ARTICLES

Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots

Dandan Ning1, 2, Yanan Chen2, 3, Xinkun Li4, Dechun Liang4, Shufang Ma1, , Peng Jin2, 3, and Zhanguo Wang2, 3

+ Author Affiliations

 Corresponding author: Shufang Ma, Email: mashufang@sust.edu.cn; Peng Jin, Email: pengjin@semi.ac.cn

PDF

Turn off MathJax

Abstract: Photoluminescence (PL) test was conducted to investigate the effect of rapid thermal annealing (RTA) on the optical performance of self-assembled InAs/GaAs quantum dots (QDs) at the temperatures of 16 and 300 K. It was found that after RTA treatment, the PL spectrum of the QDs sample had a large blue-shift and significantly broadened at 300 K. Compared with the as-grown InAs QDs sample, the PL spectral width has increased by 44.68 meV in the InAs QDs sample RTA-treated at 800 °C. The excitation power-dependent PL measurements showed that the broadening of the PL peaks of the RTA-treated InAs QDs should be related to the emission of the ground state (GS) of different-sized InAs QDs, the InAs wetting layer (WL) and the In0.15Ga0.85As strain reduction layer (SRL) in the epitaxial InAs/GaAs layers.

Key words: quantum dotsrapid thermal annealingphotoluminescencespectral width



[1]
Bhattacharya P, Kamath K, Singh J, et al. In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties. IEEE Trans Electron Devices, 2017, 46(5), 871 doi: 10.1109/16.760392
[2]
Bimberg D. Quantum dots for lasers, amplifiers and computing. J Phys D, 2005, 38(13), 2055 doi: 10.1088/0022-3727/38/13/001
[3]
Sablon K A, Little J W, Mitin V, et al. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. Nano Lett, 2011, 11(6), 2311 doi: 10.1021/nl200543v
[4]
Deviprasad V P, Ghadi H, Das D, et al. High performance short wave infrared photodetector using p –i –p quantum dots (InAs/GaAs) validated with theoretically simulated model. J Alloys Compd, 2019, 804, 18 doi: 10.1016/j.jallcom.2019.06.286
[5]
Karni O, Kuchar K J, Capua A, et al. Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers. Appl Phys Lett, 2014, 104(12), 121104 doi: 10.1063/1.4869489
[6]
Ebiko Y, Muto S, Suzuki D, et al. Island size scaling in InAs/GaAs self-assembled quantum dots. Phys Rev Lett, 1998, 80(12), 2650 doi: 10.1103/PhysRevLett.80.2650
[7]
Zhang Z Y, Hogg R A, Lv X Q, et al. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv Opt Photonics, 2010, 2(2), 201 doi: 10.1364/AOP.2.000201
[8]
Sun Z Z, Ding D, Gong Q, et al. Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum. Opt Quantum Electron, 1999, 31(12), 1235 doi: 10.1023/A:1007030119338
[9]
Ozaki N, Takeuchi K, Ohkouchi S, et al. Monolithically grown multi-color InAs quantum dots as a spectral-shape-controllable near-infrared broadband light source. Appl Phys Lett, 2013, 103(5), 051121 doi: 10.1063/1.4817386
[10]
Li W, Chen S, Wu J, et al. The effect of post-growth rapid thermal annealing on InAs/InGaAs dot-in-a-well structure monolithically grown on Si. J Appl Phys, 2019, 125(13), 135301 doi: 10.1063/1.5085175
[11]
Sengupta S, Halder N, Chakrabarti S. Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness. Mater Res Bull, 2010, 45(11), 1593 doi: 10.1016/j.materresbull.2010.07.015
[12]
Triki M, Jaziri S, Bennaceur R. Optical transitions of InAs/GaAs quantum dot under annealing process. J Appl Phys, 2012, 111(10), 104304 doi: 10.1063/1.4717952
[13]
