J. Semicond. > Volume 37 > Issue 10 > Article Number: 101001

A review:aluminum nitride MEMS contour-mode resonator

Yunhong Hou 1, , Meng Zhang 1, , Guowei Han 1, , Chaowei Si 1, , Yongmei Zhao 1, 2, and Jin Ning 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR.

Key words: MEMS contour-mode resonatorAlNmagnetron sputteringinductively coupled plasma (ICP) etchingthe temperature stabilityquality factor (Q)

Abstract: Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR.

Key words: MEMS contour-mode resonatorAlNmagnetron sputteringinductively coupled plasma (ICP) etchingthe temperature stabilityquality factor (Q)



References:

[1]

Jing W, Ren Z, Nguyen C T C. 1.156-GHz self-aligned vibrating micromechanical disk resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(12): 1607. doi: 10.1109/TUFFC.2004.1386679

[2]

Pourkamali S, Hashimura A, Abdolvand R. High-Q single crystal silicon harpss capacitive beam resonators with selfaligned sub-100-nm transduction gaps[J]. J Microelectromechan Syst, 2003, 12(4): 487. doi: 10.1109/JMEMS.2003.811726

[3]

Hung L W, Nguyen C T C. Capacitive-piezoelectric AlN resonators with Q > 12000[J]. IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), 2011: 173.

[4]

Lee J E Y, Seshia A A. 5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million[J]. Sensors and Actuators A, 2009, 156(1): 28. doi: 10.1016/j.sna.2009.02.007

[5]

Liu Bo, Chen Xiao, Cai Hualin. Surface acoustic wave devices for sensor applications[J]. Journal of Semiconductors, 2016, 37(2): 021001. doi: 10.1088/1674-4926/37/2/021001

[6]

Shu L, Jiang J, Peng B. AlN film SAW resonator integrated with metal structure[J]. Electron Lett, 2015, 51(5): 379. doi: 10.1049/el.2014.3495

[7]

Stratton F P, Chang D T, Kirby D J, et al. A MEMS-based quartz resonator technology for GHz applications. 2004 Proceedings of the 2004 IEEE International Proceedings of the Frequency Control Symposium and Exposition, 2004

[8]

Mueller W. A brief overview of FBAR technology. Agilent Technologies, 2001

[9]

Loebl H P, Klee M, Metzmacher C. Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators[J]. Materials Chemistry and Physics, 2003, 79(2/3): 143.

[10]

Penunuri D, Lakin K M. RF filter design using LTCC and thin film BAW technology. 2001 IEEE Proceedings of the Ultrasonics Symposium, 2001

[11]

Lobl H P, Klee M, Milsom R. Materials for bulk acoustic wave (BAW) resonators and filters[J]. Journal of the European Ceramic Society, 2001, 21(15): 2633. doi: 10.1016/S0955-2219(01)00329-6

[12]

Yong W. The structural analysis and simulation of the thin film bulk acoustic resonator. University of Electronic Science and Technology of China, 2007

[13]

Kumar Y, Rangra K, Agarwal R. Design and simulation of FBAR with different electrodes material configuration[J]. International Journal of Engineering Trends and Technology, 2015, 28(6): 294. doi: 10.14445/22315381/IJETT-V28P256

[14]

Piazza G, Stephanou P J, Pisano A P. AlN contour-mode vibrating RF MEMS for next generation wireless communications. 2006 Proceeding of the 36th European Proceedings of the Solid-State Device Research Conference, 2006

[15]

Rinaldi M, Zuo C, Spiegel J V D. Reconfigurable CMOS oscillator based on multifrequency AlN contour-mode MEMS resonators[J]. IEEE Trans Electron Devices, 2011, 58(5): 1281. doi: 10.1109/TED.2011.2104961

[16]

Piazza G, Stephanou P J, Pisano A P. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators[J]. Microelectromechan Syst, 2006, 15(6): 13.

[17]

Johnson R A. Mechanical filters in electronics. Wiley, 1983

[18]

Piazza G, Stephanou P J, Porter J M, et al. Low motional resistance ring-shaped contour-mode aluminum nitride piezoelectric micromechanical resonators for UHF applications. 2005 18th IEEE International Conference on Proceedings of the Micro Electro Mechanical Systems, 2005

[19]

Imtiaz A, Khan F, Walling J. Contour-mode ring-shaped AlN microresonator on Si and feasibility of its application in seriesresonant converter[J]. IEEE Trans Power Electron, 2014, 30(8): 4437.

