011, 4(9): 3314. doi: 10.1039/c1ee01881g

[164]

Baca A J, Yu K J, Xiao J. Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs[J]. Energy Environm Sci, 2010, 3(2): 208. doi: 10.1039/b920862c

[165]

Kaltenbrunner M, White M S, Głowacki E D. Ultrathin and lightweight organic solar cells with high flexibility[J]. Nat Commun, 2012, 3: 770. doi: 10.1038/ncomms1772

[166]

Kang N, Choi W, Kim H. Transfer printed microcell array for stretchable organic solar cells[J]. ECS Solid State Lett, 2015, 4(11): 88. doi: 10.1149/2.0011511ssl

[167]

Nam J, Lee Y, Choi W. Transfer printed flexible and stretchable thin film solar cells using a water-soluble sacrificial layer[J]. Adv Energy Mater, 2016, 6(21): 1.

[168]

Dai M K, Lian J T, Lin T Y. High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO[J]. J Mater Chem C, 2013, 1(33): 5064. doi: 10.1039/c3tc30890a

[169]

Xu H, Luo D, Li M. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric[J]. J Mater Chem C, 2014, 2(7): 1255. doi: 10.1039/C3TC31710B

[1]

Zhou L, Xiang H Y, Shen S. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrode[J]. ACS Nano, 2014, 8(12): 12796. doi: 10.1021/nn506034g

[2]

Yin D, Feng J, Ma R. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nat Commun, 2016, 7: 11573. doi: 10.1038/ncomms11573

[3]

Lee J, Han T H, Park M H. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes[J]. Nat Commun, 2016, 7: 11791. doi: 10.1038/ncomms11791

[4]

Ok K H, Kim J, Park S R. Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes[J]. Sci Rep, 2015, 5: 9464. doi: 10.1038/srep09464

[5]

White M S, Kaltenbrunner M, Glowacki E D. Ultrathin, highly flexible and stretchable PLEDs[J]. Nat Photonics, 2013, 7: 811. doi: 10.1038/nphoton.2013.188

[6]

Guo F M, Cui X, Wang K L. Stretchable and compressible strain sensors based on carbon nanotube meshes[J]. Nanoscale, 2016, 8: 19352. doi: 10.1039/C6NR06804A

[7]

Li Y W, Meng L, Yang Y. High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J]. Nat Commun, 2016, 7: 10214. doi: 10.1038/ncomms10214

[8]

Lin Q F, Huang H T, Jing Y. Flexible photovoltaic technologies[J]. J Mater Chem C, 2014, 2: 1233. doi: 10.1039/c3tc32197e

[9]

Shin S S, Yang W S, Noh J H. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C[J]. Nat Commun, 2015, 6: 7410. doi: 10.1038/ncomms8410

[10]

Kim T, Kim J H, Kang T E. Flexible, highly efficient all-polymer solar cells[J]. Nat Commun, 2015, 6: 8547. doi: 10.1038/ncomms9547

[11]

Liang J J, Li L, Chen D. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric[J]. Nat Commun, 2015, 6: 7647. doi: 10.1038/ncomms8647

[12]

Yeo W H, Kim Y S, Lee J. Multifunctional epidermal electronics printed directly onto the skin[J]. Adv Mater, 2013, 25: 2773. doi: 10.1002/adma.201204426

[13]

Roh E, Hwang B U, Kim D. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers[J]. ACS Nano, 2015, 9(6): 6252. doi: 10.1021/acsnano.5b01613

[14]

Yamada T, Hayamizu Y, Yamamoto Y. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nat Nanotechnol, 2011, 6: 296. doi: 10.1038/nnano.2011.36

[15]

Son D, Lee J, Qiao S T. Multifunctional wearable devices for diagnosis and therapy of movement disorders[J]. Nat Nanotechnol, 2014, 9: 397. doi: 10.1038/nnano.2014.38

[16]

Wang X W, Gu Y, Xiong Z P. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Adv Mater, 2014, 26: 1336. doi: 10.1002/adma.201304248

[17]

ChadWebb R, Bonifas A P, Behnaz A. Ultrathin conformal devices for precise and continuous thermal characterization of human skin[J]. Nat Mater, 2013, 12: 938. doi: 10.1038/nmat3755

[18]

Ferrand H L, Bolisetty S, Demirors A F. Magnetic assembly of transparent and conducting graphene-based fuctional composites[J]. Nat Commun, 2016, 7: 12078. doi: 10.1038/ncomms12078

[19]

Han T H, Lee Y B, Choi M R. Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nat Photonics, 2012, 6: 105. doi: 10.1038/nphoton.2011.318

[20]

Jia S, Sun H D, Du J H. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes[J]. Nanoscale, 2016, 8: 10714. doi: 10.1039/C6NR01649A

[21]

Hu L B, Kim H S, Lee J Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4(5): 2955. doi: 10.1021/nn1005232

[22]

Hwang C, An J, Choi B D. Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode[J]. J Phys Chem C, 2016, 4: 1441. doi: 10.1039/C5TC03614C

[23]

