J. Semicond. > Volume 36 > Issue 12 > Article Number: 123008

Preparation, electronic structure, and photoluminescent properties of Eu2+ activated BaSi2O5 powder phosphors for solid-state lighting

Donghua Cao , Hui Wang , , Hongjun Wei and Weiqiang Yang

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The green-emitting phosphor BaSi2O5:Eu2+ was synthesized by the conventional solid state reaction. Using the CASTEP code, BaSi2O5 is calculated to be an intermediate band gap semiconductor with an indirect energy gap of about 3. 2 eV. As expected, the calculated optical band gap of BaSi2O5 is lower compared to the experimentally determined values. Eu2+-activated BaSi2O5 phosphor can be excited efficiently over a broad spectral range between 200 and 400 nm, and has an emission peak at 500 nm with a full width at half maximum of 95 nm. The study of concentration-dependent emission intensity shows the optimal concentration of the Eu2+ is 0.05 mol, and that concentration quenching occurs when the Eu2+ content is beyond the critical value. The external quantum efficiency of the optimized BaSi2O5:Eu2+ is 96. 1%, 70. 2% and 62. 1% under excitation at 315, 350 and 365 nm, respectively. The superior optical properties of the sample show the potential as an ultraviolet converting green-emitting phosphor for white light emitting diodes.

Key words: light emitting diodethe green-emitting phosphor BaSi2O5Eu2+

Abstract: The green-emitting phosphor BaSi2O5:Eu2+ was synthesized by the conventional solid state reaction. Using the CASTEP code, BaSi2O5 is calculated to be an intermediate band gap semiconductor with an indirect energy gap of about 3. 2 eV. As expected, the calculated optical band gap of BaSi2O5 is lower compared to the experimentally determined values. Eu2+-activated BaSi2O5 phosphor can be excited efficiently over a broad spectral range between 200 and 400 nm, and has an emission peak at 500 nm with a full width at half maximum of 95 nm. The study of concentration-dependent emission intensity shows the optimal concentration of the Eu2+ is 0.05 mol, and that concentration quenching occurs when the Eu2+ content is beyond the critical value. The external quantum efficiency of the optimized BaSi2O5:Eu2+ is 96. 1%, 70. 2% and 62. 1% under excitation at 315, 350 and 365 nm, respectively. The superior optical properties of the sample show the potential as an ultraviolet converting green-emitting phosphor for white light emitting diodes.

Key words: light emitting diodethe green-emitting phosphor BaSi2O5Eu2+



References:

[1]

Peon R, Doluweera G, Platonova I. Solid-state lighting:the only solution for the developing world[J]. Proceedings of SPIE Optics and Photonics, 2005, 5941: 109.

[2]

Sheu J K, Chang S J, Kuo C H. White-light emission from near UV InGaN-GaN LED chip percoated with blue/green/red phosphors[J]. IEEE Photouics Technol Lett, 2003, 15: 140.

[3]

Joung K P, Mi A L, Chang H K. White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties[J]. Appl Phys Lett, 2003, 82: 683.

[4]

Liu Jie, Sun Jiayue, Shi Chunshan. A new luminescent material:Li2CaSiO4:Eu2+[J]. Mater Lett, 2006, 60: 2830.

[5]

Blasse G, Wanmaker W L, Tervrugt J W. Fluorescence of Eu2+ activated ailicates[J]. J Electrochem Soc, 1968, 23: 189.

[6]

Lin Yuanhua, Zhang Zhongtai, Zhang Feng. Preparation of the ultrafine SrAl2O4:Eu, Dy needlike phosphor and its optical properties[J]. Mater Chem Phys, 2000, 65: 103.

[7]

Zhao Linghui, Wei Tongbo, Wang Junxi. Enhanced light extraction of InGaN LEDs with photonic crystals grown on p-GaN using selective-area epitaxy and nanospherical-lens photolithography[J]. Journal of Semiconductors, 2013, 34(10): 104005.

[8]

Hao Yan, Wand Yuhua, Zhang Zhanhui. Preparation and photoluminescence of Zn2SiO4:Mn2+ phosphor by combustion technique[J]. Chinese Journal of Luminescence, 2004, 25(4): 441.

[9]

Saradhi M P, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting[J]. Chem Mater, 2006, 18(22): 5267.

[10]

Cannas C, Mainas M, Musinu A. Structural investigations and luminescence properties of nanocrystalline europium-doped yttrium silicates prepared by a sol-gel technique[J]. Opt Mater, 2007, 29: 585.