[20]

Rinaldi M, Zuniga C, Zuo C. Super-high-frequency twoport AlN contour-mode resonators for RF applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 38. doi: 10.1109/TUFFC.2010.1376

[21]

Zuo C, Spiegel J V D, Piazza G. 1.5-GHz CMOS voltagecontrolled oscillator based on thickness-field-excited piezoelectric AlN contour-mode MEMS resonators. 2010 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), 2010

[22]

Zuo C, Spiegel J V D, Piazza G. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour-mode MEMS resonators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 82. doi: 10.1109/TUFFC.1382

[23]

Nancy S, Usama Z, Gianluca P. Residual noise reduction in AlN resonators by prolonged RF excitation. Proceedings of the 2014 IEEE International Frequency Control Symposium (FCS), 2014

[24]

Lu R, Gao A, Gong S. Parametric excitation in geometrically optimized AlN contour mode resonators. Proceedings of the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015

[25]

Cassella C, Segovia-Fernandez J, Piazza G. Segmented electrode excitation of aluminum nitride contour mode resonators to optimize the device figure of merit. Proceedings of the Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVⅡ), 2013 Transducers & Eurosensors XXVⅡ: The 17th International Conference on, F 16-20 June 2013, 2013

[26]

Naik R S, Lutsky J J, Reif R. Measurements of the bulk, c-axis electromechanical coupling constant as a function of AlN film quality[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(1): 292. doi: 10.1109/58.818773

[27]

Shang Zhengguo, Li Dongling, Wen Zhiyu. The fabrication of vibration energy harvester arrays based on AlN piezoelectric film[J]. Journal of Semiconductors, 2013, 34(11): 114013. doi: 10.1088/1674-4926/34/11/114013

[28]

Iriarte G F, Rodrguez J G, Calle F. Synthesis of c-axis oriented AlN thin films on different substrates: a review[J]. Materials Research Bulletin, 2010, 45(9): 1039. doi: 10.1016/j.materresbull.2010.05.035

[29]

Clement M, Olivares J, Capilla J. Influence of crystal quality on the excitation and propagation of surface and bulk acoustic waves in polycrystalline AlN films[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(1): 128. doi: 10.1109/TUFFC.2012.2163

[30]

Felmetsger V V, Mikhov M K, Laptev P N. Effect of predeposition rf plasma etching on wafer surface morphology and crystal orientation of piezoelectric AlN thin films[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(2): 387. doi: 10.1109/TUFFC.2014.006742

[31]

Xiong J, Gu H S, Hu K. Influence of substrate metals on the crystal growth of AlN films[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(1): 98. doi: 10.1007/s12613-010-0117-y

[32]

Ababneh A, Alsumady M, Seidel H. C-axis orientation and piezoelectric coefficients of AlN thin films sputter-deposited on titanium bottom electrodes[J]. Appl Surf Sci, 2012, 259: 59. doi: 10.1016/j.apsusc.2012.06.086

[33]

Felmetsger V V, Mikhov M K. Deposition of smooth and highly (111) textured al bottom electrodes for AlN-based electroacoustic devices. Proceedings of the 2012 IEEE International Frequency Control Symposium, 2012

[34]

Felmetsger V V, Laptev P N, Tanner S M. Crystal orientation and stress in ac reactively sputtered AlN films on Mo electrodes for electro-acoustic devices. Proceedings of the 2008 IEEE Ultrasonics Symposium, 2008

[35]

Sharma J, Fernando S, Deng W. Molybdenum etching using an SF6, BCl3 and Ar based recipe for high aspect ratio MEMS device fabrication[J]. J Micromechan Microeng, 2013, 23(7): 075025. doi: 10.1088/0960-1317/23/7/075025

[36]

Kamohara T, Akiyama M, Ueno N. Local epitaxial growth of aluminum nitride and molybdenum thin films in fiber textureusing aluminum nitride interlayer[J]. Appl Phys Lett, 2006, 89(7): 071919. doi: 10.1063/1.2337558

[37]

Kamohara T, Akiyama M, Ueno N. Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes[J]. Thin Solid Films, 2007, 515(11): 4565. doi: 10.1016/j.tsf.2006.11.032

[38]

Iriarte G F, Bjurstrom J, Westlinder J. Synthesis of c-axisoriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(7): 1170. doi: 10.1109/TUFFC.2005.1504003

[39]

Barth S, Bartzsch H, Gloess D. Sputter deposition of stresscontrolled piezoelectric AlN and AlScN films for ultrasonic and energy harvesting applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(8): 1329. doi: 10.1109/TUFFC.2014.3040

[40]

Ababneh A, Schmid U, Hernando J. The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films[J]. Mater Sci Eng B, 2010, 172(3): 253. doi: 10.1016/j.mseb.2010.05.026

[41]

Wang J, Zhang Q, Yang G. Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(3): 1.