Saravanan S, Harayama T. Improvement in size distribution and optical properties of InAs/GaAs QDs by post growth thermal treatment. Phys Status Solidi B, 2009, 246(4), 725 doi: 10.1002/pssb.200880590
[14]
Adhikary S, Chakrabarti S. A detailed investigation on the impact of post-growth annealing on the materials and device characteristics of 35-layer In0.50Ga0.50As/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping. Mater Res Bull, 2012, 47(11), 3317 doi: 10.1016/j.materresbull.2012.07.032
[15]
Adhikary S, Chakrabarti S. Spectral broadening due to post-growth annealing of a long-wave InGaAs/GaAs quantum dot infrared photodetector with a quaternary barrier layer. Thin Solid Films, 2014, 552, 146 doi: 10.1016/j.tsf.2013.11.010
[16]
Djie H S, Wang D N, Ooi B S, et al. Emission wavelength trimming of self-assembled InGaAs/GaAs quantum dots with GaAs/AlGaAs superlattices by rapid thermal annealing. Thin Solid Films, 2007, 515(10), 4344 doi: 10.1016/j.tsf.2006.07.097
[17]
Rossetti M, Li L, Markus A, et al. Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm. IEEE J Quantum Electron, 2007, 43(8), 676 doi: 10.1109/JQE.2007.901589
[18]
Lee U H, Jang Y D, Lee H, et al. The energy level spacing between the ground and first excited states in InAs/GaAs quantum dots as a measure of the zero dimensionality. Physica E, 2003, 17, 129 doi: 10.1016/S1386-9477(02)00746-4
[19]
Ghosh K, Kundu S, Halder N, et al. Annealing of In0.45Ga0.55As/ GaAs quantum dots overgrown with large monolayer (11 ML) coverage for applications in thermally stable optoelectronic devices. Solid State Commun, 2011, 151(19), 1394 doi: 10.1016/j.ssc.2011.06.007
[20]
Kim J S, Lee J H, Hong S U, et al. Structural and optical properties of shape-engineered InAs quantum dots. J Appl Phys, 2003, 94(4), 2486 doi: 10.1063/1.1594270
[21]
Agarwal A, Srujan M, Chakrabarti S, et al. Investigation of thermal interdiffusion in InAs/In0.15Ga0.85As/GaAs quantum dot-in-a-well heterostructures. J Lumin, 2013, 143, 96 doi: 10.1016/j.jlumin.2013.04.030
[22]
Shah S, Ghosh K, Jejurikar S, et al. Ground-state energy trends in single and multilayered coupled InAs/GaAs quantum dots capped with InGaAs layers: Effects of InGaAs layer thickness and annealing temperature. Mater Res Bull, 2013, 48(8), 2933 doi: 10.1016/j.materresbull.2013.04.028
[23]
Lei W, Chen Y H, Wang Y L, et al. Influence of rapid thermal annealing on InAs/InAlAs/InP quantum wires with different InAs deposited thickness. J Cryst Growth, 2005, 284(1/2), 20 doi: 10.1016/j.jcrysgro.2005.06.050
[24]
Babiński A, Jasiński J, Bożek R, et al. Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl Phys Lett, 2001, 79(16), 2576 doi: 10.1063/1.1412279
Fig. 1.  (Color online) Schematic for the heteroepitaxy structure of InAs/GaAs QDs.

Fig. 2.  (Color online) (a) The PL spectrum of the as-grown QDs sample under 14 mW of excitation power at 16 and 300 K respectively. (b) The Gaussian fitting diagram of the PL spectrum of the as-grown QDs sample at 16 K, with the dash-dot lines showing the Gaussian fitting of different emission peaks.

Fig. 3.  (Color online) The normalized PL spectra of as-grown QDs and QDs annealed at various temperatures obtained at (a) 16 K and (b) 300 K under an excitation power of 14 mW. Inset: The PL peak energy of QDs at (a) T = 16 K and (b) T = 300 K with the change of annealing temperature, with the red curve representing small QDs and the black curve representing large QDs.