[11]

Jung K Y, Lee H W, Jung H K. Luminescent properties of(Sr, Zn)Al2O4:Eu2+, B3+ particles as a potential green phosphor for UV LEDs[J]. Chem Mater, 2006, 18: 2249.

[12]

Zhou Y, Liu J, Yu M. Synthesis depending luminescence properties of Y3Al5O12:Re3+(Re=Ce, Sm, Tb) phosphors[J]. Mater Lett, 2002, 56: 628.

[13]

Yan M F, Huo T C D, Ling H C. Preparation of Y3Al5O12-based phosphor powders[J]. J Electrochem Soc, 1987, 134: 493.

[14]

Su Kai, Tilley T D, Michael J. Molecular and polymer precursor routes to manganse-doped zinc orthosilicate phosphors[J]. J Amer Chem Soc, 1996, 118: 3459.

[15]

Yang Zhiping, Li Xu, Li Xingmin. Synthesis of red-emitting phosphors Ca1-xSrxS:Eu2+ used in white light emitting diodes by combustion[J]. Journal of the Chinese Ceramic Society, 2006, 34(8): 365.

[16]

Gallini S, Jurado J R, Colomer M T. Combustion synthesis of nanometric powders of LaPO4 and Sr-substituted LaPO4[J]. Chem Mater, 2005, 17: 4154.

[17]

Lou C L, Duh J G, Chiou B S. Synthesis of Eu3+ activated yttrium oxysulfide red phosphor by flux fusion method[J]. Mater Chem Phys, 2001, 71: 179.

[18]

Liu Jie, Lian Hongzhou, Shi Chunshan. Improved optical photoluminescence by change compensation in the phosphor system CaMoO4:Eu3+[J]. Opt Mater, 2007, 29(12): 1591.

[19]

Kang Ming, Liu Jun, Sun Rong. Study on the preparation of red phosphor CaO:Eu3+, Na+ by high solid-state method[J]. Journal of Sichuan University(Engineering Science Edition), 2008, 40(2): 71.

[20]

Peng Wenshi, Liu Gaokui. Factor-group analysis of vibration spectra of calcite and aragonite group minerals[J]. Acta minerabgica Sinica, 1983, 3: 169.

[21]

Yang Nanru, Yue Wenhai. The handbook of inorganic metalbid meterials atla[J]. Wuhan:University of Wuhan Industry Press, 2000: 368.

[22]

Yang Qun, Wang Xinlin, Li Chaozhen. A Raman spectroscopic approach to the dinosaur fossils from Chuxiong[J]. J Optoelectron Laser, 2002, 13(5): 523.

[23]

Konningdtein J A, Grunberg P. The effect of strong crystal fields on the selection rules of electronic Raman transitions[J]. Chem Phys Lett, 1970, 6(4): 320.

[24]

Chen Yonghu, Liu Bo, Shi Chaoshu. VUV spectroscopy of GdPO4:Eu3+ and GdBO3:Eu3+[J]. Journal of the Chinese Earth Society, 2005, 23(4): 429.

[25]

Fu Shiliu, Yin Tao, Chai Fei. Solid state reaction mechanism and luminescence of Eu3+ doped Ca2SnO4 phosphor[J]. Journal of Inorganic Materials, 2007, 22(4): 647.

[26]

Akiyama M, Xu C N, Nonaka K. Intense visible light emission from Sr3Al2O6:Eu, Dy[J]. Appl Phys Lett, 1998, 73(21): 3046.

[27]

Pan Y, Sung H Y, Hao W. Hydrothermally-mediated preparation and photoluminescent properties of Sr3Al2O6:Eu3+ phosphor[J]. Materials Research Bulletin, 2006, 41: 225.

[28]

Page P, Ghildiyal R, Murthy K V R. Luminescence study of Sr3Al2O6:Tb3+ phosphor:photoluminescence and thermoluminescence aspects[J]. Materials Research Bulletin, 2007, 42: 261.

[29]

Page P, Ghildiyal R, Murthy K V R. Synthesis, characterization and luminescence of Sr3Al2O6 phosphor with trivalent rare earth dopant[J]. Materials Research Bulletin, 2006, 41: 1854.

[30]

Xu Yebin, He Yanyan, Xiao Yuan. Preparation of nanocrystalline Sr3Al2O6 powders via citric acid precursor[J]. Powder Technology, 2007, 172: 99.