[42]

Aït Aïssa K, Elmazria O, Boulet P. Investigations of AlN thin film crystalline properties in a wide temperature range by in situ X-ray diffraction measurements: correlation with AlN/sapphire-based SAW structure performance[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(7): 1397. doi: 10.1109/TUFFC.2014.006868

[43]

Khan F A, Zhou L, Kumar V. High rate etching of AlN Using BCl3/Cl2/Ar inductively coupled plasma[J]. Mater Sci Eng, 2002, 95: 51. doi: 10.1016/S0921-5107(02)00160-5

[44]

Shah A P, Rahman A A, Bhattacharya A. ICP-RIE etching of polar, semi-polar and non-polar AlN: comparison of Cl2/Ar and Cl2/BCl3/Ar plasma chemistry and surface pretreatment[J]. Semicond Sci Technol, 2014, 30(1): 015021.

[45]

Liu X, Sun C, Xiong B. Smooth etching of epitaxially grown AlN film by Cl2/BCl3/Ar-based inductively coupled plasma[J]. Vacuum, 2015, 116: 158. doi: 10.1016/j.vacuum.2015.03.030

[46]

Yang J, Si C, Han G. Researching the aluminum nitride etching process for application in MEMS resonators[J]. Micromachines, 2015, 6(2): 281. doi: 10.3390/mi6020281

[47]

Bliznetsov V, Johari B H B, Chentir M T. Improving aluminum nitride plasma etch process for MEMS applications[J]. J Micromechan Microeng, 2013, 23(11): 117001. doi: 10.1088/0960-1317/23/11/117001

[48]

Smith S, Wolden C, Bremser M. High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma[J]. Appl Phys Lett, 1997, 71(25): 3631. doi: 10.1063/1.120463

[49]

Shul R, Willison C, Bridges M. Selective inductively coupled plasma etching of group-Ⅲ nitrides in Cl2-and BCl3-based plasmas[J]. J Vac Sci Technol A, 1998, 16(3): 1621. doi: 10.1116/1.581130

[50]

Hahn Y, Hays D, Donovan S. Effect of additive noble gases in chlorine-based inductively coupled plasma etching of GaN, InN, and AlN[J]. J Vac Sci Technol A, 1999, 17(3): 768. doi: 10.1116/1.581647

[51]

Dictus D, Shamiryan D, Paraschiv V. Influence of crystallographic orientation on dry etch properties of TiN[J]. J Vac Sci Technol B, 2006, 24(5): 2472. doi: 10.1116/1.2348725

[52]

Yang J, Han G W, Si C W. Research status of aluminum nitride contour-mode resonators[J]. Micronanoelectron Technol, 2014, 51(6): 374.

[53]

Bin Z, Yang G, Yi H. Analysis of the FBAR temperaturefrequency drift characteristics[J]. Piezoelectics & Acoustooptics, 2014, 36(2): 171.

[54]

Rinaldi M, Tazzoli A, Segovia-Fernandez J, et al. High power and low temperature coefficient of frequency oscillator based on a fully anchored and oxide compensated AlN contour-mode MEMS resonator. Proceedings of the Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012

[55]

Tazzoli A, Rinaldi M, Piazza G. Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators. Proceedings of the Electron Devices Meeting, 1988 IEDM '88 Technical Digest, International, 2011

[56]

Tazzoli A, Kuo N K, Rinaldi M. A 586 MHz microcontroller compensated MEMS oscillator based on ovenized aluminum nitride contour-mode resonators[J]. 2012 IEEE International Ultrasonics Symposium (IUS), 2012: 1055.

[57]

Rinaldi M, Yu H, Zuniga C, et al. High frequency AlN MEMS resonators with integrated nano hot plate for temperature controlled operation. Proceedings of the Frequency Control Symposium (FCS), 2012 IEEE International, 2012

[58]

Wu X, Zuo C, Zhang M, et al. A 47 μm 204 MHz AlN contourmode mems based tunable oscillator in 65 nm CMOS. Proceedings of the Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013

[59]

Candler R N, Li H, Lutz M, et al. Investigation of energy loss mechanisms in micromechanical resonators. Proceedings of the Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003

[60]

Thalhammer R, Aigner R. Energy loss mechanisms in SMR-type BAW devices. Proceedings of the Microwave Symposium Digest, 2005 IEEE MTT-S International, 2005

[61]

