J. Semicond. > Volume 38 > Issue 11 > Article Number: 111001

Field-effect transistor memories based on ferroelectric polymers

Yujia Zhang , Haiyang Wang , Lei Zhang , Xiaomeng Chen , Yu Guo , Huabin Sun and Yun Li ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications.

Key words: ferroelectric polymersfield-effect transistor memoriesferroelectricity

Abstract: Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications.

Key words: ferroelectric polymersfield-effect transistor memoriesferroelectricity



References:

[1]

Chavan A A, Ramaswamy D V N, Tao Q. Methods of forming ferroelectric capacitors[J]. Evgeny Tsymbal Publications, 2006: 22.

[2]

Chen Y Q, Liu Y L, Wang B. Minimum size of 180 degree domains in ferroelectric thin films covered by electrodes[J]. Appl Math Mech, 2006, 27(8): 1031. doi: 10.1007/s10483-006-0803-1

[3]

Valasek L. Piezo-electric and allied phenomena in Rochelle salt[J]. Phys Rev, 1921, 17: 475. doi: 10.1103/PhysRev.17.475

[4]

Furukawa T, Nakajima T, Takahashi Y. Factor governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films[J]. IEEE Trans Dielectr Electr Insul, 2006, 13(5): 1120. doi: 10.1109/TDEI.2006.247840

[5]

Furukawa T. Recent advances in ferroelectric polymers[J]. Ferroelectrics, 1990, 104(1): 229. doi: 10.1080/00150199008223826

[6]

Kepler R G, Anderson R A. Ferroelectric polymers[J]. Adv Phys, 1992, 41(1): 1. doi: 10.1080/00018739200101463

[7]

Martins P, Lopes A C, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications[J]. Prog Polym Sci, 2014, 39(4): 683. doi: 10.1016/j.progpolymsci.2013.07.006

[8]

Kang S J, Park Y J, Sung J. Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing[J]. Appl Phys Lett, 2008, 92(1): 012921. doi: 10.1063/1.2830701

[9]

Li C, Wu P M, Lee S. Flexible dome and bump shape piezoelectric tactile sensors using PVDF–TrFE copolymer[J]. J Microelectromech Syst, 2008, 17(2): 334. doi: 10.1109/JMEMS.2007.911375

[10]

Cavallini M. Status and perspectives in thin films and patterning of spin crossover compounds[J]. Phys Chem Chem Phys, 2012, 14(34): 11867. doi: 10.1039/c2cp40879a

[11]

Dietze M, Es-Souni M. Structural and functional properties of screen-printed PZT–PVDF–TrFE composites[J]. Sens Actuators A, 2008, 143(2): 329. doi: 10.1016/j.sna.2007.11.016

[12]

Ducharme S, Bune A V, Blinov L M. Critical point in ferroelectric Langmuir-Blodgett polymer films[J]. Phys Rev B, 1998, 57(1): 25. doi: 10.1103/PhysRevB.57.25

[13]

Persano L, Dagdeviren C, Su Y. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)[J]. Nat Commun, 2013, 4(3): 67. doi: 10.1038/ncomms2639

[14]

Delongchamp D M, Vogel B M, Jung Y. Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed[J]. Chem Mater, 2005, 17(23): 5610. doi: 10.1021/cm0513637

[15]

Nguyen H T, Nguyen L T T, Nguyen T T. Synthesis of hyperbranched conjugated polymers based on 3-hexylthiophene, triphenylamine and benzo [c] [1,2,5] thiadiazole moieties: convenient synthesis through suzuki polymerization and impact of structures on optical properties[J]. J Polym Res, 2014, 21(9): 1.

[16]

Park M S, Joo W, Kim J K. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition[J]. Langmuir, 2006, 22(10): 4594. doi: 10.1021/la053009t

[17]

Lau K, Liu Y, Chen H. Effect of annealing temperature on the morphology and piezoresponse characterisation of poly(vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy[J]. Adv Condens Matter Phys, 2013, 2013(1): 1. doi: 10.1155/2013/435938

[18]

Schick M J. Aggregation processes in solution[J]. J Polym Sci C, 1984, 22(1): 50.

[19]

Kotsuki K, Tanaka H, Obata S. The importance of spinning speed in fabrication of spin-coated organic thin film transistors: film morphology and field effect mobility[J]. Appl Phys Lett, 2014, 104(23): 233306. doi: 10.1063/1.4883216

[20]

Feng T T, Xie D, Zang Y Y. Temperature control of P(VDF–TrFE) copolymer thin films[J]. Integr Ferroelectr, 2013, 141(1): 187. doi: 10.1080/10584587.2012.694748

[21]

Mao D, Quevedo-Lopez M A, Stiegler H. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics[J]. Org Electron, 2010, 11(5): 925. doi: 10.1016/j.orgel.2010.02.012

[22]

Ducharme S, Reece T J, Othon C M. Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications[J]. IEEE Trans Device Mater Reliab, 2006, 5(4): 720. doi: 10.1109/TDMR.2005.860818

[23]

Gerber A, Fitsilis M, Waser R. Ferroelectric field effect transistors using very thin ferroelectric polyvinylidene fluoride copolymer films as gate dielectrics[J]. J Appl Phys, 2010, 107(12): 124119. doi: 10.1063/1.3437638

[24]

Brondijk J J, Asadi K, Blom P W M. Physics of organic ferroelectric field-effect transistors[J]. J Polym Sci B, 2011, 50(1): 47. doi: 10.1002/polb.22363

[25]

Naber R C G, Tanase C, Blom P W M. High-performance solution-processed polymer ferroelectric field-effect transistors[J]. Nat Mater, 2005, 4(3): 243. doi: 10.1038/nmat1329

[26]

Naber R C G, Massolt J, Spijkman M. Origin of the drain current bistability in polymer ferroelectric field-effect transistors[J]. Appl Phys Lett, 2007, 90(11): 142. doi: 10.1063/1.1533844

[27]

Reece T J, Gerber A, Kohlstedt H. Investigation of state retention in metal–ferroelectric–insulator–semiconductor structures based on Langmuir–Blodgett copolymer films[J]. J Appl Phys, 2010, 108(2): 044103.