[31]

Zhang Ping, Xu Mingxia, Zheng Zhentai. Rapid formation of red long afterglow phosphor Sr3Al2O6:Eu2+, Dy3+ by microwave irradiation[J]. Mate Sci Eng, 2007(B 136): 159.

[32]

Zhang Ping, Li Lingxia, Xu Mingxia. The new red luminescent Sr3Al2O6:Eu2+ phosphor powders synthesized cia sol-gel route by microwave-assisted[J]. J Alloys Comp, 2007, 125: 23.

[33]

Song Y K, Choi S K, Moon H S. Phase studies of SrO-Al2O3 by emission signatures of Eu2+ and Eu3+[J]. Materials Research Bulletin, 1997, 32(3): 337.

[34]

Smets B, Rutten J, Hoeks G. 2SrO·3Al2O3:Eu2+ and 1.29(Ba, Ca)O·6Al2O3:Eu2+ two new blue-emitting phosphors[J]. Electrochem Soc, 1989, 136(7): 2119.

[35]

Zhou Y H, Lin J, Wang S B. Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties[J]. Opt Mater, 2002, 20(1): 13.

[36]

Zhang Junji, Ning Jinwei, Liu Xuejian. Low temperature synthesis of single phase nanocrystalline YAG:Eu phosphor[J]. J Mater Sci Lett, 2003, 22(1): 13.

[37]

Pei Zhiwu, Su Qiang. The valence change from RE3+ to RE2+(RE=Eu, Sm, Yb) in SrB4O7:RE prepared in air and the spectral properties of RE2+[J]. J Alloys Compds, 1993, 198: 51.

[38]

Alonso J A, Rasines I, Soubeyroux J L. Tristrontiumdialuminum hexaoxide:an intricates superstructure of perovskite[J]. Inorg Chem, 1990, 29: 4771.

[39]

Glasser F P, Glasser L S D. Crystal chemistry of some AB2O4 compounds[J]. J Amer Cream Soc, 1963, 46: 377.

[40]

Zhang Junying, Zhang Zhongtai. The luminescence of Y2SiO5:Gd, Eu phosphor with sol-gel method[J]. Mater Rev, 2000, 14: 207.

[41]

He Hong, Liang Hongbin, Yu Yingning. The study of the spectrum within VUV-VIS of La2CaB10O19:Eu3+[J]. Journal of Rare Earths, 2002, 20(6): 556.

[1]

Peon R, Doluweera G, Platonova I. Solid-state lighting:the only solution for the developing world[J]. Proceedings of SPIE Optics and Photonics, 2005, 5941: 109.

[2]

Sheu J K, Chang S J, Kuo C H. White-light emission from near UV InGaN-GaN LED chip percoated with blue/green/red phosphors[J]. IEEE Photouics Technol Lett, 2003, 15: 140.

[3]

Joung K P, Mi A L, Chang H K. White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties[J]. Appl Phys Lett, 2003, 82: 683.

[4]

Liu Jie, Sun Jiayue, Shi Chunshan. A new luminescent material:Li2CaSiO4:Eu2+[J]. Mater Lett, 2006, 60: 2830.

[5]

Blasse G, Wanmaker W L, Tervrugt J W. Fluorescence of Eu2+ activated ailicates[J]. J Electrochem Soc, 1968, 23: 189.

[6]

Lin Yuanhua, Zhang Zhongtai, Zhang Feng. Preparation of the ultrafine SrAl2O4:Eu, Dy needlike phosphor and its optical properties[J]. Mater Chem Phys, 2000, 65: 103.

[7]

Zhao Linghui, Wei Tongbo, Wang Junxi. Enhanced light extraction of InGaN LEDs with photonic crystals grown on p-GaN using selective-area epitaxy and nanospherical-lens photolithography[J]. Journal of Semiconductors, 2013, 34(10): 104005.

[8]

Hao Yan, Wand Yuhua, Zhang Zhanhui. Preparation and photoluminescence of Zn2SiO4:Mn2+ phosphor by combustion technique[J]. Chinese Journal of Luminescence, 2004, 25(4): 441.

[9]

Saradhi M P, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting[J]. Chem Mater, 2006, 18(22): 5267.

[10]

Cannas C, Mainas M, Musinu A. Structural investigations and luminescence properties of nanocrystalline europium-doped yttrium silicates prepared by a sol-gel technique[J]. Opt Mater, 2007, 29: 585.