Segovia-Fernandez J, Cremonesi M, Cassella C, et al. Experimental study on the impact of anchor losses on the quality factor of contour mode AlN resonators. Proceedings of the Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVⅡ), 2013 Transducers & Eurosensors XXVⅡ: The 17th International Conference on, 2013

[62]

Segovia-Fernandez J, Piazza G. Analytical and numerical methods to model anchor losses in 65-MHz AlN contour mode resonators[J]. J Microelectromechan Syst, 2016, 25: 459. doi: 10.1109/JMEMS.2016.2539224

[63]

Cassella C, Segovia-Fernandez J, Piazza G, et al. Reduction of anchor losses by etched slots in aluminum nitride contour mode resonators. Proceedings of the European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 2013

[64]

Zhu H, Lee J E Y. Design of phononic crystal tethers for frequency-selective quality factor enhancement in AlN piezoelectric-on-silicon resonators[J]. Procedia Engineering, 2015, 120: 516. doi: 10.1016/j.proeng.2015.08.689

[65]

Zhu H, Lee J E Y. AlN piezoelectric on silicon mems resonator with boosted Q using planar patterned phononic crystals on anchors. Proceedings of the Micro Electro Mechanical Systems (MEMS), 2015 28th IEEE International Conference on, 2015

[66]

Imtiaz A M, Khan F H, Walling J S. Fabrication, characterization and efficiency analysis of a piezoelectric (AlN) ring microresonator on Si for low-power resonant converters. Proceedings of the Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, 2014

[67]

Gibson B, Qalandar K, Turner K, et al. Analysis of the impact of release area on the quality factor of contour-mode resonators by laser doppler vibrometry. Proceedings of the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015

[68]

Cassella C, Singh N, Soon B W. Quality factor dependence on the inactive regions in AlN contour-mode resonators[J]. J Microelectromechan Syst, 2015, 24(5): 1575. doi: 10.1109/JMEMS.2015.2423663

[69]

Cremonesi M, Frangi A, Cassella C. Enhancement of the quality factor of AlN contour mode resonators by acoustic reflection: numerical design and experimental investigation[J]. Procedia Engineering, 2014, 87: 468. doi: 10.1016/j.proeng.2014.11.390

[1]

Jing W, Ren Z, Nguyen C T C. 1.156-GHz self-aligned vibrating micromechanical disk resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(12): 1607. doi: 10.1109/TUFFC.2004.1386679

[2]

Pourkamali S, Hashimura A, Abdolvand R. High-Q single crystal silicon harpss capacitive beam resonators with selfaligned sub-100-nm transduction gaps[J]. J Microelectromechan Syst, 2003, 12(4): 487. doi: 10.1109/JMEMS.2003.811726

[3]

Hung L W, Nguyen C T C. Capacitive-piezoelectric AlN resonators with Q > 12000[J]. IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), 2011: 173.

[4]

Lee J E Y, Seshia A A. 5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million[J]. Sensors and Actuators A, 2009, 156(1): 28. doi: 10.1016/j.sna.2009.02.007

[5]

Liu Bo, Chen Xiao, Cai Hualin. Surface acoustic wave devices for sensor applications[J]. Journal of Semiconductors, 2016, 37(2): 021001. doi: 10.1088/1674-4926/37/2/021001

[6]

Shu L, Jiang J, Peng B. AlN film SAW resonator integrated with metal structure[J]. Electron Lett, 2015, 51(5): 379. doi: 10.1049/el.2014.3495

[7]

Stratton F P, Chang D T, Kirby D J, et al. A MEMS-based quartz resonator technology for GHz applications. 2004 Proceedings of the 2004 IEEE International Proceedings of the Frequency Control Symposium and Exposition, 2004

[8]

Mueller W. A brief overview of FBAR technology. Agilent Technologies, 2001

[9]

Loebl H P, Klee M, Metzmacher C. Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators[J]. Materials Chemistry and Physics, 2003, 79(2/3): 143.