[28]

Zheng Y, Ni G X, Toh C T. Gate-controlled nonvolatile graphene-ferroelectric memory[J]. Appl Phys Lett, 2009, 94(16): 666. doi: 10.1063/1.2749841

[29]

Naber R C G, Asadi K, Blom P W M. Organic nonvolatile memory devices based on ferroelectricity[J]. Adv Mater, 2010, 22(9): 933. doi: 10.1002/adma.200900759

[30]

Naber R C G, De Boer B, Blom P W M. Low-voltage polymer field-effect transistors for nonvolatile memories[J]. Appl Phys Lett, 2005, 87(20): 166.

[31]

Sirringhaus H, Brown P J, Friend R H. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers[J]. Nature, 1999, 401(6754): 685. doi: 10.1038/44359

[32]

Steudel S, De Vusser S, De Jonge S. Influence of the dielectric roughness on the performance of pentacene transistors[J]. Appl Phys Lett, 2004, 85(19): 4400. doi: 10.1063/1.1815042

[33]

Naber R C G, Mulder M, Boer B D. High charge density and mobility in poly(3-hexylthiophene) using a polarizable gate dielectric[J]. Org Electron, 2006, 7(3): 132. doi: 10.1016/j.orgel.2005.11.007

[34]

Laudari A, Guha S. Bandlike transport in ferroelectric-based organic field-effect transistors[J]. Phys Rev Appl, 2016, 6(4): 044007. doi: 10.1103/PhysRevApplied.6.044007

[35]

Narayanan Unni K N, De Bettignies R, Dabos-Seignon S. A nonvolatile memory element based on an organic field-effect transistor[J]. Appl Phys Lett, 2004, 85(10): 1823. doi: 10.1063/1.1788887

[36]

Nguyen C A, Lee P S, Mhaisalkar S G. Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric[J]. Org Electron, 2007, 8(4): 415. doi: 10.1016/j.orgel.2007.01.010

[37]

Sun Y L, Xie D, Xu J L. Pentacene organic ferroelectric transistors with [P(VDF–TrFE)] gate by Langmuir- Blodgett process[J]. J Appl Phys, 2015, 118: 115501. doi: 10.1063/1.4930867

[38]

Gundlach D J, Jackson T N, Schlom D G. Solvent-induced phase transition in thermally evaporated pentacene films[J]. Appl Phys Lett, 1999, 74(22): 3302. doi: 10.1063/1.123325

[39]

Nguyen C A, Mhaisalkar S G, Ma J. Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric[J]. Org Electron, 2008, 9(6): 1087. doi: 10.1016/j.orgel.2008.08.012

[40]

Kusuma D Y, Nguyen C A, Lee P S. Enhanced ferroelectric switching characteristics of P(VDF–TrFE) for organic memory devices[J]. J Phys Chem B, 2010, 114(42): 13289. doi: 10.1021/jp105249f

[41]

Matsuo Y, Ijichi T, Yamada H. Electrical properties and memory effect in the field effect transistor based on organic ferroelectric insulator and pentacene[J]. Centr Europ J Phys, 2004, 2(2): 357.

[42]

Matsuo Y, Ijichi T, Hatori J. Fabrication and electrical properties of field effect transistor based on ferroelectric insulator and pentacene film[J]. Curr Appl Phys, 2004, 4(2): 210.

[43]

Schroeder R, Majewski L, Grell M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator[J]. Adv Mater, 2004, 16(7): 633. doi: 10.1002/(ISSN)1521-4095

[44]

Schroeder R, Majewski L A, Voigt M. Memory performance and retention of an all-organic ferroelectric-like memory transistor[J]. IEEE Electron Device Lett, 2005, 26(2): 69. doi: 10.1109/LED.2004.841186

[45]

Noda K, Ishida K, Kubono A. Remanent polarization of evaporated films of vinylidene fluoride oligomers[J]. J Appl Phys, 2003, 93(5): 2866. doi: 10.1063/1.1540231

[46]

Matsumoto A, Horie S, Yamada H. Ferro- and piezoelectric properties of vinylidene fluoride oligomer thin film fabricated on flexible polymer film[J]. Appl Phys Lett, 2007, 90(20): 202906. doi: 10.1063/1.2740117

[47]

Sun H, Wang Q, Li Y. Boost up carrier mobility for ferroelectric organic transistor memory via buffering interfacial polarization fluctuation[J]. Sci Rep, 2014, 4: 7227. doi: 10.1038/srep07227

[48]

Liu C, Xu Y, Noh Y Y. Contact engineering in organic field-effect transistors[J]. Mater Today, 2015, 18(2): 79. doi: 10.1016/j.mattod.2014.08.037

[49]

Muccini M. A bright future for organic field-effect transistors[J]. Nat Mater, 2006, 5(8): 605. doi: 10.1038/nmat1699

[50]

Klauk H, Schmid G, Radlik W. Contact resistance in organic thin film transistors[J]. Solid-State Electron, 2003, 47(2): 297. doi: 10.1016/S0038-1101(02)00210-1

[51]

Minari T, Miyadera T, Tsukagoshi K. Scaling effect on the operation stability of short-channel organic single-crystal transistors[J]. Appl Phys Lett, 2007, 91(6): 063506. doi: 10.1063/1.2767987

[52]

Herlogsson L, Crispin X, Tierney S. Polyelectrolyte-gated organic complementary circuits operating at low power and voltage[J]. Adv Mater, 2011, 23(40): 4684. doi: 10.1002/adma.201101757

[53]

Sun H, Yin Y, Wang Q. Reducing contact resistance in ferroelectric organic transistors by buffering the semiconductor/dielectric interface[J]. Appl Phys Lett, 2015, 117(23): 12337.

[54]

Cheng C H, Yeh F S, Chin A. Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance[J]. Adv Mater, 2011, 23(7): 902. doi: 10.1002/adma.v23.7

[55]

Baeg K J, Khim D, Kim J. Organic electronics: high-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible NAND flash Memory[J]. Adv Funct Mater, 2012, 22(14): 2881. doi: 10.1002/adfm.v22.14

[56]

Yoon S M, Yang S, Byun C W. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel[J]. Semicond Sci Technol, 2011, 26(3): 034007. doi: 10.1088/0268-1242/26/3/034007

[57]

Lee K H, Lee G, Lee K. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels[J]. Adv Mater, 2010, 21(42): 4287.

[58]

Yoon S, Yang S, Byun C. Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 °C[J]. Adv Funct Mater, 2010, 20(6): 921. doi: 10.1002/adfm.200902095

[59]

Yoon S M, Yang S, Byun C W. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel[J]. Semicond Sci Technol, 2011, 26(3): 034007. doi: 10.1088/0268-1242/26/3/034007

[60]

Lee K H, Lee G, Lee K. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and pentacene channels[J]. Adv Mater, 2010, 21(42): 4287.

