[1] |
Zhang W, Eperon G E, Snaith H J. Metal halide perovskites for energy applications. Nat Energy, 2016, 1, 16048
|
[2] |
Stoumpos C C, Kanatzidis M G. Halide perovskites: poor man's high-performance semiconductors. Adv Mater, 2016, 28, 5778
|
[3] |
Lin Q, Armin A, Burn P L, et al. Organohalide perovskites for solar energy conversion. Acc Chem Res, 2016, 49, 545
|
[4] |
Zhao Y, Zhu K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev, 2016, 45, 655
|
[5] |
Chen J, Zhou S, Jin S, et al. Crystal organometal halide perovskites with promising optoelectronic applications. J Mater Chem C, 2016, 4, 11
|
[6] |
Berry J, Buonassisi T, Egger D A, et al. Hybrid organic–inorganic perovskites (HOIPs): Opportunities and challenges. Adv Mater, 2015, 27, 5102
|
[7] |
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338, 643
|
[8] |
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342, 341
|
[9] |
Liu D, Kelly T L. The emergence of perovskite solar cells. Nat Photonics, 2014, 8, 133
|
[10] |
Jang D M, Park K, Kim D H, et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett, 2015, 15, 5191
|
[11] |
Dong R, Fang Y, Chae J, et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv Mater, 2015, 27, 1912
|
[12] |
Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater, 2016, 28, 6804
|
[13] |
Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501, 395
|
[14] |
Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542
|
[15] |
Mei A, Li X, Liu L, et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345, 295
|
[16] |
Zuo C, Bolink H J, Han H, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3, 1500324
|
[17] |
Lin Q, Armin A, Burn P L, et al. Filterless narrowband visible photodetectors. Nat Photonics, 2015, 9, 687
|
[18] |
Fang Y, Dong Q, Shao Y, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat Photonics, 2015, 9, 679
|
[19] |
Chen S, Teng C, Zhang M, et al. A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite. Adv Mater, 2016, 28, 5969
|
[20] |
Zhu H L, Cheng J, Zhang D, et al. Room-temperature solution-processed niox: PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors. ACS Nano, 2016, 10, 6808
|
[21] |
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687
|
[22] |
Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222
|
[23] |
Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol, 2015, 10, 391
|
[24] |
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 2015, 9, 1955
|
[25] |
Hailegnaw B, Kirmayer S, Edri E, et al. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J Phys Chem Lett, 2015, 6, 1543
|
[26] |
Zhang Y Y, Chen S, Xu P, et al. Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. Chin Phys Lett, 2018, 35, 036104
|
[27] |
Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438, 197
|
[28] |
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321, 385
|
[29] |
Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics, 2010, 4, 611
|
[30] |
Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy Environ Sci, 2011, 4, 1113
|
[31] |
Li Y, Xu L, Liu H, et al. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev, 2014, 43, 2572
|
[32] |
Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347, 1246501
|
[33] |
Song X, Liu X, Yu D, et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces, 2018, 10, 2801
|
[34] |
Lee Y, Kwon J, Hwang E, et al. High-performance perovskite-graphene hybrid photodetector. Adv Mater, 2015, 27, 41
|
[35] |
Wang Y, Fullon R, Acerce M, et al. Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv Mater, 2017, 29, 1603995
|
[36] |
Kang D H, Pae S R, Shim J, et al. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv Mater, 2016, 28, 7799
|
[37] |
Ma C, Shi Y, Hu W, et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater, 2016, 28, 3683
|
[38] |
Schulz P, Edri E, Kirmayer S, et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci, 2014, 7, 1377
|
[39] |
Kabra D, Lu L P, Song M H, et al. Efficient single-layer polymer light-emitting diodes. Adv Mater, 2010, 22, 3194
|
[40] |
Kormányos A, Zólyomi V, Drummond N D, et al. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys Rev X, 2014, 4, 011034
|
[41] |
Yin W J, Yang J H, Kang J, et al. Halide perovskite materials for solar cells: a theoretical review. J Mater Chem A, 2015, 3, 8926
|
[42] |
Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953
|
[43] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1991, 59, 1758
|
[44] |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15
|
[45] |
Perdew J P, Wang Y. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B, 1986, 33, 8800
|
[46] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865
|
[47] |
Heyd J, Peralta J E, Scuseria G E, et al. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys, 2005, 123, 174101
|
[48] |
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2006, 124, 9906
|
[49] |
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132, 154104
|
[50] |
Huang L, Huo N, Li Y, et al. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals pn heterostructure. J Phys Chem Lett, 2015, 6, 2483
|
[51] |
Huang L, Tao L, Gong K, et al. Role of defects in enhanced Fermi level pinning at interfaces between metals and transition metal dichalcogenides. Phys Rev B, 2017, 96, 205303
|
[52] |
Huang L, Zhong M, Deng H X, et al. The Coulomb interaction in van der Waals heterostructures. Sci China: Phys Mech Astron, 2019, 62(3), 37311
|
[53] |
Wei S H, Zunger A. Band offsets and optical bowings of chalcopyrites and Zn-based II–VI alloys. J Appl Phy, 1995, 78, 3846
|
[54] |
Butler K T, Frost J M, Walsh A. Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Mater Horizons, 2015, 2, 228
|
[55] |
Zhu Z Y, Cheng Y C, Schwingenschlögl U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B, 2011, 84, 153402
|