[10]

Penunuri D, Lakin K M. RF filter design using LTCC and thin film BAW technology. 2001 IEEE Proceedings of the Ultrasonics Symposium, 2001

[11]

Lobl H P, Klee M, Milsom R. Materials for bulk acoustic wave (BAW) resonators and filters[J]. Journal of the European Ceramic Society, 2001, 21(15): 2633. doi: 10.1016/S0955-2219(01)00329-6

[12]

Yong W. The structural analysis and simulation of the thin film bulk acoustic resonator. University of Electronic Science and Technology of China, 2007

[13]

Kumar Y, Rangra K, Agarwal R. Design and simulation of FBAR with different electrodes material configuration[J]. International Journal of Engineering Trends and Technology, 2015, 28(6): 294. doi: 10.14445/22315381/IJETT-V28P256

[14]

Piazza G, Stephanou P J, Pisano A P. AlN contour-mode vibrating RF MEMS for next generation wireless communications. 2006 Proceeding of the 36th European Proceedings of the Solid-State Device Research Conference, 2006

[15]

Rinaldi M, Zuo C, Spiegel J V D. Reconfigurable CMOS oscillator based on multifrequency AlN contour-mode MEMS resonators[J]. IEEE Trans Electron Devices, 2011, 58(5): 1281. doi: 10.1109/TED.2011.2104961

[16]

Piazza G, Stephanou P J, Pisano A P. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators[J]. Microelectromechan Syst, 2006, 15(6): 13.

[17]

Johnson R A. Mechanical filters in electronics. Wiley, 1983

[18]

Piazza G, Stephanou P J, Porter J M, et al. Low motional resistance ring-shaped contour-mode aluminum nitride piezoelectric micromechanical resonators for UHF applications. 2005 18th IEEE International Conference on Proceedings of the Micro Electro Mechanical Systems, 2005

[19]

Imtiaz A, Khan F, Walling J. Contour-mode ring-shaped AlN microresonator on Si and feasibility of its application in seriesresonant converter[J]. IEEE Trans Power Electron, 2014, 30(8): 4437.

[20]

Rinaldi M, Zuniga C, Zuo C. Super-high-frequency twoport AlN contour-mode resonators for RF applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 38. doi: 10.1109/TUFFC.2010.1376

[21]

Zuo C, Spiegel J V D, Piazza G. 1.5-GHz CMOS voltagecontrolled oscillator based on thickness-field-excited piezoelectric AlN contour-mode MEMS resonators. 2010 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), 2010

[22]

Zuo C, Spiegel J V D, Piazza G. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour-mode MEMS resonators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 82. doi: 10.1109/TUFFC.1382

[23]

Nancy S, Usama Z, Gianluca P. Residual noise reduction in AlN resonators by prolonged RF excitation. Proceedings of the 2014 IEEE International Frequency Control Symposium (FCS), 2014

[24]

Lu R, Gao A, Gong S. Parametric excitation in geometrically optimized AlN contour mode resonators. Proceedings of the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015

[25]

Cassella C, Segovia-Fernandez J, Piazza G. Segmented electrode excitation of aluminum nitride contour mode resonators to optimize the device figure of merit. Proceedings of the Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVⅡ), 2013 Transducers & Eurosensors XXVⅡ: The 17th International Conference on, F 16-20 June 2013, 2013

[26]

Naik R S, Lutsky J J, Reif R. Measurements of the bulk, c-axis electromechanical coupling constant as a function of AlN film quality[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(1): 292. doi: 10.1109/58.818773

[27]

Shang Zhengguo, Li Dongling, Wen Zhiyu. The fabrication of vibration energy harvester arrays based on AlN piezoelectric film[J]. Journal of Semiconductors, 2013, 34(11): 114013. doi: 10.1088/1674-4926/34/11/114013

[28]

Iriarte G F, Rodrguez J G, Calle F. Synthesis of c-axis oriented AlN thin films on different substrates: a review[J]. Materials Research Bulletin, 2010, 45(9): 1039. doi: 10.1016/j.materresbull.2010.05.035

[29]

Clement M, Olivares J, Capilla J. Influence of crystal quality on the excitation and propagation of surface and bulk acoustic waves in polycrystalline AlN films[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(1): 128. doi: 10.1109/TUFFC.2012.2163

[30]

Felmetsger V V, Mikhov M K, Laptev P N. Effect of predeposition rf plasma etching on wafer surface morphology and crystal orientation of piezoelectric AlN thin films[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(2): 387. doi: 10.1109/TUFFC.2014.006742

[31]

Xiong J, Gu H S, Hu K. Influence of substrate metals on the crystal growth of AlN films[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(1): 98. doi: 10.1007/s12613-010-0117-y

[32]

Ababneh A, Alsumady M, Seidel H. C-axis orientation and piezoelectric coefficients of AlN thin films sputter-deposited on titanium bottom electrodes[J]. Appl Surf Sci, 2012, 259: 59. doi: 10.1016/j.apsusc.2012.06.086

[33]

Felmetsger V V, Mikhov M K. Deposition of smooth and highly (111) textured al bottom electrodes for AlN-based electroacoustic devices. Proceedings of the 2012 IEEE International Frequency Control Symposium, 2012