[61]

Noh S H, Choi W, Min S O. ZnO-based nonvolatile memory thin-film transistors with polymer dielectric/ferroelectric double gate insulators[J]. Appl Phys Lett, 2007, 90(25): 253504. doi: 10.1063/1.2749841

[62]

Lee G G, Fujisaki Y, Ishiwara H. Low-voltage operation of ferroelectric gate thin film transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene)[J]. Appl Phys Express, 2011, 4(9): 544.

[63]

Yoon S M, Yang S, Ryu M K. Oxide semiconductor-based organic/inorganic hybrid dual-gate nonvolatile memory thin-film transistor[J]. IEEE Trans Electron Devices, 2011, 58(7): 2135. doi: 10.1109/TED.2011.2139212

[64]

Lee G G, Tokumitsu E, Yoon S M. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene)[J]. Appl Phys Lett, 2011, 99(1): 243.

[65]

Breemen A V, Kam B, Cobb B. Ferroelectric transistor memory arrays on flexible foils[J]. Org Electron, 2013, 14(8): 1966. doi: 10.1016/j.orgel.2013.04.025

[66]

Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel[J]. J Electrochem Soc, 2011, 158(9): H892. doi: 10.1149/1.3609842

[67]

Lee G G, Tokumitsu E, Yoon S M. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene)[J]. Appl Phys Lett, 2011, 99(1): 243.

[68]

Park C H, Lee G, Lee K H. Enhancing the retention properties of ZnO memory transistor by modifying the channel/ferroelectric polymer interface[J]. Appl Phys Lett, 2009, 95(15): 386.

[69]

Lee K H, Lee G, Lee K. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels[J]. Adv Mater, 2010, 21(42): 4287.

[70]

Yoon S M, Yang S H, Park S H K. Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3 and ferroelectric polymer[J]. J Phys D, 2009, 42(24): 245101. doi: 10.1088/0022-3727/42/24/245101

[71]

Park C H, Lee K H, Lee B H. Channel/ferroelectric interface modification in ZnO non-volatile memory TFT with P (VDF–TrFE) polymer[J]. J Mater Chem, 2010, 20(13): 2638. doi: 10.1039/B921732K

[72]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7016): 488. doi: 10.1038/nature03090

[73]

Petti L, Munzenrieder N, Salvatore G A. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs[J]. IEEE Trans Electron Devices, 2014, 61(4): 1085. doi: 10.1109/TED.2014.2304307

[74]

Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances[J]. Adv Mater, 2012, 43(34): 2945.

[75]

Tomai S, Nishimura M, Itose M. High-performance thin film transistor with amorphous In2O3-SnO2-ZnO channel layer[J]. Jpn J Appl Phys, 2013, 51(3S): 03C.

[76]

Maruyama T, Tago T. Germanium- and silicon-doped indium-oxide thin films prepared by radio-frequency magnetron sputtering[J]. Appl Phys Lett, 1994, 64(11): 1395. doi: 10.1063/1.111894

[77]

Kumomi H, Yaginuma S, Omura H. Materials, devices, and circuits of transparent amorphous-oxide semiconductor[J]. J Display Technol, 2009, 5(12): 531. doi: 10.1109/JDT.2009.2025521

[78]

Aikawa S, Darmawan P, Yanagisawa K. Thin-film transistors fabricated by low-temperature process based on Ga- and Zn-free amorphous oxide semiconductor[J]. Appl Phys Lett, 2013, 102(10): 102101. doi: 10.1063/1.4794903

[79]

Kizu T, Aikawa S, Mitoma N. Low-temperature processable amorphous In–W–O thin-film transistors with high mobility and stability[J]. Appl Phys Lett, 2014, 104(15): 3787.

[80]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7016): 488. doi: 10.1038/nature03090

[81]

Wang Y, Kizu T, Song L. High-performance non-volatile field-effect transistor memories using an amorphous oxide semiconductor and ferroelectric polymer[J]. J Mater Chem C, 2016, 4(34): 7917. doi: 10.1039/C6TC01768A

[82]

Li Y, Liu C, Pan L. Electrical switching behavior from all-polymer-based system of semiconductor/ferroele- ctrics/semiconductor[J]. Appl Phys Lett, 2011, 98(17): 83.

[83]

Kusuma D Y, Lee P S. Ferroelectric tunnel junction memory devices made from monolayers of vinylidene fluoride oligomers[J]. Adv Mater, 2012, 24(30): 4163. doi: 10.1002/adma.201104476

[84]

Berger C, Song Z, Li T. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108(52): 19912. doi: 10.1021/jp040650f

[85]

Berger C, Song Z, Li X. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312: 1191. doi: 10.1126/science.1125925

[86]

Lemme M C, Echtermeyer T J, Baus M. A graphene field-effect device[J]. IEEE Electron Device Lett, 2007, 28(4): 282. doi: 10.1109/LED.2007.891668

[87]

Wang X, Ouyang Y, Li X. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors[J]. Phys Rev Lett, 2008, 100: 206803. doi: 10.1103/PhysRevLett.100.206803

[88]

Han M Y, Özyilmaz B, Zhang Y. Energy band-gap engineering of graphene nanoribbons[J]. Phys Rev Lett, 2007, 98: 206805. doi: 10.1103/PhysRevLett.98.206805

[89]

Lin Y M, Avouris P. Strong suppression of electrical noise in bilayer graphene nanodevices[J]. Nano Lett, 2008, 8(8): 2119. doi: 10.1021/nl080241l

[90]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[91]

Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2[J]. Acs Nano, 2011, 5(12): 9934. doi: 10.1021/nn203715c

[92]

Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics[J]. Appl Phys Lett, 2013, 103(10): 1497.

[93]

Fang H, Chuang S, Chang T C. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Lett, 2012, 12(7): 3788. doi: 10.1021/nl301702r

[94]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695. doi: 10.1021/nl301485q

[95]

Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nat Mater, 2013, 12(9): 815. doi: 10.1038/nmat3687

[96]

Kim S, Konar A, Hwang W S. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals[J]. Nat Commun, 2012, 3(8): 1011.