Kang H, Kang I, Han J. Flexible and mechanically robust organic light-emitting diodes based on photopatternable silver nanowire electrodes[J]. J Phys Chem C, 2016, 120: 22012. doi: 10.1021/acs.jpcc.6b06599

[24]

Maurer J H M, González-García L, Reiser B. Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics[J]. Nano Lett, 2016, 16: 2921. doi: 10.1021/acs.nanolett.5b04319

[25]

Kim H J, Song M, Jeong J H. Highly efficient and stable cupronickel nanomesh electrode for flexible organic photovoltaic devices[J]. J Power Sources, 2016, 331: 22. doi: 10.1016/j.jpowsour.2016.09.024

[26]

Cheng T, Zhang Y Z, Lai W Y. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability[J]. Adv Mater, 2015, 27: 3349. doi: 10.1002/adma.201405864

[27]

Han B, Pei K, Huang Y L. Uniform self-forming metallic network as a high-performance transparent conductive electrode[J]. Adv Mater, 2014, 26: 873. doi: 10.1002/adma.v26.6

[28]

Jeong D W, Jang N S, Kim K H. A stretchable sensor platform based on simple and scalable lift-off micropatterning of metal nanowire network[J]. RSC Adv, 2016, 6: 74418. doi: 10.1039/C6RA15385B

[29]

Lee J Y, Connor S T, Cui Y. Solution-processed metal nanowire mesh transparent electrodes[J]. Nano Lett, 2008, 8(2): 689. doi: 10.1021/nl073296g

[30]

Cho H, Yun C H, Park J W. Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes[J]. Org Electron, 2009, 10: 1163. doi: 10.1016/j.orgel.2009.06.004

[31]

Kim D Y, Han Y C, Kim H C. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes[J]. Adv Funct Mater, 2015, 25(46): 7145. doi: 10.1002/adfm.201502542

[32]

Xiang H Y, Li Y Q, Zhou L. Outcoupling-enhanced flexible organic light-emitting diodes on ameliorated plastic substrate with built-in indium-tin-oxide-free transparent electrode[J]. ACS Nano, 2015, 9(7): 7553. doi: 10.1021/acsnano.5b02826

[33]

Ou Q D, Zhou L, Li Y Q. Simultaneously enhancing color spatial uniformity and operational stability with deterministic quasi-periodic nanocone arrays for tandem organic light-emitting diodes[J]. Advd Opt Mater, 2015, 3: 87. doi: 10.1002/adom.v3.1

[34]

Xu L H, Ou Q D, Li Y Q. Microcavity-free broadband light outcoupling enhancement in flexible organic light-emitting diodes with nanostructured transparent metal-dielectric composite electrodes[J]. ACS Nano, 2016, 10: 1625. doi: 10.1021/acsnano.5b07302

[35]

Kim J J, Lee J, Yang S P. Biologically inspired organic light-emitting diodes[J]. Nano Lett, 2016, 16: 2994. doi: 10.1021/acs.nanolett.5b05183

[36]

Huh J W, Shin J W, Cho D H. A randomly nano-structured scattering layer for transparent organic light emitting diodes[J]. Nanoscale, 2014, 6: 10727. doi: 10.1039/C4NR01520G

[37]

Lee K, Shin J W, Park J H. A light scattering layer for internal light extraction of organic light-emitting diodes based on silver nanowires[J]. ACS Appl Mater Interfaces, 2016, 8: 17409. doi: 10.1021/acsami.6b02924

[38]

Oh M C, Park J H, Jeon H J. Hollow-core polymeric nanoparticles for the enhancement of OLED outcoupling efficiency[J]. Dispalys, 2015, 37: 72. doi: 10.1016/j.displa.2014.11.004

[39]

Mann V, Rastogi V. Dielectric nanoparticles for the enhancement of OLED light extraction efficiency[J]. Opt Commun, 2017, 387: 202. doi: 10.1016/j.optcom.2016.11.059

[40]

Cheng P P, Ma G F, Li J. Plasmonic backscattering enhancement for inverted polymer solar cells[J]. J Mater Chem, 2012, 22: 22781. doi: 10.1039/c2jm34856j

[41]

Chen K S, Yip H L, Salinas J F. Strong photocurrent enhancements in highly efficient flexible organic solar cells by adopting a microcavity configuration[J]. Adv Mater, 2014, 26(20): 3349. doi: 10.1002/adma.v26.20

[42]

Tsujimura T, Fukawa J, Endoh K. Development of flexible organic light-emitting diode on barrier film and roll-to-roll manufacturing[J]. J Soc Inform Display, 2014, 22(8): 412. doi: 10.1002/jsid.261

[43]

Yao Y G, Tao J S, Zou J H. Light management in plastic-paper hybrid substrate towards high-performance optoelectronics[J]. Energy Environm Sci, 2016, 9: 2278. doi: 10.1039/C6EE01011C

[44]

Hsieh Y C, Yano H, Nogi M. An estimation of the Young’s modulus of bacterial cellulose filaments[J]. Cellulose, 2008, 15: 507. doi: 10.1007/s10570-008-9206-8