[34]

Felmetsger V V, Laptev P N, Tanner S M. Crystal orientation and stress in ac reactively sputtered AlN films on Mo electrodes for electro-acoustic devices. Proceedings of the 2008 IEEE Ultrasonics Symposium, 2008

[35]

Sharma J, Fernando S, Deng W. Molybdenum etching using an SF6, BCl3 and Ar based recipe for high aspect ratio MEMS device fabrication[J]. J Micromechan Microeng, 2013, 23(7): 075025. doi: 10.1088/0960-1317/23/7/075025

[36]

Kamohara T, Akiyama M, Ueno N. Local epitaxial growth of aluminum nitride and molybdenum thin films in fiber textureusing aluminum nitride interlayer[J]. Appl Phys Lett, 2006, 89(7): 071919. doi: 10.1063/1.2337558

[37]

Kamohara T, Akiyama M, Ueno N. Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes[J]. Thin Solid Films, 2007, 515(11): 4565. doi: 10.1016/j.tsf.2006.11.032

[38]

Iriarte G F, Bjurstrom J, Westlinder J. Synthesis of c-axisoriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(7): 1170. doi: 10.1109/TUFFC.2005.1504003

[39]

Barth S, Bartzsch H, Gloess D. Sputter deposition of stresscontrolled piezoelectric AlN and AlScN films for ultrasonic and energy harvesting applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(8): 1329. doi: 10.1109/TUFFC.2014.3040

[40]

Ababneh A, Schmid U, Hernando J. The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films[J]. Mater Sci Eng B, 2010, 172(3): 253. doi: 10.1016/j.mseb.2010.05.026

[41]

Wang J, Zhang Q, Yang G. Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(3): 1.

[42]

Aït Aïssa K, Elmazria O, Boulet P. Investigations of AlN thin film crystalline properties in a wide temperature range by in situ X-ray diffraction measurements: correlation with AlN/sapphire-based SAW structure performance[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(7): 1397. doi: 10.1109/TUFFC.2014.006868

[43]

Khan F A, Zhou L, Kumar V. High rate etching of AlN Using BCl3/Cl2/Ar inductively coupled plasma[J]. Mater Sci Eng, 2002, 95: 51. doi: 10.1016/S0921-5107(02)00160-5

[44]

Shah A P, Rahman A A, Bhattacharya A. ICP-RIE etching of polar, semi-polar and non-polar AlN: comparison of Cl2/Ar and Cl2/BCl3/Ar plasma chemistry and surface pretreatment[J]. Semicond Sci Technol, 2014, 30(1): 015021.

[45]

Liu X, Sun C, Xiong B. Smooth etching of epitaxially grown AlN film by Cl2/BCl3/Ar-based inductively coupled plasma[J]. Vacuum, 2015, 116: 158. doi: 10.1016/j.vacuum.2015.03.030

[46]

Yang J, Si C, Han G. Researching the aluminum nitride etching process for application in MEMS resonators[J]. Micromachines, 2015, 6(2): 281. doi: 10.3390/mi6020281

[47]

Bliznetsov V, Johari B H B, Chentir M T. Improving aluminum nitride plasma etch process for MEMS applications[J]. J Micromechan Microeng, 2013, 23(11): 117001. doi: 10.1088/0960-1317/23/11/117001

[48]

Smith S, Wolden C, Bremser M. High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma[J]. Appl Phys Lett, 1997, 71(25): 3631. doi: 10.1063/1.120463

[49]

Shul R, Willison C, Bridges M. Selective inductively coupled plasma etching of group-Ⅲ nitrides in Cl2-and BCl3-based plasmas[J]. J Vac Sci Technol A, 1998, 16(3): 1621. doi: 10.1116/1.581130

[50]

Hahn Y, Hays D, Donovan S. Effect of additive noble gases in chlorine-based inductively coupled plasma etching of GaN, InN, and AlN[J]. J Vac Sci Technol A, 1999, 17(3): 768. doi: 10.1116/1.581647

[51]

Dictus D, Shamiryan D, Paraschiv V. Influence of crystallographic orientation on dry etch properties of TiN[J]. J Vac Sci Technol B, 2006, 24(5): 2472. doi: 10.1116/1.2348725

[52]

Yang J, Han G W, Si C W. Research status of aluminum nitride contour-mode resonators[J]. Micronanoelectron Technol, 2014, 51(6): 374.

[53]

Bin Z, Yang G, Yi H. Analysis of the FBAR temperaturefrequency drift characteristics[J]. Piezoelectics & Acoustooptics, 2014, 36(2): 171.