[11]

Jung K Y, Lee H W, Jung H K. Luminescent properties of(Sr, Zn)Al2O4:Eu2+, B3+ particles as a potential green phosphor for UV LEDs[J]. Chem Mater, 2006, 18: 2249.

[12]

Zhou Y, Liu J, Yu M. Synthesis depending luminescence properties of Y3Al5O12:Re3+(Re=Ce, Sm, Tb) phosphors[J]. Mater Lett, 2002, 56: 628.

[13]

Yan M F, Huo T C D, Ling H C. Preparation of Y3Al5O12-based phosphor powders[J]. J Electrochem Soc, 1987, 134: 493.

[14]

Su Kai, Tilley T D, Michael J. Molecular and polymer precursor routes to manganse-doped zinc orthosilicate phosphors[J]. J Amer Chem Soc, 1996, 118: 3459.

[15]

Yang Zhiping, Li Xu, Li Xingmin. Synthesis of red-emitting phosphors Ca1-xSrxS:Eu2+ used in white light emitting diodes by combustion[J]. Journal of the Chinese Ceramic Society, 2006, 34(8): 365.

[16]

Gallini S, Jurado J R, Colomer M T. Combustion synthesis of nanometric powders of LaPO4 and Sr-substituted LaPO4[J]. Chem Mater, 2005, 17: 4154.

[17]

Lou C L, Duh J G, Chiou B S. Synthesis of Eu3+ activated yttrium oxysulfide red phosphor by flux fusion method[J]. Mater Chem Phys, 2001, 71: 179.

[18]

Liu Jie, Lian Hongzhou, Shi Chunshan. Improved optical photoluminescence by change compensation in the phosphor system CaMoO4:Eu3+[J]. Opt Mater, 2007, 29(12): 1591.

[19]

Kang Ming, Liu Jun, Sun Rong. Study on the preparation of red phosphor CaO:Eu3+, Na+ by high solid-state method[J]. Journal of Sichuan University(Engineering Science Edition), 2008, 40(2): 71.

[20]

Peng Wenshi, Liu Gaokui. Factor-group analysis of vibration spectra of calcite and aragonite group minerals[J]. Acta minerabgica Sinica, 1983, 3: 169.

[21]

Yang Nanru, Yue Wenhai. The handbook of inorganic metalbid meterials atla[J]. Wuhan:University of Wuhan Industry Press, 2000: 368.

[22]

Yang Qun, Wang Xinlin, Li Chaozhen. A Raman spectroscopic approach to the dinosaur fossils from Chuxiong[J]. J Optoelectron Laser, 2002, 13(5): 523.

[23]

Konningdtein J A, Grunberg P. The effect of strong crystal fields on the selection rules of electronic Raman transitions[J]. Chem Phys Lett, 1970, 6(4): 320.

[24]

Chen Yonghu, Liu Bo, Shi Chaoshu. VUV spectroscopy of GdPO4:Eu3+ and GdBO3:Eu3+[J]. Journal of the Chinese Earth Society, 2005, 23(4): 429.

[25]

Fu Shiliu, Yin Tao, Chai Fei. Solid state reaction mechanism and luminescence of Eu3+ doped Ca2SnO4 phosphor[J]. Journal of Inorganic Materials, 2007, 22(4): 647.

[26]

Akiyama M, Xu C N, Nonaka K. Intense visible light emission from Sr3Al2O6:Eu, Dy[J]. Appl Phys Lett, 1998, 73(21): 3046.

[27]

Pan Y, Sung H Y, Hao W. Hydrothermally-mediated preparation and photoluminescent properties of Sr3Al2O6:Eu3+ phosphor[J]. Materials Research Bulletin, 2006, 41: 225.

[28]

Page P, Ghildiyal R, Murthy K V R. Luminescence study of Sr3Al2O6:Tb3+ phosphor:photoluminescence and thermoluminescence aspects[J]. Materials Research Bulletin, 2007, 42: 261.

[29]

Page P, Ghildiyal R, Murthy K V R. Synthesis, characterization and luminescence of Sr3Al2O6 phosphor with trivalent rare earth dopant[J]. Materials Research Bulletin, 2006, 41: 1854.

[30]

Xu Yebin, He Yanyan, Xiao Yuan. Preparation of nanocrystalline Sr3Al2O6 powders via citric acid precursor[J]. Powder Technology, 2007, 172: 99.

[31]

Zhang Ping, Xu Mingxia, Zheng Zhentai. Rapid formation of red long afterglow phosphor Sr3Al2O6:Eu2+, Dy3+ by microwave irradiation[J]. Mate Sci Eng, 2007(B 136): 159.