[45]

Czaja W, Romanovicz D, Brown R M Jr. Structural investigations of microbial cellulose produced in stationary and agitated culture[J]. Cellulose, 2004, 11: 403. doi: 10.1023/B:CELL.0000046412.11983.61

[46]

Nakagaito A H, Yano H. Novel high-strength biocomposite based on microfibrillated cellulose having nano-order-unit web-like network structure[J]. Appl Phys A, 2005, 80: 155. doi: 10.1007/s00339-003-2225-2

[47]

Ummartyotin S, Juntaro J, Sain M. Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display[J]. Industr Crops Prod, 2012, 35: 92. doi: 10.1016/j.indcrop.2011.06.025

[48]

Okahisa Y, Yoshida A, Miyaguchi S. Optical transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays[J]. Compos Sci Technol, 2009, 69: 1958. doi: 10.1016/j.compscitech.2009.04.017

[49]

Ji S Y, Hyun B G, Kim K. Photo-patternable and transparent films using cellulos nanofibers for stretchable origami electronics[J]. NPG Asia Mater, 2016, 8: e299. doi: 10.1038/am.2016.113

[50]

Zhou Y H, Khan T M, Liu J C. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination[J]. Org Electron, 2014, 15: 661. doi: 10.1016/j.orgel.2013.12.018

[51]

Jung Y H, Chang T H, Zhang H L. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper[J]. Nat Commun, 2015, 6: 7170. doi: 10.1038/ncomms8170

[52]

Liu Y F, Feng J, Yin D. Highly flexible and efficient top-emittingd organic light-emitting devices with ultrasmooth Ag anode[J]. Opt Lett, 2012, 37(11): 1796. doi: 10.1364/OL.37.001796

[53]

Lee H, Yoo J K, Park J H. A stretchable polymer-carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation[J]. Adv Energy Mater, 2012, 2(8): 976. doi: 10.1002/aenm.v2.8

[54]

Cao W R, Li J, Chen H Z. Transparent electrodes for organic optoelectronic devices: a review[J]. J Photonics Energy, 2014, 4(1): 040990. doi: 10.1117/1.JPE.4.040990

[55]

Lee H, Yoo J K, Park J H. Transfer-printed PEDOT: PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells[J]. ACS Appl Mater Interfaces, 2016, 8: 14029. doi: 10.1021/acsami.6b01389

[56]

Fallahzadeh A, Saghaei J, Saghaei T. Ultra-smoothpoly (3,4- ethylene dioxythiophene): poly (styrene sulfonate) films for flexible indium tin oxide- free organic light-emitting diodes[J]. J Lumin, 2016, 169: 251. doi: 10.1016/j.jlumin.2015.09.021

[57]

Aleksandrova M, Kurtev N, Videkov V. Material alternative to ITO for transparent conductive electrode in flexible display and photovoltaic devices[J]. Microelectron Eng, 2015, 145: 112. doi: 10.1016/j.mee.2015.03.053

[58]

Hsu C T, Wu C, Chuang C N. Synthesis and characterization of nano silver-modified graphene/PEDOT:PSS for highly conductive and transparent nanocomposite films[J]. J Polym Res, 2015, 22: 200. doi: 10.1007/s10965-015-0847-7

[59]

Lee H J, Song Y S, An T K. Ultrasmooth transparent conductive hybrid films of reduced graphene oxide and single-walled carbon nanotube by ultrasonic spraying[J]. Synth Metals, 2016, 221: 340. doi: 10.1016/j.synthmet.2016.10.012

[60]

Liu Z K, You P, Xie C. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J]. Nano Energy, 2016, 28: 151. doi: 10.1016/j.nanoen.2016.08.038

[61]

Huang J H, Fang J H, Liu C C. Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics[J]. ACS Nano, 2011, 5(8): 6262. doi: 10.1021/nn201253w

[62]

Anuj R, Madaria A R, Akshay Kumar A. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens[J]. Nanotechnology, 2011, 22: 245201. doi: 10.1088/0957-4484/22/24/245201

[63]

Yang Y, Ding S, Arak T. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light[J]. Nano Res, 2016, 9: 401. doi: 10.1007/s12274-015-0921-9

[64]

Altin Y, Tas M, Borazan I. Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT: PSS as alternative to ITO[J]. Surf Coat Technol, 2016, 302: 75. doi: 10.1016/j.surfcoat.2016.05.058

[65]

Lee M S, Lee K, Kim S Y. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures[J]. Nano Lett, 2013, 13: 2814. doi: 10.1021/nl401070p

[66]

An B W, Hyun B G, Kim S Y. Stretchable and transparent electrodes using structures of graphene-metal nanothrough networks with high performances and ultimate uniformity[J]. Nano Lett, 2014, 14: 6322. doi: 10.1021/nl502755y

[67]

Chen J H, Jang C, Xiao S D. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nat Nanotechnol, 2008, 3: 206. doi: 10.1038/nnano.2008.58

[68]

Huang X, Zeng Z Y, Fan Z X. Graphene-based electrodes[J]. Adv Mater, 2012, 24: 5979. doi: 10.1002/adma.201201587