[54]

Rinaldi M, Tazzoli A, Segovia-Fernandez J, et al. High power and low temperature coefficient of frequency oscillator based on a fully anchored and oxide compensated AlN contour-mode MEMS resonator. Proceedings of the Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012

[55]

Tazzoli A, Rinaldi M, Piazza G. Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators. Proceedings of the Electron Devices Meeting, 1988 IEDM '88 Technical Digest, International, 2011

[56]

Tazzoli A, Kuo N K, Rinaldi M. A 586 MHz microcontroller compensated MEMS oscillator based on ovenized aluminum nitride contour-mode resonators[J]. 2012 IEEE International Ultrasonics Symposium (IUS), 2012: 1055.

[57]

Rinaldi M, Yu H, Zuniga C, et al. High frequency AlN MEMS resonators with integrated nano hot plate for temperature controlled operation. Proceedings of the Frequency Control Symposium (FCS), 2012 IEEE International, 2012

[58]

Wu X, Zuo C, Zhang M, et al. A 47 μm 204 MHz AlN contourmode mems based tunable oscillator in 65 nm CMOS. Proceedings of the Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013

[59]

Candler R N, Li H, Lutz M, et al. Investigation of energy loss mechanisms in micromechanical resonators. Proceedings of the Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003

[60]

Thalhammer R, Aigner R. Energy loss mechanisms in SMR-type BAW devices. Proceedings of the Microwave Symposium Digest, 2005 IEEE MTT-S International, 2005

[61]

Segovia-Fernandez J, Cremonesi M, Cassella C, et al. Experimental study on the impact of anchor losses on the quality factor of contour mode AlN resonators. Proceedings of the Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVⅡ), 2013 Transducers & Eurosensors XXVⅡ: The 17th International Conference on, 2013

[62]

Segovia-Fernandez J, Piazza G. Analytical and numerical methods to model anchor losses in 65-MHz AlN contour mode resonators[J]. J Microelectromechan Syst, 2016, 25: 459. doi: 10.1109/JMEMS.2016.2539224

[63]

Cassella C, Segovia-Fernandez J, Piazza G, et al. Reduction of anchor losses by etched slots in aluminum nitride contour mode resonators. Proceedings of the European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 2013

[64]

Zhu H, Lee J E Y. Design of phononic crystal tethers for frequency-selective quality factor enhancement in AlN piezoelectric-on-silicon resonators[J]. Procedia Engineering, 2015, 120: 516. doi: 10.1016/j.proeng.2015.08.689

[65]

Zhu H, Lee J E Y. AlN piezoelectric on silicon mems resonator with boosted Q using planar patterned phononic crystals on anchors. Proceedings of the Micro Electro Mechanical Systems (MEMS), 2015 28th IEEE International Conference on, 2015

[66]

Imtiaz A M, Khan F H, Walling J S. Fabrication, characterization and efficiency analysis of a piezoelectric (AlN) ring microresonator on Si for low-power resonant converters. Proceedings of the Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, 2014

[67]

Gibson B, Qalandar K, Turner K, et al. Analysis of the impact of release area on the quality factor of contour-mode resonators by laser doppler vibrometry. Proceedings of the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015

[68]

Cassella C, Singh N, Soon B W. Quality factor dependence on the inactive regions in AlN contour-mode resonators[J]. J Microelectromechan Syst, 2015, 24(5): 1575. doi: 10.1109/JMEMS.2015.2423663

[69]

Cremonesi M, Frangi A, Cassella C. Enhancement of the quality factor of AlN contour mode resonators by acoustic reflection: numerical design and experimental investigation[J]. Procedia Engineering, 2014, 87: 468. doi: 10.1016/j.proeng.2014.11.390

[1]

Li Weiwei, Zhao Youwen, Dong Zhiyuan, Yang Jun, Hu Weijie, Ke Jianhong. Wet etching and infrared absorption of AlN bulk single crystals. J. Semicond., 2009, 30(7): 073002. doi: 10.1088/1674-4926/30/7/073002

[2]

Zhao Hong, Zou Zeya, Zhao Wenbai, Liu Ting, Yang Xiaobo, Liao Xiuying, Wang Zhen, Zhou Yong, Liu Wanqing. Epitaxial Growth of Atomically Flat AlN Layers on Sapphire Substrate by Metal Organic Chemical Vapor Deposition. J. Semicond., 2007, 28(10): 1568.