[97]

Li L, Yu Y, Ye G J. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9(5): 372. doi: 10.1038/nnano.2014.35

[98]

Han Liu, Adam T. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8: 4033. doi: 10.1021/nn501226z

[99]

Zhang S, Yang J, Xu R. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene[J]. Acs Nano, 2014, 8(9): 9590. doi: 10.1021/nn503893j

[100]

Das S, Zhang W, Demarteau M. Tunable transport gap in phosphorene[J]. Nano Lett, 2014, 14(10): 5733. doi: 10.1021/nl5025535

[101]

Du Y, Liu H, Deng Y. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling[J]. Acs Nano, 2014, 8(10): 10035. doi: 10.1021/nn502553m

[102]

Das S, Demarteau M, Roelofs A K. Ambipolar phosphorene field effect transistor[J]. Acs Nano, 2014, 8(11): 11730. doi: 10.1021/nn505868h

[103]

Lee Y T, Kwon H, Kim J S. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF–TrFE) polymer[J]. Acs Nano, 2015, 9(10): 10394. doi: 10.1021/acsnano.5b04592

[104]

Naber R C G, Asadi K, Blom P W M. Organic nonvolatile memory devices based on ferroelectricity[J]. Adv Mater, 2010, 22(9): 933. doi: 10.1002/adma.200900759

[105]

Park Y J, Bae I S, Kang S J. Control of thin ferroelectric polymer films for non-volatile memory applications[J]. IEEE Trans Dielectr Electr Insul, 2010, 17(4): 1135. doi: 10.1109/TDEI.2010.5539685

[106]

Lee K H, Lee G, Lee K. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels[J]. Adv Mater, 2010, 21(42): 4287.

[107]

Naber R C G, De Boer B, Blom P W M. Low-voltage polymer field-effect transistors for nonvolatile memories[J]. Appl Phys Lett, 2005, 87(20): 166.

[108]

Lee G G, Tokumitsu E, Yoon S M. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene)[J]. Appl Phys Lett, 2011, 99(1): 243.

[109]

Yoon S, Yang S, Byun C. Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 °C[J]. Adv Funct Mater, 2010, 20(6): 921. doi: 10.1002/adfm.200902095

[110]

Yoon S M, Yang S, Byun C W. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel[J]. Semicond Sci Technol, 2011, 26(3): 034007. doi: 10.1088/0268-1242/26/3/034007

[111]

Korotcenkov G. Metal oxides for solid-state gas sensors: what determines our choice[J]. Mater Sci Eng B, 2007, 139(1): 1. doi: 10.1016/j.mseb.2007.01.044

[112]

Batzill M, Diebold U. The surface and materials science of tin oxide[J]. Prog Surf Sci, 2005, 79: 47. doi: 10.1016/j.progsurf.2005.09.002

[113]

Ogo Y, Hiramatsu H, Nomura K. p-channel thin-film transistor using p-type oxide semiconductor, SnO[J]. Appl Phys Lett, 2008, 93(3): 488.

[114]

Yabuta H, Kaji N, Hayashi R. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits[J]. Appl Phys Lett, 2010, 97(7): 488.

[115]

Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A. Record mobility in transparent p-type tin monoxide films and devices by phase engineering[J]. Acs Nano, 2013, 7(6): 5160. doi: 10.1021/nn400852r

[116]

Ogo Y, Hiramatsu H, Nomura K. Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application[J]. Phys Status Solidi, 2009, 206(9): 2187. doi: 10.1002/pssa.v206:9

[117]

Caraveofrescas J A, Khan M A, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility[J]. Sci Rep, 2014, 4(23): 5243. doi: 10.1002/pssa.v206:9

[118]

Haibin Su, Alejandro Strachan, and William A. Goddard. Density functional theory and molecular dynamics studies on energetics and kinetics for electro-active polymers: PVDF and P(VDF–TrFE)[C]. 2005 APS March Meeting, American Physical Society, 2005

[119]

Sun H. Organic ferroelectric field-effect memory devices. Nanjing: Nanjing University Press, 2015

[1]

Chavan A A, Ramaswamy D V N, Tao Q. Methods of forming ferroelectric capacitors[J]. Evgeny Tsymbal Publications, 2006: 22.

[2]

Chen Y Q, Liu Y L, Wang B. Minimum size of 180 degree domains in ferroelectric thin films covered by electrodes[J]. Appl Math Mech, 2006, 27(8): 1031. doi: 10.1007/s10483-006-0803-1

[3]

Valasek L. Piezo-electric and allied phenomena in Rochelle salt[J]. Phys Rev, 1921, 17: 475. doi: 10.1103/PhysRev.17.475

[4]

Furukawa T, Nakajima T, Takahashi Y. Factor governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films[J]. IEEE Trans Dielectr Electr Insul, 2006, 13(5): 1120. doi: 10.1109/TDEI.2006.247840

[5]

Furukawa T. Recent advances in ferroelectric polymers[J]. Ferroelectrics, 1990, 104(1): 229. doi: 10.1080/00150199008223826

[6]

Kepler R G, Anderson R A. Ferroelectric polymers[J]. Adv Phys, 1992, 41(1): 1. doi: 10.1080/00018739200101463

[7]

Martins P, Lopes A C, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications[J]. Prog Polym Sci, 2014, 39(4): 683. doi: 10.1016/j.progpolymsci.2013.07.006

[8]

Kang S J, Park Y J, Sung J. Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing[J]. Appl Phys Lett, 2008, 92(1): 012921. doi: 10.1063/1.2830701

[9]

Li C, Wu P M, Lee S. Flexible dome and bump shape piezoelectric tactile sensors using PVDF–TrFE copolymer[J]. J Microelectromech Syst, 2008, 17(2): 334. doi: 10.1109/JMEMS.2007.911375

[10]

Cavallini M. Status and perspectives in thin films and patterning of spin crossover compounds[J]. Phys Chem Chem Phys, 2012, 14(34): 11867. doi: 10.1039/c2cp40879a

[11]

Dietze M, Es-Souni M. Structural and functional properties of screen-printed PZT–PVDF–TrFE composites[J]. Sens Actuators A, 2008, 143(2): 329. doi: 10.1016/j.sna.2007.11.016

[12]

Ducharme S, Bune A V, Blinov L M. Critical point in ferroelectric Langmuir-Blodgett polymer films[J]. Phys Rev B, 1998, 57(1): 25. doi: 10.1103/PhysRevB.57.25

[13]

Persano L, Dagdeviren C, Su Y. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)[J]. Nat Commun, 2013, 4(3): 67. doi: 10.1038/ncomms2639

[14]

Delongchamp D M, Vogel B M, Jung Y. Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed[J]. Chem Mater, 2005, 17(23): 5610. doi: 10.1021/cm0513637

[15]

Nguyen H T, Nguyen L T T, Nguyen T T. Synthesis of hyperbranched conjugated polymers based on 3-hexylthiophene, triphenylamine and benzo [c] [1,2,5] thiadiazole moieties: convenient synthesis through suzuki polymerization and impact of structures on optical properties[J]. J Polym Res, 2014, 21(9): 1.