[32]

Zhang Ping, Li Lingxia, Xu Mingxia. The new red luminescent Sr3Al2O6:Eu2+ phosphor powders synthesized cia sol-gel route by microwave-assisted[J]. J Alloys Comp, 2007, 125: 23.

[33]

Song Y K, Choi S K, Moon H S. Phase studies of SrO-Al2O3 by emission signatures of Eu2+ and Eu3+[J]. Materials Research Bulletin, 1997, 32(3): 337.

[34]

Smets B, Rutten J, Hoeks G. 2SrO·3Al2O3:Eu2+ and 1.29(Ba, Ca)O·6Al2O3:Eu2+ two new blue-emitting phosphors[J]. Electrochem Soc, 1989, 136(7): 2119.

[35]

Zhou Y H, Lin J, Wang S B. Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties[J]. Opt Mater, 2002, 20(1): 13.

[36]

Zhang Junji, Ning Jinwei, Liu Xuejian. Low temperature synthesis of single phase nanocrystalline YAG:Eu phosphor[J]. J Mater Sci Lett, 2003, 22(1): 13.

[37]

Pei Zhiwu, Su Qiang. The valence change from RE3+ to RE2+(RE=Eu, Sm, Yb) in SrB4O7:RE prepared in air and the spectral properties of RE2+[J]. J Alloys Compds, 1993, 198: 51.

[38]

Alonso J A, Rasines I, Soubeyroux J L. Tristrontiumdialuminum hexaoxide:an intricates superstructure of perovskite[J]. Inorg Chem, 1990, 29: 4771.

[39]

Glasser F P, Glasser L S D. Crystal chemistry of some AB2O4 compounds[J]. J Amer Cream Soc, 1963, 46: 377.

[40]

Zhang Junying, Zhang Zhongtai. The luminescence of Y2SiO5:Gd, Eu phosphor with sol-gel method[J]. Mater Rev, 2000, 14: 207.

[41]

He Hong, Liang Hongbin, Yu Yingning. The study of the spectrum within VUV-VIS of La2CaB10O19:Eu3+[J]. Journal of Rare Earths, 2002, 20(6): 556.

[1]

Jing Wen, Yumei Wen, Ping Li, Sanshan Wang. Junction-temperature estimation in AlGaInP light-emitting diodes using the luminescence spectra method. J. Semicond., 2016, 37(6): 064010. doi: 10.1088/1674-4926/37/6/064010

[2]

Shaolan Li, Lichun Zhang. Improvement of the electroluminescence performance of ZnO nanorods/p-GaN light emitting diodes with a ZnO films interlayer. J. Semicond., 2013, 34(11): 114010. doi: 10.1088/1674-4926/34/11/114010

[3]

Buwen Cheng, Cheng Li, Zhi Liu, Chunlai Xue. Research progress of Si-based germanium materials and devices. J. Semicond., 2016, 37(8): 081001. doi: 10.1088/1674-4926/37/8/081001

[4]

Chen Zhizhong, Xu Ke, Qin Zhixin, Yu Tongjun, Tong Yuzhen, Song Jinde, Lin Liang, Liu Peng, Qi Shengli, Zhang Guoyi. Origins of Double Emission Peaks in Electroluminescence Spectrum from InGaN/GaN MQW LED. J. Semicond., 2007, 28(7): 1121.

[5]

Wen Feng, Huang Lirong, Jiang Bo, Tong Liangzhu, Xu Wei, Liu Deming. In situ growth monitoring of AlGaN/GaN distributed Bragg reflectors at 530 nm using a 633 nm laser. J. Semicond., 2010, 31(9): 094010. doi: 10.1088/1674-4926/31/9/094010

[6]

Teng Xiaoming, Liang Chao, He Jinhua. Effect of strontium nitride on the properties of Sr2Si5N8:Eu2+ red phosphor. J. Semicond., 2011, 32(1): 012003. doi: 10.1088/1674-4926/32/1/012003

[7]

Ye Zhizhen, Xu Weizhong, Zeng Yujia, Jiang Liu, Zhao Binghui, Zhu Liping, Lü Jianguo, Huang Jingyun, Wang Lei, Li Xianhang. Fabrication of ZnO Light-Emitting Diode by Using MOCVD Method. J. Semicond., 2005, 26(11): 2264.