[3]

Xuewei Li, Jicai Zhang, Maosong Sun, Binbin Ye, Jun Huang, Zhenyi Xu, Wenxiu Dong, Jianfeng Wang, Ke Xu. Effect of annealing temperature on Ti/Al/Ni/Au ohmic contacts on undoped AlN films. J. Semicond., 2017, 38(11): 116002. doi: 10.1088/1674-4926/38/11/116002

[4]

Wang Jianfeng, Zhang Jicai, Zhang Baoshun, Wu Mo, Wang Yutian, Yang Hui, Liang Junwu. Influence of Thickness of High Temperature AlN Buffer Grown on Si(111) on GaN Structure Properties. J. Semicond., 2005, 26(S1): 109.

[5]

Dong Zhiyuan, Zhao Youwen, Wei Xuecheng, Li Jinmin. Physical Vapor Transport Growth and Characterization of Large Bulk AlN Crystal. J. Semicond., 2007, 28(2): 204.

[6]

Zhang Jun, Xie Erqing, Fu Yujun, Li Hui, Shao Lexi. Influence of Substrate Temperature and Nitrogen Gas on Zinc Nitride Thin Films Prepared by RF Reactive Sputtering. J. Semicond., 2007, 28(8): 1173.

[7]

Guo Lunchun, Wang Xiaoliang, Hu Guoxin, Li Jianping, Luo Weijun. Growth of GaN on Si(1 l 1) by Inserting 5AI/AIN Buffer Layer. J. Semicond., 2007, 28(S1): 234.

[8]

Chen Jing, Tang Jiyu, Han Peide, Yan Lingyun, Chen Junfang. Optical Properties of a Periodic One-Dimensional Semiconductor-Organic Photonic Crystal. J. Semicond., 2008, 29(10): 1879.

[9]

Zhang Huafu, Yang Shugang, Liu Hanfa, Yuan Changkun. Preparation and characterization of transparent conducting ZnO:W films by DC magnetron sputtering. J. Semicond., 2011, 32(4): 043002. doi: 10.1088/1674-4926/32/4/043002

[10]

Ma Quanbao, Zhu Liping, Ye Zhizhen, He Haiping, Wang Jingrui, Hu Shaohua, Zhao Binghui. Influence of Sputtering Pressure on the Properties of ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering. J. Semicond., 2007, 28(S1): 285.

[11]

Hong Li, Hongbin Pu, Chunlei Zheng, Zhiming Chen. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering. J. Semicond., 2015, 36(6): 063005. doi: 10.1088/1674-4926/36/6/063005

[12]

Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002

[13]

Wu Jiangyan, Yan Jinliang, Yue Wei, Li Ting. Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3-Ar mixture gases. J. Semicond., 2012, 33(4): 043001. doi: 10.1088/1674-4926/33/4/043001

[14]

Zhang Huafu, Liu Hanfa, Lei Chengxin, Zhou Aiping, Yuan Changkun. Low-temperature deposition of transparent conducting Mn–W co-doped ZnO thin films. J. Semicond., 2010, 31(8): 083005. doi: 10.1088/1674-4926/31/8/083005

[15]

Jie Wu, Junfei Shi, Chengyuan Dong, Zhongfei Zou, Yuting Chen, Daxiang Zhou, Zhe Hu, Runze Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003

[16]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

[17]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

[18]

Shuo Zhang, Yun Zhang, Xiang Chen, Yanan Guo, Jianchang Yan, Junxi Wang, Jinmin Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers. J. Semicond., 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002

[19]

Zhengguo Shang, Dongling Li, Zhiyu Wen, Xingqiang Zhao. The fabrication of vibration energy harvester arrays based on AlN piezoelectric film. J. Semicond., 2013, 34(11): 114013. doi: 10.1088/1674-4926/34/11/114013

[20]

Maosong Sun, Jicai Zhang, Jun Huang, Xuewei Li, Linjun Wang, Xuehua Liu, Jianfeng Wang, Ke Xu. Influence of thickness on strain state and surface morphology of AlN grown by HVPE. J. Semicond., 2016, 37(12): 123001. doi: 10.1088/1674-4926/37/12/123001

Search

Advanced Search >>

GET CITATION

Y H Hou, M Zhang, G W Han, C W Si, Y M Zhao, J Ning. A review:aluminum nitride MEMS contour-mode resonator[J]. J. Semicond., 2016, 37(10): 101001. doi: 10.1088/1674-4926/37/10/101001.

Export: BibTex EndNote

Article Metrics

Article views: 1511 Times PDF downloads: 57 Times Cited by: 0 Times

History

Manuscript received: 20 June 2013 Manuscript revised: 03 August 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误