Fig. 4.  (Color online) (a) The PL spectral width of QDs at T = 16 K (denoted by red curve) and T = 300 K (denoted by blue curve) with the change of annealing temperature. (b) The integrated PL intensity at T = 16 K (denoted by red curve) and T = 300 K (denoted by blue curve) with the change of annealing temperature.

Fig. 5.  (Color online) The top half of the figure shows the power-dependent PL spectrum of samples annealed at (a) 750, (b) 800, (c) 850, and (d) 900 °C recorded at 300 K. The PL spectrum of the annealed sample under an excitation power of 40 mW was extracted and Gaussian fitting was performed, as shown in the lower part of the figure.

[1]
Bhattacharya P, Kamath K, Singh J, et al. In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties. IEEE Trans Electron Devices, 2017, 46(5), 871 doi: 10.1109/16.760392
[2]
Bimberg D. Quantum dots for lasers, amplifiers and computing. J Phys D, 2005, 38(13), 2055 doi: 10.1088/0022-3727/38/13/001
[3]
Sablon K A, Little J W, Mitin V, et al. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. Nano Lett, 2011, 11(6), 2311 doi: 10.1021/nl200543v
[4]
Deviprasad V P, Ghadi H, Das D, et al. High performance short wave infrared photodetector using p –i –p quantum dots (InAs/GaAs) validated with theoretically simulated model. J Alloys Compd, 2019, 804, 18 doi: 10.1016/j.jallcom.2019.06.286
[5]
Karni O, Kuchar K J, Capua A, et al. Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers. Appl Phys Lett, 2014, 104(12), 121104 doi: 10.1063/1.4869489
[6]
Ebiko Y, Muto S, Suzuki D, et al. Island size scaling in InAs/GaAs self-assembled quantum dots. Phys Rev Lett, 1998, 80(12), 2650 doi: 10.1103/PhysRevLett.80.2650
[7]
Zhang Z Y, Hogg R A, Lv X Q, et al. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv Opt Photonics, 2010, 2(2), 201 doi: 10.1364/AOP.2.000201
[8]
Sun Z Z, Ding D, Gong Q, et al. Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum. Opt Quantum Electron, 1999, 31(12), 1235 doi: 10.1023/A:1007030119338
[9]
Ozaki N, Takeuchi K, Ohkouchi S, et al. Monolithically grown multi-color InAs quantum dots as a spectral-shape-controllable near-infrared broadband light source. Appl Phys Lett, 2013, 103(5), 051121 doi: 10.1063/1.4817386
[10]
Li W, Chen S, Wu J, et al. The effect of post-growth rapid thermal annealing on InAs/InGaAs dot-in-a-well structure monolithically grown on Si. J Appl Phys, 2019, 125(13), 135301 doi: 10.1063/1.5085175
[11]
Sengupta S, Halder N, Chakrabarti S. Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness. Mater Res Bull, 2010, 45(11), 1593 doi: 10.1016/j.materresbull.2010.07.015
[12]
Triki M, Jaziri S, Bennaceur R. Optical transitions of InAs/GaAs quantum dot under annealing process. J Appl Phys, 2012, 111(10), 104304 doi: 10.1063/1.4717952
[13]
Saravanan S, Harayama T. Improvement in size distribution and optical properties of InAs/GaAs QDs by post growth thermal treatment. Phys Status Solidi B, 2009, 246(4), 725 doi: 10.1002/pssb.200880590
[14]
Adhikary S, Chakrabarti S. A detailed investigation on the impact of post-growth annealing on the materials and device characteristics of 35-layer In0.50Ga0.50As/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping. Mater Res Bull, 2012, 47(11), 3317 doi: 10.1016/j.materresbull.2012.07.032
[15]
Adhikary S, Chakrabarti S. Spectral broadening due to post-growth annealing of a long-wave InGaAs/GaAs quantum dot infrared photodetector with a quaternary barrier layer. Thin Solid Films, 2014, 552, 146 doi: 10.1016/j.tsf.2013.11.010
[16]
Djie H S, Wang D N, Ooi B S, et al. Emission wavelength trimming of self-assembled InGaAs/GaAs quantum dots with GaAs/AlGaAs superlattices by rapid thermal annealing. Thin Solid Films, 2007, 515(10), 4344 doi: 10.1016/j.tsf.2006.07.097
[17]
Rossetti M, Li L, Markus A, et al. Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm. IEEE J Quantum Electron, 2007, 43(8), 676 doi: 10.1109/JQE.2007.901589
[18]
Lee U H, Jang Y D, Lee H, et al. The energy level spacing between the ground and first excited states in InAs/GaAs quantum dots as a measure of the zero dimensionality. Physica E, 2003, 17, 129 doi: 10.1016/S1386-9477(02)00746-4
[19]
Ghosh K, Kundu S, Halder N, et al. Annealing of In0.45Ga0.55As/ GaAs quantum dots overgrown with large monolayer (11 ML) coverage for applications in thermally stable optoelectronic devices. Solid State Commun, 2011, 151(19), 1394 doi: 10.1016/j.ssc.2011.06.007
[20]
Kim J S, Lee J H, Hong S U, et al. Structural and optical properties of shape-engineered InAs quantum dots. J Appl Phys, 2003, 94(4), 2486 doi: 10.1063/1.1594270
[21]
Agarwal A, Srujan M, Chakrabarti S, et al. Investigation of thermal interdiffusion in InAs/In0.15Ga0.85As/GaAs quantum dot-in-a-well heterostructures. J Lumin, 2013, 143, 96 doi: 10.1016/j.jlumin.2013.04.030
[22]
Shah S, Ghosh K, Jejurikar S, et al. Ground-state energy trends in single and multilayered coupled InAs/GaAs quantum dots capped with InGaAs layers: Effects of InGaAs layer thickness and annealing temperature. Mater Res Bull, 2013, 48(8), 2933 doi: 10.1016/j.materresbull.2013.04.028
[23]
Lei W, Chen Y H, Wang Y L, et al. Influence of rapid thermal annealing on InAs/InAlAs/InP quantum wires with different InAs deposited thickness. J Cryst Growth, 2005, 284(1/2), 20 doi: 10.1016/j.jcrysgro.2005.06.050
[24]
Babiński A, Jasiński J, Bożek R, et al. Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl Phys Lett, 2001, 79(16), 2576 doi: 10.1063/1.1412279
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3218 Times PDF downloads: 153 Times Cited by: 0 Times