[69]

Lee C G, Wei X D, Kysar J W. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321: 385. doi: 10.1126/science.1157996

[70]

Stankovich S S, Dikin D A, Dommett G H B. Graphene-based composite materials[J]. Nature, 2006, 442: 282. doi: 10.1038/nature04969

[71]

Sun T, Wang Z L, Shi Z J. Multilayered graphene used as anode of organic light emitting devices[J]. Appl Phys Lett, 2010, 96: 133301. doi: 10.1063/1.3373855

[72]

Wu J B, Agrawal M, Becerril H A. Organic light-emitting diodes on solution-processed graphene transparent electrodes[J]. ACS Nano, 2010, 4(1): 43. doi: 10.1021/nn900728d

[73]

Li N, Oida S, Tulevski G S. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes[J]. Nat Commun, 2013, 4: 2294. doi: 10.1038/ncomms3294

[74]

Song M, Dae You D S, Lim K. Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes[J]. Adv Funct Mater, 2013, 23: 4177. doi: 10.1002/adfm.v23.34

[75]

Madaria A R, Kumar A, Ishikawa F N. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique[J]. Nano Res, 2010, 3: 564. doi: 10.1007/s12274-010-0017-5

[76]

Kim J, Nam Y S, Song M H. Large pulsed electron beam welded percolation networks of silver nanowires for transparent and flexible electrodes[J]. ACS Appl Mater Interfaces, 2016, 8: 20938. doi: 10.1021/acsami.6b05874

[77]

Wei B W, Wu X K, Lian L. A highly conductive and smooth AgNW/PEDOT: PSS film treated by hot-pressing as electrode for organic light emitting diode[J]. Org Electron, 2017, 43: 182. doi: 10.1016/j.orgel.2017.01.030

[78]

Xiong X X, Liu H L, Chen Y Z. Highly conductive, air-stable silver nanowire@ iongel composite films toward flexible transparent electrodes[J]. Adv Mater, 2016, 28: 7167. doi: 10.1002/adma.201600358

[79]

Yun H J, Kim S J, Hwang J H. Silver nanowire- IZO- conducting polymer hybrids for flexible and transparent conductive electrodes for organic light-emitting diodes[J]. Sci Rep, 2016, 6: 34150. doi: 10.1038/srep34150

[80]

Kim D H, Ko E H, Kim K H. Transparent and flexible Ag nanowire network covered by a thin ITO layer for flexible organic light emitting diodes[J]. ECS J Solid State Technol, 2016, 5(7): 124. doi: 10.1149/2.0221607jss

[81]

Triambulo R E, Cheong H G, Park J W. All-solution-processed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics[J]. Org Electron, 2014, 15: 2685. doi: 10.1016/j.orgel.2014.07.039

[82]

Lin X Z, Chen S M, Yu J N. Enhanced conductivity of transparent and flexible silver nanowire electrodes fabricated by a solution-processed method at room temperature[J]. Thin Solid Films, 2017, 624: 54. doi: 10.1016/j.tsf.2017.01.027

[83]

Tao Y, Li J, Li K. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics[J]. Org Electron, 2017, 41: 179. doi: 10.1016/j.orgel.2016.10.046

[84]

Chiang K M, Huang Z Y, Tsai W L. Orthogonally weaved silver nanowire networks for very efficient organic optoelectronic devices[J]. Org Electron, 2017, 43: 15. doi: 10.1016/j.orgel.2016.12.054

[85]

Duan Y H, Duan Y, Wang W. Highly flexible peeled-off silver nanowire transparent anode using in organic light-emitting devices[J]. Appl Surf Sci, 2015, 351: 445. doi: 10.1016/j.apsusc.2015.05.161

[86]

Liu Y S, Feng J, Ou X L. Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices[J]. Org Electron, 2016, 31: 247. doi: 10.1016/j.orgel.2016.01.014

[87]

Liu S Y, Ho S H, So F. Novel patterning method for silver nanowire electrodes for thermal-evaporated organic light emitting diodes[J]. ACS Appl Mater Interfaces, 2016, 8: 9268. doi: 10.1021/acsami.6b00719

[88]

Jin W Y, Ginting R T, Ko K J. Ultra-smooth, fully solution-processed large-area transparent conducting electrodes for organic devices[J]. Sci Rep, 2016, 6: 36475.

[89]

Wang R L, Ruan H B. Synthesis of copper nanowires and its application to flexible transparent electrode[J]. J Alloys Compd, 2016, 656: 936. doi: 10.1016/j.jallcom.2015.09.279

[90]

Zhong Z Y, Lee H J, Kan D W. Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications[J]. ACS Nano, 2016, 10: 7847. doi: 10.1021/acsnano.6b03626

[91]

Won Y, Kim A, Lee D. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics[J]. NPG Asia Mater, 2014, 6: e105. doi: 10.1038/am.2014.36

[92]

Gong S, Zhao Y M, Yap L W. Fabrication of highly transparent and flexible nanomesh electrode via self-assembly of ultrathin gold nanowires[J]. Adv Electron Mater, 2016, 1: 1600121. doi: 10.1002/aelm.201600121

[93]

Dong H, Wu Z X, Jiang Y Q. A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices[J]. ACS Appl Mater Interfaces, 2016, 8: 31212. doi: 10.1021/acsami.6b09056

[94]

Chen R Y, Das S R, Jeong C. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes[J]. Adv Funct Mater, 2013, 23: 5150. doi: 10.1002/adfm.v23.41

[95]

Pang H Q, Yuan Y B, Zhou Y F. ZnS/Ag/ZnS coating as transparent anode for organic light emitting diodes[J]. J Lumin, 2007, 122: 587.