[8]

Wang Huan, Wang Zhigong, Feng Jun, Li Wenyuan, Wang Rong, Miao Peng. A pixel circuit with reduced switching leakage for an organic light-emitting diode. J. Semicond., 2012, 33(12): 125006. doi: 10.1088/1674-4926/33/12/125006

[9]

Xiaofeng Guo, Manqing Tan, Xin Wei, Jian Jiao, Wentao Guo, Ningning Sun. Rapid evaluation method for the normal lifetime of an infrared light-emitting diode. J. Semicond., 2013, 34(11): 114009. doi: 10.1088/1674-4926/34/11/114009

[10]

Gao Wei, Guo Weiling, Zou Deshu, Jiang Wenjing, Liu Zike, Shen Guangdi. Absorption of photons in the thin film AlGaInP light emitting diode. J. Semicond., 2011, 32(1): 014012. doi: 10.1088/1674-4926/32/1/014012

[11]

Zhang Yonghui, Guo Weiling, Gao Wei, Li Chunwei, Ding Tianping. Properties of the ITO layer in a novel red light-emitting diode. J. Semicond., 2010, 31(4): 043002. doi: 10.1088/1674-4926/31/4/043002

[12]

Yunyi Zhuang, Yong Wang, Liping Wang, Zhanguo Li, Wenbo Li, Lei Yang, Jun Zou. Effect of phosphor sedimentation on photochromic properties of a warm white light-emitting diode. J. Semicond., 2018, 39(12): 124006. doi: 10.1088/1674-4926/39/12/124006

[13]

Wen Feng, Liu Deming, Huang Lirong. Theoretical analysis of enhanced light output from a GaN light emitting diode with an embedded photonic crystal. J. Semicond., 2010, 31(10): 104006. doi: 10.1088/1674-4926/31/10/104006

[14]

Xiaowen Zhang, Jiwen Xu, Hua Wang, Bin Wei, Huarong Zeng, Xueyin Jiang, Zhilin Zhang. Optimizing structure for constructing a highly efficient inverted top-emitting organic light-emitting diode with stable electroluminescent spectra. J. Semicond., 2014, 35(2): 023002. doi: 10.1088/1674-4926/35/2/023002

[15]

Jingming Chen, Bin Shu, Jibao Wu, Linxi Fan, Heming Zhang, Huiyong Hu, Rongxi Xuan, Jianjun Song. Enhanced electroluminescence from a free-standing tensilely strained germanium nanomembrane light-emitting diode. J. Semicond., 2015, 36(10): 104004. doi: 10.1088/1674-4926/36/10/104004

[16]

Guo Enqing, Liu Zhiqiang, Wang Liancheng, Yi Xiaoyan, Wang Guohong. Optical and electrical characteristics of GaN vertical light emitting diode with current block layer. J. Semicond., 2011, 32(6): 064007. doi: 10.1088/1674-4926/32/6/064007

[17]

Zhou Xin, Gu Shulin, Zhu Shunming, Ye Jiandong, Liu Wei, Liu Songmin, Hu Liqun, Zheng Youdou, Zhang Rong, Shi Yi. Fabrication and Emission Properties of a n-ZnO/p-GaN Heterojunction Light-Emitting Diode. J. Semicond., 2006, 27(2): 249.

[18]

Cao Guohua, Qin Dashan, Cao Junsong, Zeng Yiping, Li Jinmin. Organic Light Emitting Diode Using Mg Doped Organic Acceptor Involved in Electron Inj ection. J. Semicond., 2007, 28(S1): 475.

[19]

P. Dalapati, N. B. Manik, A. N. Basu. Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode. J. Semicond., 2013, 34(9): 092001. doi: 10.1088/1674-4926/34/9/092001

[20]

Wang Liancheng, Guo Enqing, Liu Zhiqiang, Yi Xiaoyan, Wang Guohong. Electrical characteristics of a vertical light emitting diode with n-type contacts on a selectively wet-etching roughened surface. J. Semicond., 2011, 32(2): 024009. doi: 10.1088/1674-4926/32/2/024009

Search

Advanced Search >>

GET CITATION

D H Cao, H Wang, H J Wei, W Q Yang. Preparation, electronic structure, and photoluminescent properties of Eu2+ activated BaSi2O5 powder phosphors for solid-state lighting[J]. J. Semicond., 2015, 36(12): 123008. doi: 10.1088/1674-4926/36/12/123008.

Export: BibTex EndNote

Article Metrics

Article views: 1365 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 26 March 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误