[16]

Park M S, Joo W, Kim J K. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition[J]. Langmuir, 2006, 22(10): 4594. doi: 10.1021/la053009t

[17]

Lau K, Liu Y, Chen H. Effect of annealing temperature on the morphology and piezoresponse characterisation of poly(vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy[J]. Adv Condens Matter Phys, 2013, 2013(1): 1. doi: 10.1155/2013/435938

[18]

Schick M J. Aggregation processes in solution[J]. J Polym Sci C, 1984, 22(1): 50.

[19]

Kotsuki K, Tanaka H, Obata S. The importance of spinning speed in fabrication of spin-coated organic thin film transistors: film morphology and field effect mobility[J]. Appl Phys Lett, 2014, 104(23): 233306. doi: 10.1063/1.4883216

[20]

Feng T T, Xie D, Zang Y Y. Temperature control of P(VDF–TrFE) copolymer thin films[J]. Integr Ferroelectr, 2013, 141(1): 187. doi: 10.1080/10584587.2012.694748

[21]

Mao D, Quevedo-Lopez M A, Stiegler H. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics[J]. Org Electron, 2010, 11(5): 925. doi: 10.1016/j.orgel.2010.02.012

[22]

Ducharme S, Reece T J, Othon C M. Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications[J]. IEEE Trans Device Mater Reliab, 2006, 5(4): 720. doi: 10.1109/TDMR.2005.860818

[23]

Gerber A, Fitsilis M, Waser R. Ferroelectric field effect transistors using very thin ferroelectric polyvinylidene fluoride copolymer films as gate dielectrics[J]. J Appl Phys, 2010, 107(12): 124119. doi: 10.1063/1.3437638

[24]

Brondijk J J, Asadi K, Blom P W M. Physics of organic ferroelectric field-effect transistors[J]. J Polym Sci B, 2011, 50(1): 47. doi: 10.1002/polb.22363

[25]

Naber R C G, Tanase C, Blom P W M. High-performance solution-processed polymer ferroelectric field-effect transistors[J]. Nat Mater, 2005, 4(3): 243. doi: 10.1038/nmat1329

[26]

Naber R C G, Massolt J, Spijkman M. Origin of the drain current bistability in polymer ferroelectric field-effect transistors[J]. Appl Phys Lett, 2007, 90(11): 142. doi: 10.1063/1.1533844

[27]

Reece T J, Gerber A, Kohlstedt H. Investigation of state retention in metal–ferroelectric–insulator–semiconductor structures based on Langmuir–Blodgett copolymer films[J]. J Appl Phys, 2010, 108(2): 044103.

[28]

Zheng Y, Ni G X, Toh C T. Gate-controlled nonvolatile graphene-ferroelectric memory[J]. Appl Phys Lett, 2009, 94(16): 666. doi: 10.1063/1.2749841

[29]

Naber R C G, Asadi K, Blom P W M. Organic nonvolatile memory devices based on ferroelectricity[J]. Adv Mater, 2010, 22(9): 933. doi: 10.1002/adma.200900759

[30]

Naber R C G, De Boer B, Blom P W M. Low-voltage polymer field-effect transistors for nonvolatile memories[J]. Appl Phys Lett, 2005, 87(20): 166.

[31]

Sirringhaus H, Brown P J, Friend R H. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers[J]. Nature, 1999, 401(6754): 685. doi: 10.1038/44359

[32]

Steudel S, De Vusser S, De Jonge S. Influence of the dielectric roughness on the performance of pentacene transistors[J]. Appl Phys Lett, 2004, 85(19): 4400. doi: 10.1063/1.1815042

[33]

Naber R C G, Mulder M, Boer B D. High charge density and mobility in poly(3-hexylthiophene) using a polarizable gate dielectric[J]. Org Electron, 2006, 7(3): 132. doi: 10.1016/j.orgel.2005.11.007

[34]

Laudari A, Guha S. Bandlike transport in ferroelectric-based organic field-effect transistors[J]. Phys Rev Appl, 2016, 6(4): 044007. doi: 10.1103/PhysRevApplied.6.044007

[35]

Narayanan Unni K N, De Bettignies R, Dabos-Seignon S. A nonvolatile memory element based on an organic field-effect transistor[J]. Appl Phys Lett, 2004, 85(10): 1823. doi: 10.1063/1.1788887

[36]

Nguyen C A, Lee P S, Mhaisalkar S G. Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric[J]. Org Electron, 2007, 8(4): 415. doi: 10.1016/j.orgel.2007.01.010

[37]

Sun Y L, Xie D, Xu J L. Pentacene organic ferroelectric transistors with [P(VDF–TrFE)] gate by Langmuir- Blodgett process[J]. J Appl Phys, 2015, 118: 115501. doi: 10.1063/1.4930867

[38]

Gundlach D J, Jackson T N, Schlom D G. Solvent-induced phase transition in thermally evaporated pentacene films[J]. Appl Phys Lett, 1999, 74(22): 3302. doi: 10.1063/1.123325

[39]

Nguyen C A, Mhaisalkar S G, Ma J. Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric[J]. Org Electron, 2008, 9(6): 1087. doi: 10.1016/j.orgel.2008.08.012

[40]

Kusuma D Y, Nguyen C A, Lee P S. Enhanced ferroelectric switching characteristics of P(VDF–TrFE) for organic memory devices[J]. J Phys Chem B, 2010, 114(42): 13289. doi: 10.1021/jp105249f

[41]

Matsuo Y, Ijichi T, Yamada H. Electrical properties and memory effect in the field effect transistor based on organic ferroelectric insulator and pentacene[J]. Centr Europ J Phys, 2004, 2(2): 357.

[42]

Matsuo Y, Ijichi T, Hatori J. Fabrication and electrical properties of field effect transistor based on ferroelectric insulator and pentacene film[J]. Curr Appl Phys, 2004, 4(2): 210.