    History

    Received: 01 May 2020 Revised: 19 July 2020 Online: Accepted Manuscript: 15 September 2020Uncorrected proof: 18 September 2020Published: 08 December 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dandan Ning, Yanan Chen, Xinkun Li, Dechun Liang, Shufang Ma, Peng Jin, Zhanguo Wang. Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots[J]. Journal of Semiconductors, 2020, 41(12): 122101. doi: 10.1088/1674-4926/41/12/122101 D D Ning, Y N Chen, X K Li, D C Liang, S F Ma, P Jin, Z G Wang, Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots[J]. J. Semicond., 2020, 41(12): 122101. doi: 10.1088/1674-4926/41/12/122101.Export: BibTex EndNote
      Citation:
      Dandan Ning, Yanan Chen, Xinkun Li, Dechun Liang, Shufang Ma, Peng Jin, Zhanguo Wang. Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots[J]. Journal of Semiconductors, 2020, 41(12): 122101. doi: 10.1088/1674-4926/41/12/122101

      D D Ning, Y N Chen, X K Li, D C Liang, S F Ma, P Jin, Z G Wang, Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots[J]. J. Semicond., 2020, 41(12): 122101. doi: 10.1088/1674-4926/41/12/122101.
      Export: BibTex EndNote

      Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots

      doi: 10.1088/1674-4926/41/12/122101
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return