[96]

Yoon Ryu S Y, Noh J H, Hwang B H. Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode[J]. Appl Phys Lett, 2008, 92: 023306. doi: 10.1063/1.2835044

[97]

Han Y C, Lim M S, Park J H. ITO-free flexible organic light-emitting diode using ZnS/Ag/MoO3 anode incorporating a quasi-perfect Ag thin film[J]. Org Electron, 2013, 14: 3437. doi: 10.1016/j.orgel.2013.09.014

[98]

Ou Q D, Xu L H, Zhang W Y. Light outcoupling enhanced flexible organic light-emitting diodes[J]. Opt Express, 2016, 24(6): A674. doi: 10.1364/OE.24.00A674

[99]

Uoyama H, Goushi K, Shizu K. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012, 492(7428): 234. doi: 10.1038/nature11687

[100]

Baldo M A, O'Brien D F, You Y. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151. doi: 10.1038/25954

[101]

Minaev B, Baryshnikov G, Agren H. Principles of phosphorescent organic light emitting devices[J]. Phys Chem Chem Phys, 2013, 16(5): 1719.

[102]

Li Y, Xie G, Gong S. Dendronized delayed fluorescence emitters for non-doped, solution-processed organic light-emitting diodes with high efficiency and low efficiency roll-off simultaneously: two parallel emissive channels[J]. Chem Sci, 2016, 7: 1. doi: 10.1039/C6SC90001A

[103]

Koh T W, Choi J M, Lee S. Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes[J]. Adv Mater, 2010, 22(16): 1849. doi: 10.1002/adma.v22:16

[104]

Hong K, Lee J L. Review paper: recent developments in light extraction technologies of organic light emitting diodes[J]. Electron Mater Lett, 2011, 7(2): 77. doi: 10.1007/s13391-011-0601-1

[105]

Gu Y, Zhang D D, Ou Q D. Light extraction enhancement in organic light-emitting diodes based on localized surface plasmon and light scattering double-effect[J]. J Mater Chem C, 2013, 1(28): 4319. doi: 10.1039/c3tc30197d

[106]

Wang R, Xu L H, Li Y Q. Broadband light out-coupling enhancement of flexible organic light-emitting diodes using biomimetic quasirandom nanostructures[J]. Adv Opt Mater, 2015, 3: 203. doi: 10.1002/adom.201400391

[107]

Xu R P, Li Y Q, Tang J X. Recent advanced in flexible organic light-emitting diodes[J]. J Mater Chem C, 2016, 4: 9116. doi: 10.1039/C6TC03230C

[108]

Ko D H, Tumbleston J R, Gadisa A. Light-trapping nano-structures in organic photovoltaic cells[J]. J Mater Chem, 2011, 21(41): 16293. doi: 10.1039/c1jm12300a

[109]

Susrutha B, Giribabu L, Singh S P. Recent advances in flexible perovskite solar cells[J]. Chem Commun, 2015, 51(79): 14696. doi: 10.1039/C5CC03666F

[110]

Li G, Shrotriya V, Huang J. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat Mater, 2005, 4(11): 864. doi: 10.1038/nmat1500

[111]

Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells[J]. Chem Mater, 2004, 16(23): 4533. doi: 10.1021/cm049654n

[112]

Ou Q D, Zhou L, Li Y Q. Extremely efficient white organic light-emitting diodes for general lighting[J]. Adv Funct Mater, 2014, 24(46): 7249. doi: 10.1002/adfm.v24.46

[113]

Lu M H, Sturm J C. Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment[J]. J Appl Phys, 2002, 91(2): 595. doi: 10.1063/1.1425448

[114]

Bulović V, Khalfin V B, Gu G. Weak microcavity effects in organic light-emitting devices[J]. Phys Rev B, 1998, 58(7): 3730. doi: 10.1103/PhysRevB.58.3730

[115]

Sun Y, Forrest S R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids[J]. Nat Photonics, 2008, 2(8): 483. doi: 10.1038/nphoton.2008.132

[116]

Jang J H, Oh M C. Outcoupling enhancement of OLEDs with a randomly distributed ITO pattern fabricated by maskless wet etching method[J]. J Display Technol, 2013, 9(11): 900. doi: 10.1109/JDT.2013.2265696

[117]

Koo W H, Jeong S M, Araoka F. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles[J]. Nat Photonics, 2010, 4(4): 222.