[43]

Schroeder R, Majewski L, Grell M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator[J]. Adv Mater, 2004, 16(7): 633. doi: 10.1002/(ISSN)1521-4095

[44]

Schroeder R, Majewski L A, Voigt M. Memory performance and retention of an all-organic ferroelectric-like memory transistor[J]. IEEE Electron Device Lett, 2005, 26(2): 69. doi: 10.1109/LED.2004.841186

[45]

Noda K, Ishida K, Kubono A. Remanent polarization of evaporated films of vinylidene fluoride oligomers[J]. J Appl Phys, 2003, 93(5): 2866. doi: 10.1063/1.1540231

[46]

Matsumoto A, Horie S, Yamada H. Ferro- and piezoelectric properties of vinylidene fluoride oligomer thin film fabricated on flexible polymer film[J]. Appl Phys Lett, 2007, 90(20): 202906. doi: 10.1063/1.2740117

[47]

Sun H, Wang Q, Li Y. Boost up carrier mobility for ferroelectric organic transistor memory via buffering interfacial polarization fluctuation[J]. Sci Rep, 2014, 4: 7227. doi: 10.1038/srep07227

[48]

Liu C, Xu Y, Noh Y Y. Contact engineering in organic field-effect transistors[J]. Mater Today, 2015, 18(2): 79. doi: 10.1016/j.mattod.2014.08.037

[49]

Muccini M. A bright future for organic field-effect transistors[J]. Nat Mater, 2006, 5(8): 605. doi: 10.1038/nmat1699

[50]

Klauk H, Schmid G, Radlik W. Contact resistance in organic thin film transistors[J]. Solid-State Electron, 2003, 47(2): 297. doi: 10.1016/S0038-1101(02)00210-1

[51]

Minari T, Miyadera T, Tsukagoshi K. Scaling effect on the operation stability of short-channel organic single-crystal transistors[J]. Appl Phys Lett, 2007, 91(6): 063506. doi: 10.1063/1.2767987

[52]

Herlogsson L, Crispin X, Tierney S. Polyelectrolyte-gated organic complementary circuits operating at low power and voltage[J]. Adv Mater, 2011, 23(40): 4684. doi: 10.1002/adma.201101757

[53]

Sun H, Yin Y, Wang Q. Reducing contact resistance in ferroelectric organic transistors by buffering the semiconductor/dielectric interface[J]. Appl Phys Lett, 2015, 117(23): 12337.

[54]

Cheng C H, Yeh F S, Chin A. Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance[J]. Adv Mater, 2011, 23(7): 902. doi: 10.1002/adma.v23.7

[55]

Baeg K J, Khim D, Kim J. Organic electronics: high-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible NAND flash Memory[J]. Adv Funct Mater, 2012, 22(14): 2881. doi: 10.1002/adfm.v22.14

[56]

Yoon S M, Yang S, Byun C W. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel[J]. Semicond Sci Technol, 2011, 26(3): 034007. doi: 10.1088/0268-1242/26/3/034007

[57]

Lee K H, Lee G, Lee K. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels[J]. Adv Mater, 2010, 21(42): 4287.

[58]

Yoon S, Yang S, Byun C. Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 °C[J]. Adv Funct Mater, 2010, 20(6): 921. doi: 10.1002/adfm.200902095

[59]

Yoon S M, Yang S, Byun C W. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel[J]. Semicond Sci Technol, 2011, 26(3): 034007. doi: 10.1088/0268-1242/26/3/034007

[60]

Lee K H, Lee G, Lee K. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and pentacene channels[J]. Adv Mater, 2010, 21(42): 4287.

[61]

Noh S H, Choi W, Min S O. ZnO-based nonvolatile memory thin-film transistors with polymer dielectric/ferroelectric double gate insulators[J]. Appl Phys Lett, 2007, 90(25): 253504. doi: 10.1063/1.2749841

[62]

Lee G G, Fujisaki Y, Ishiwara H. Low-voltage operation of ferroelectric gate thin film transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene)[J]. Appl Phys Express, 2011, 4(9): 544.

[63]

Yoon S M, Yang S, Ryu M K. Oxide semiconductor-based organic/inorganic hybrid dual-gate nonvolatile memory thin-film transistor[J]. IEEE Trans Electron Devices, 2011, 58(7): 2135. doi: 10.1109/TED.2011.2139212

[64]

Lee G G, Tokumitsu E, Yoon S M. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene)[J]. Appl Phys Lett, 2011, 99(1): 243.

[65]

Breemen A V, Kam B, Cobb B. Ferroelectric transistor memory arrays on flexible foils[J]. Org Electron, 2013, 14(8): 1966. doi: 10.1016/j.orgel.2013.04.025

[66]

Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel[J]. J Electrochem Soc, 2011, 158(9): H892. doi: 10.1149/1.3609842

[67]

Lee G G, Tokumitsu E, Yoon S M. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene)[J]. Appl Phys Lett, 2011, 99(1): 243.

[68]

Park C H, Lee G, Lee K H. Enhancing the retention properties of ZnO memory transistor by modifying the channel/ferroelectric polymer interface[J]. Appl Phys Lett, 2009, 95(15): 386.

[69]

Lee K H, Lee G, Lee K. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels[J]. Adv Mater, 2010, 21(42): 4287.

[70]

Yoon S M, Yang S H, Park S H K. Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3 and ferroelectric polymer[J]. J Phys D, 2009, 42(24): 245101. doi: 10.1088/0022-3727/42/24/245101

[71]

Park C H, Lee K H, Lee B H. Channel/ferroelectric interface modification in ZnO non-volatile memory TFT with P (VDF–TrFE) polymer[J]. J Mater Chem, 2010, 20(13): 2638. doi: 10.1039/B921732K

[72]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7016): 488. doi: 10.1038/nature03090

[73]

Petti L, Munzenrieder N, Salvatore G A. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs[J]. IEEE Trans Electron Devices, 2014, 61(4): 1085. doi: 10.1109/TED.2014.2304307

[74]

Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances[J]. Adv Mater, 2012, 43(34): 2945.

[75]

Tomai S, Nishimura M, Itose M. High-performance thin film transistor with amorphous In2O3-SnO2-ZnO channel layer[J]. Jpn J Appl Phys, 2013, 51(3S): 03C.