[118]

Chang H W, Lee J, Hofmann S. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells[J]. J Appl Phys, 2013, 113(20): 204502. doi: 10.1063/1.4807000

[119]

Kim Y H, Lee J, Kim W M. We want our photons back: simple nanostructures for white organic light-emitting diode outcoupling[J]. Adv Funct Mater, 2014, 24: 2553. doi: 10.1002/adfm.201303401

[120]

He X, Wang W, Li S. Localized surface plasmon-enhanced electroluminescence in OLEDs by self-assembly Ag nanoparticle film[J]. Nanoscale Res Lett, 2015, 10(1): 468. doi: 10.1186/s11671-015-1176-9

[121]

Zhang D D, Wang R, Ma Y Y. Realizing both improved luminance and stability in organic light-emitting devices based on a solution-processed inter-layer composed of MoOX and Au nanoparticles mixture[J]. Org Electron, 2014, 15(4): 961. doi: 10.1016/j.orgel.2014.02.007

[122]

Fukuura T. Plasmons excited in a large dense silver nanoparticle layer enhance the luminescence intensity of organic light emitting diodes[J]. Appl Surf Sci, 2015, 346: 451. doi: 10.1016/j.apsusc.2015.04.044

[123]

Reineke S, Lindner F, Schwartz G. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244): 234. doi: 10.1038/nature08003

[124]

Kim E, Cho H, Kim K. A facile route to efficient, low-cost flexible organic light-emitting diodes: utilizing the high refractive index and built-in scattering properties of industrial-grade PEN substrates[J]. Adv Mater, 2015, 27: 1624. doi: 10.1002/adma.201404862

[125]

Mladenovski S, Neyts K, Pavicic D. Exceptionally efficient organic light emitting devices using high refractive index substrates[J]. Opt Express, 2009, 17(9): 7562. doi: 10.1364/OE.17.007562

[126]

Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428(6986): 911. doi: 10.1038/nature02498

[127]

Wang Z B, Helander M G, Qiu J. Unlocking the full potential of organic light-emitting diodes on flexible plastic[J]. Nat Photonics, 2011, 5(12): 753. doi: 10.1038/nphoton.2011.259

[128]

Dodabalapur A, Rothberg L J, Jordan R H. Physics and applications of organic microcavity light emitting diodes[J]. J Appl Phys, 1996, 80(12): 6954. doi: 10.1063/1.363768

[129]

Michaelidis C I, Demary K C, Lewis S M. Male courtship signals and female signal assessment in Photinus greeni fireflies[J]. Behavioral Ecology, 2006, 17(3): 329. doi: 10.1093/beheco/arj035

[130]

Moiseff A, Copeland J. Firefly synchrony: a behavioral strategy to minimize visual clutter[J]. Science, 2010, 329(5988): 181. doi: 10.1126/science.1190421

[131]

Ohba N. Flash communication systems of Japanese Fireflies1[J]. Integrative and Comparative Biology, 2004, 44(3): 225. doi: 10.1093/icb/44.3.225

[132]

Niggemann M, Riede M, Gombert A. Light trapping in organic solar cells[J]. Physica Status Solidi A, 2008, 205(12): 2862. doi: 10.1002/pssa.v205:12

[133]

Stratakis E, Kymakis E. Nanoparticle-based plasmonic organic photovoltaic devices[J]. Mater Today, 2013, 16(4): 133. doi: 10.1016/j.mattod.2013.04.006

[134]

Gan Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier[J]. Adv Mater, 2013, 25(17): 2385. doi: 10.1002/adma.v25.17

[135]

Chou C H, Chen F C. Plasmonic nanostructures for light trapping in organic photovoltaic devices[J]. Nanoscale, 2014, 6(15): 8444. doi: 10.1039/C4NR02191F

[136]

Choy W C H, Chan W K, Yuan Y. Recent advances in transition metal complexes and light-management engineering in organic optoelectronic devices[J]. Adv Mater, 2014, 26(31): 5368. doi: 10.1002/adma.201306133

[137]

Chueh C C, Crump M, Jen A K J. Optical enhancement via electrode designs for high-performance polymer solar cells[J]. Adv Funct Mater, 2016, 26(3): 321. doi: 10.1002/adfm.v26.3

[138]

Esfandyarpour M, Garnett E C, Cui Y. Metamaterial mirrors in optoelectronic devices[J]. Nat Nanotechnol, 2014, 9(7): 542. doi: 10.1038/nnano.2014.117

[139]

Kang M G, Xu T, Park H J. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes[J]. Adv Mater, 2010, 22(39): 4378. doi: 10.1002/adma.v22:39

[140]

Kim S S, Na S I, Jo J. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles[J]. Appl Phys Lett, 2008, 93(7): 305.

[141]

Fung D D S, Qiao L, Choy W C H. Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer[J]. J Maters Chem, 2011, 21(41): 16349. doi: 10.1039/c1jm12820e

[142]

Lee J H, Park J H, Kim J S. High efficiency polymer solar cells with wet deposited plasmonic gold nanodots[J]. Org Electron, 2009, 10(3): 416. doi: 10.1016/j.orgel.2009.01.004

[143]

Niesen B, Rand B P, Van Dorpe P. Plasmonic efficiency enhancement of high performance organic solar cells with a nanostructured rear electrode[J]. Adv Energy Mater, 2013, 3(2): 145. doi: 10.1002/aenm.v3.2

[144]

Ou Q D, Li Y Q, Tang J X. Light manipulation in organic photovoltaics[J]. Adv Sci, 2016, 3(7): 1600123. doi: 10.1002/advs.201600123

[145]

Chen J D, Zhou L, Ou Q D. Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating[J]. Adv Energy Mater, 2014, 4(9): 1301777. doi: 10.1002/aenm.201301777

[146]

Dal Z S, Tvingstedt K, Inganäs O. Fabrication of a light trapping system for organic solar cells[J]. Microelectron Eng, 2009, 86(4): 1150.

[147]

Tvingstedt K, Dal Z S, Inganäs O. Trapping light with micro lenses in thin film organic photovoltaic cells[J]. Optics Express, 2008, 16(26): 21608. doi: 10.1364/OE.16.021608

[148]

Myers J D, Cao W, Cassidy V. A universal optical approach to enhancing efficiency of organic-based photovoltaic devices[J]. Energy Environm Sci, 2012, 5(5): 6900. doi: 10.1039/c2ee21254d

[149]

Cho C, Jeong S, Choi H J. Toward perfect light trapping in thin-film photovoltaic cells: full utilization of the dual characteristics of light[J]. Adv Opt Mater, 2015, 3(12): 1697. doi: 10.1002/adom.v3.12

[150]

Sergeant N P, Hadipour A, Niesen B. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells[J]. Adv Mater, 2012, 24(6): 728. doi: 10.1002/adma.201104273

[151]

Yu W, Shen L, Meng F. Effects of the optical microcavity on the performance of ITO-free polymer solar cells with WO3/Ag/WO3 transparent electrode[J]. Solar Energy Mater Solar Cells, 2012, 100: 226. doi: 10.1016/j.solmat.2012.01.021

[152]

Chen Y H, Chen C W, Huang Z Y. Microcavity-embedded, colour-tuneable, transparent organic solar cells[J]. Adv Mater, 2014, 26(7): 1129. doi: 10.1002/adma.201304658

[153]

Jin H, Tao C, Velusamy M. Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules[J]. Adv Mater, 2012, 24(19): 2572. doi: 10.1002/adma.v24.19

[154]

Salinas J F, Yip H L, Chueh C C. Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells[J]. Adv Mater, 2012, 24(47): 6362. doi: 10.1002/adma.201203099

[155]

Huang J, Li C Z, Chueh C C. 10.4% power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration[J]. Adv Energy Mater, 2015, 5(15): 1500406. doi: 10.1002/aenm.201500406

[156]

Magliulo M, Mulla M Y, Singh M. Printable and flexible electronics: from TFTs to bioelectronic devices[J]. J Mater Chem C, 2015, 3(48): 12347. doi: 10.1039/C5TC02737C

[157]

Orgiu E, Samorì P. Organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices[J]. Adv Mater, 2014, 26(12): 1827. doi: 10.1002/adma.v26.12

[158]

Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973): 1603. doi: 10.1126/science.1182383

[159]

Sekitani T, Someya T. Stretchable, large-area organic electronics[J]. Adv Mater, 2010, 22(20): 2228. doi: 10.1002/adma.200904054

[160]

Fukuda K, Takeda Y, Yoshimura Y. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films[J]. Nat Commun, 2014, 5: 1.

[161]

Yu C, Masarapu C, Rong J. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms[J]. Adv Mater, 2009, 21(47): 4793. doi: 10.1002/adma.200901775

[162]

Yin D, Feng J, Jiang N R. Two-dimensional stretchable organic light-emitting devices with high efficiency[J]. ACS Appl Mater Interfaces, 2016, 8(45): 31166. doi: 10.1021/acsami.6b10328

[163]

Lipomi D J, Bao Z. Stretchable, elastic materials and devices for solar energy conversion[J]. Energy Environm Sci, 2011, 4(9): 3314. doi: 10.1039/c1ee01881g

[164]

Baca A J, Yu K J, Xiao J. Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs[J]. Energy Environm Sci, 2010, 3(2): 208. doi: 10.1039/b920862c

[165]

Kaltenbrunner M, White M S, Głowacki E D. Ultrathin and lightweight organic solar cells with high flexibility[J]. Nat Commun, 2012, 3: 770. doi: 10.1038/ncomms1772

[166]

Kang N, Choi W, Kim H. Transfer printed microcell array for stretchable organic solar cells[J]. ECS Solid State Lett, 2015, 4(11): 88. doi: 10.1149/2.0011511ssl

[167]

Nam J, Lee Y, Choi W. Transfer printed flexible and stretchable thin film solar cells using a water-soluble sacrificial layer[J]. Adv Energy Mater, 2016, 6(21): 1.