[76]

Maruyama T, Tago T. Germanium- and silicon-doped indium-oxide thin films prepared by radio-frequency magnetron sputtering[J]. Appl Phys Lett, 1994, 64(11): 1395. doi: 10.1063/1.111894

[77]

Kumomi H, Yaginuma S, Omura H. Materials, devices, and circuits of transparent amorphous-oxide semiconductor[J]. J Display Technol, 2009, 5(12): 531. doi: 10.1109/JDT.2009.2025521

[78]

Aikawa S, Darmawan P, Yanagisawa K. Thin-film transistors fabricated by low-temperature process based on Ga- and Zn-free amorphous oxide semiconductor[J]. Appl Phys Lett, 2013, 102(10): 102101. doi: 10.1063/1.4794903

[79]

Kizu T, Aikawa S, Mitoma N. Low-temperature processable amorphous In–W–O thin-film transistors with high mobility and stability[J]. Appl Phys Lett, 2014, 104(15): 3787.

[80]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7016): 488. doi: 10.1038/nature03090

[81]

Wang Y, Kizu T, Song L. High-performance non-volatile field-effect transistor memories using an amorphous oxide semiconductor and ferroelectric polymer[J]. J Mater Chem C, 2016, 4(34): 7917. doi: 10.1039/C6TC01768A

[82]

Li Y, Liu C, Pan L. Electrical switching behavior from all-polymer-based system of semiconductor/ferroele- ctrics/semiconductor[J]. Appl Phys Lett, 2011, 98(17): 83.

[83]

Kusuma D Y, Lee P S. Ferroelectric tunnel junction memory devices made from monolayers of vinylidene fluoride oligomers[J]. Adv Mater, 2012, 24(30): 4163. doi: 10.1002/adma.201104476

[84]

Berger C, Song Z, Li T. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108(52): 19912. doi: 10.1021/jp040650f

[85]

Berger C, Song Z, Li X. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312: 1191. doi: 10.1126/science.1125925

[86]

Lemme M C, Echtermeyer T J, Baus M. A graphene field-effect device[J]. IEEE Electron Device Lett, 2007, 28(4): 282. doi: 10.1109/LED.2007.891668

[87]

Wang X, Ouyang Y, Li X. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors[J]. Phys Rev Lett, 2008, 100: 206803. doi: 10.1103/PhysRevLett.100.206803

[88]

Han M Y, Özyilmaz B, Zhang Y. Energy band-gap engineering of graphene nanoribbons[J]. Phys Rev Lett, 2007, 98: 206805. doi: 10.1103/PhysRevLett.98.206805

[89]

Lin Y M, Avouris P. Strong suppression of electrical noise in bilayer graphene nanodevices[J]. Nano Lett, 2008, 8(8): 2119. doi: 10.1021/nl080241l

[90]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[91]

Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2[J]. Acs Nano, 2011, 5(12): 9934. doi: 10.1021/nn203715c

[92]

Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics[J]. Appl Phys Lett, 2013, 103(10): 1497.

[93]

Fang H, Chuang S, Chang T C. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Lett, 2012, 12(7): 3788. doi: 10.1021/nl301702r

[94]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695. doi: 10.1021/nl301485q

[95]

Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nat Mater, 2013, 12(9): 815. doi: 10.1038/nmat3687

[96]

Kim S, Konar A, Hwang W S. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals[J]. Nat Commun, 2012, 3(8): 1011.

[97]

Li L, Yu Y, Ye G J. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9(5): 372. doi: 10.1038/nnano.2014.35

[98]

Han Liu, Adam T. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8: 4033. doi: 10.1021/nn501226z

[99]

Zhang S, Yang J, Xu R. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene[J]. Acs Nano, 2014, 8(9): 9590. doi: 10.1021/nn503893j

[100]

Das S, Zhang W, Demarteau M. Tunable transport gap in phosphorene[J]. Nano Lett, 2014, 14(10): 5733. doi: 10.1021/nl5025535

[101]

Du Y, Liu H, Deng Y. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling[J]. Acs Nano, 2014, 8(10): 10035. doi: 10.1021/nn502553m

[102]

Das S, Demarteau M, Roelofs A K. Ambipolar phosphorene field effect transistor[J]. Acs Nano, 2014, 8(11): 11730. doi: 10.1021/nn505868h

[103]

Lee Y T, Kwon H, Kim J S. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF–TrFE) polymer[J]. Acs Nano, 2015, 9(10): 10394. doi: 10.1021/acsnano.5b04592

[104]

Naber R C G, Asadi K, Blom P W M. Organic nonvolatile memory devices based on ferroelectricity[J]. Adv Mater, 2010, 22(9): 933. doi: 10.1002/adma.200900759

[105]

Park Y J, Bae I S, Kang S J. Control of thin ferroelectric polymer films for non-volatile memory applications[J]. IEEE Trans Dielectr Electr Insul, 2010, 17(4): 1135. doi: 10.1109/TDEI.2010.5539685

[106]

Lee K H, Lee G, Lee K. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels[J]. Adv Mater, 2010, 21(42): 4287.

[107]

Naber R C G, De Boer B, Blom P W M. Low-voltage polymer field-effect transistors for nonvolatile memories[J]. Appl Phys Lett, 2005, 87(20): 166.

[108]

Lee G G, Tokumitsu E, Yoon S M. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene)[J]. Appl Phys Lett, 2011, 99(1): 243.

[109]

Yoon S, Yang S, Byun C. Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 °C[J]. Adv Funct Mater, 2010, 20(6): 921. doi: 10.1002/adfm.200902095

[110]

Yoon S M, Yang S, Byun C W. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel[J]. Semicond Sci Technol, 2011, 26(3): 034007. doi: 10.1088/0268-1242/26/3/034007

[111]

Korotcenkov G. Metal oxides for solid-state gas sensors: what determines our choice[J]. Mater Sci Eng B, 2007, 139(1): 1. doi: 10.1016/j.mseb.2007.01.044

[112]

Batzill M, Diebold U. The surface and materials science of tin oxide[J]. Prog Surf Sci, 2005, 79: 47. doi: 10.1016/j.progsurf.2005.09.002

[113]

Ogo Y, Hiramatsu H, Nomura K. p-channel thin-film transistor using p-type oxide semiconductor, SnO[J]. Appl Phys Lett, 2008, 93(3): 488.

[114]

Yabuta H, Kaji N, Hayashi R. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits[J]. Appl Phys Lett, 2010, 97(7): 488.