[168]

Dai M K, Lian J T, Lin T Y. High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO[J]. J Mater Chem C, 2013, 1(33): 5064. doi: 10.1039/c3tc30890a

[169]

Xu H, Luo D, Li M. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric[J]. J Mater Chem C, 2014, 2(7): 1255. doi: 10.1039/C3TC31710B

[1]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[2]

Gang Ge, Wei Huang, Jinjun Shao, Xiaochen Dong. Recent progress of flexible and wearable strain sensors for human-motion monitoring. J. Semicond., 2018, 39(1): 011012. doi: 10.1088/1674-4926/39/1/011012

[3]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[4]

Xian Huang. Materials and applications of bioresorbable electronics. J. Semicond., 2018, 39(1): 011003. doi: 10.1088/1674-4926/39/1/011003

[5]

Tao Cheng, Youwei Wu, Xiaoqin Shen, Wenyong Lai, Wei Huang. Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J. Semicond., 2018, 39(1): 015001. doi: 10.1088/1674-4926/39/1/015001

[6]

Shuangyi Zhao, Xiangkai Liu, Xiaodong Pi, Deren Yang. Light-emitting diodes based on colloidal silicon quantum dots. J. Semicond., 2018, 39(6): 061008. doi: 10.1088/1674-4926/39/6/061008

[7]

Zhike Zhang, Yu Liu, Jianguo Liu, Ninghua Zhu. Packaging investigation of optoelectronic devices. J. Semicond., 2015, 36(10): 101001. doi: 10.1088/1674-4926/36/10/101001

[8]

Hu Jin, Du Lei, Zhuang Yiqi, He Liang, Bao Junlin, Huang Xiaojun, Chen Chunxia, Wei Tao. Noise as a Representation for CTR of Optoelectronic Coupled Devices. J. Semicond., 2007, 28(4): 597.

[9]

Ping Sheng, Baomin Wang, Runwei Li. Flexible magnetic thin films and devices. J. Semicond., 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006

[10]

Zhihua Wang, Yong Hei, Zhangming Zhu. Preface to the Special Topic on Devices and Circuits for Wearable and IoT Systems. J. Semicond., 2017, 38(10): 101001. doi: 10.1088/1674-4926/38/10/101001

[11]

Liu Wanglai, Xu Bo, Liang Ping, Hu Ying, Sun Hong, Lu Xueqin, Wang Zhanguo. Influence of a tilted cavity on quantum-dot optoelectronic active devices. J. Semicond., 2009, 30(9): 094004. doi: 10.1088/1674-4926/30/9/094004

[12]

Imran Murtaza, Ibrahim Qazi, Khasan S. Karimov. CuPc/C60 heterojunction thin film optoelectronic devices. J. Semicond., 2010, 31(6): 064005. doi: 10.1088/1674-4926/31/6/064005

[13]

Mingzhi Zou, Yue Ma, Xin Yuan, Yi Hu, Jie Liu, Zhong Jin. Flexible devices: from materials, architectures to applications. J. Semicond., 2018, 39(1): 011010. doi: 10.1088/1674-4926/39/1/011010

[14]

Shudong Tian, Jun Han, Jianwei Yang, Xiaoyang Zeng. The energy-efficient implementation of an adaptive-filtering-based QRS complex detection method for wearable devices. J. Semicond., 2017, 38(10): 105003. doi: 10.1088/1674-4926/38/10/105003

[15]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[16]

Liu Ming, Chen Baoqin, Xie Changqing, , Wang Congshun, Long Shibing, Xu Qiuxia, , Li Zhigang, Yili Chengrong. Nano Electrical Devices and Integration. J. Semicond., 2006, 27(13): 7.

[17]

Wang Kaijian, Li Guoliang, Zhang Jun, Wang Jing. Failure Analysis of Electronic Devices. J. Semicond., 2006, 27(13): 295.

[18]

Liu H C, Luo H, Ban D, Wachter M, Song C Y, Wasilewski Z R, Buchanan M, Aers G C, SpringThorpe A J, Cao J C, Feng S L, Williams B S, Hu Q. Terahertz Semiconductor Quantum Well Devices. J. Semicond., 2006, 27(4): 627.

[19]

Song Limei, Li Hua, Du Huan, Xia Yang, Han Zhengsheng. Development of High Voltage pMOS Devices. J. Semicond., 2006, 27(13): 275.

[20]

Bo Zhang, Wentong Zhang, Ming Qiao, Zhenya Zhan, Zhaoji Li. Concept and design of super junction devices. J. Semicond., 2018, 39(2): 021001. doi: 10.1088/1674-4926/39/2/021001

Search

Advanced Search >>

GET CITATION

H Zhu, Y Shen, Y Q Li, J X Tang. Recent advances in flexible and wearable organic optoelectronic devices[J]. J. Semicond., 2018, 39(1): 011011. doi: 10.1088/1674-4926/39/1/011011.

Export: BibTex EndNote

Article Metrics

Article views: 2215 Times PDF downloads: 123 Times Cited by: 0 Times

History

Manuscript received: 23 July 2017 Manuscript revised: Online: Accepted Manuscript: 27 December 2017 Published: 01 January 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误