[115]

Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A. Record mobility in transparent p-type tin monoxide films and devices by phase engineering[J]. Acs Nano, 2013, 7(6): 5160. doi: 10.1021/nn400852r

[116]

Ogo Y, Hiramatsu H, Nomura K. Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application[J]. Phys Status Solidi, 2009, 206(9): 2187. doi: 10.1002/pssa.v206:9

[117]

Caraveofrescas J A, Khan M A, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility[J]. Sci Rep, 2014, 4(23): 5243. doi: 10.1002/pssa.v206:9

[118]

Haibin Su, Alejandro Strachan, and William A. Goddard. Density functional theory and molecular dynamics studies on energetics and kinetics for electro-active polymers: PVDF and P(VDF–TrFE)[C]. 2005 APS March Meeting, American Physical Society, 2005

[119]

Sun H. Organic ferroelectric field-effect memory devices. Nanjing: Nanjing University Press, 2015

[1]

Cai Daolin, Li Ping, Zhai Yahong, Zhang Shuren. Electrical Properties of a PZT Ferroelectric Field Effect Transistor. J. Semicond., 2007, 28(11): 1782.

[2]

Huifang Xu. Two dimensional analytical model for a negative capacitance double gate tunnel field effect transistor with ferroelectric gate dielectric. J. Semicond., 2018, 39(10): 104004. doi: 10.1088/1674-4926/39/10/104004

[3]

Zhang Xianjun, Yang Yintang, Chai Changchun, Duan Baoxing, Song Kun, Chen Bin. Effect of a gate buffer layer on the performance of a 4H-SiC Schottky barrier field-effect transistor. J. Semicond., 2012, 33(7): 074003. doi: 10.1088/1674-4926/33/7/074003

[4]

Huifang Xu, Yuehua Dai, Ning Li, Jianbin Xu. A 2-D semi-analytical model of double-gate tunnel field-effect transistor. J. Semicond., 2015, 36(5): 054002. doi: 10.1088/1674-4926/36/5/054002

[5]

Jianfeng Fan, Xiaoman Cheng, Xiao Bai, Lingcheng Zheng, Jing Jiang, Feng Wu. Performance enhancement of pentacene-based organic field-effect transistor by inserting a WO3 buffer layer. J. Semicond., 2014, 35(6): 064004. doi: 10.1088/1674-4926/35/6/064004

[6]

Sah Chih-Tang, Jie Binbin. The Bipolar Theory of the Field-Effect Transistor:X.The Fundamental Physics and Theory(All Device Structures). J. Semicond., 2008, 29(4): 613.

[7]

Cui Ning, Liang Renrong, Wang Jing, Zhou Wei, Xu Jun. A PNPN tunnel field-effect transistor with high-k gate and low-k fringe dielectrics. J. Semicond., 2012, 33(8): 084004. doi: 10.1088/1674-4926/33/8/084004

[8]

Jie Binbin, Sah Chihtang. The Bipolar Field-Effect Transistor: VIII. Longitudinal Gradient of Longitudinal Electric Field (Two-MOS-Gates on Pure-Base). J. Semicond., 2010, 31(7): 071001. doi: 10.1088/1674-4926/31/7/071001

[9]

Ran Jiang, Xianghao Du, Zuyin Han. Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory. J. Semicond., 2016, 37(8): 084006. doi: 10.1088/1674-4926/37/8/084006

[10]

Jie Binbin, Sah Chih-Tang. The Bipolar Field-Effect Transistor:VI.The CMOS Voltage Inverter Circuit(Two-MOS-Gates on Pure-Base). J. Semicond., 2008, 29(11): 2079.

[11]

Chih-Tang Sah, Bin B.Jie. The Bipolar Field-Effect Transistor:II.Drift-Diffusion Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2007, 28(12): 1849.

[12]

Jie Binbin, Sah Chih-Tang. The Bipolar Field-Effect Transistor:V.Bipolar Electrochemical Current Theory(Two-MOS-Gates on Thin-Base). J. Semicond., 2008, 29(4): 620.

[13]

Yan Liu, Jing Yan, Hongjuan Wang, Genquan Han. Temperature dependent IDS-VGS characteristics of an N-channel Si tunneling field-effect transistor with a germanium source on Si(110) substrate. J. Semicond., 2014, 35(2): 024001. doi: 10.1088/1674-4926/35/2/024001

[14]

Chih-Tang Sah, Bin B. Jie. The Bipolar Field-Effect Transistor:I.Electrochemical Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2007, 28(11): 1661.

[15]

Liu Tong, Zhu Dazhong. Relative Sensitivity of Sector Split-Drain Magnetic Field-Effect Transistor Based on Geometrical Correction Factor of Sector Hall Plate. J. Semicond., 2006, 27(12): 2155.

[16]

Jie Binbin, Sah Chih-Tang. The Bipolar Field-Effect Transistor:III.Short Channel Electrochemical Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2008, 29(1): 1.

[17]

Sah Chih-Tang, Jie Bin-bin . The Bipolar Field-Effect Transistor: XIII. Physical Realizations of the Transistor and Circuits (One-Two-MOS-Gates on Thin-Thick Pure-Impure Base). J. Semicond., 2009, 30(2): 021001. doi: 10.1088/1674-4926/30/2/021001

[18]

Jie Binbin, Sah Chih-Tang. The Bipolar Field-Effect Transistor:IV.Short Channel Drift-Diffusion Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2008, 29(2): 193.

[19]

Jie Binbin, Sah Chih-Tang. The Bipolar Field-Effect Transistor: VII. The Unipolar Current Mode for Analog-RF Operation (Two-MOS-Gates on Pure-Base). J. Semicond., 2009, 30(3): 031001. doi: 10.1088/1674-4926/30/3/031001

[20]

I. Murtaza, Kh S. Karimov, Zubair Ahmad, I. Qazi, M. Mahroof-Tahir, T. A. Khan, T. Amin. Humidity sensitive organic field effect transistor. J. Semicond., 2010, 31(5): 054001. doi: 10.1088/1674-4926/31/5/054001

Search

Advanced Search >>

GET CITATION

Y J Zhang, H Y Wang, L Zhang, X M Chen, Y Guo, H B Sun, Y Li. Field-effect transistor memories based on ferroelectric polymers[J]. J. Semicond., 2017, 38(11): 111001. doi: 10.1088/1674-4926/38/11/111001.

Export: BibTex EndNote

Article Metrics

Article views: 2239 Times PDF downloads: 84 Times Cited by: 0 Times

History

Manuscript received: 06 May 2017 Manuscript revised: 22 September 2017 Online: Uncorrected proof: 27 October 2017 Accepted Manuscript: 13 November 2017 Published: 01 November 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误