J. Semicond. >  In Press >  doi: 10.1088/1674-4926/24060003

SHORT COMMUNICATION

Growth of two-inch free-standing heteroepitaxial diamond on Ir/YSZ/Si (001) substrates via laser-patterned templates

Pengfei Qu1, 2, Peng Jin1, 2, , Guangdi Zhou1, 2, Zhen Wang1, 2 and Zhanguo Wang1, 2

+ Author Affiliations

 Corresponding author: Peng Jin, pengjin@semi.ac.cn

PDF

Turn off MathJax



[1]
Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11, 22 doi: 10.1016/S1369-7021(07)70349-8
[2]
Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297, 1670 doi: 10.1126/science.1074374
[3]
Inyushkin A V, Taldenkov A N, Ralchenko V G, et al. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B, 2018, 97, 144305 doi: 10.1103/PhysRevB.97.144305
[4]
Kwak T, Lee J, Choi U, et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate. Diam Relat Mater, 2021, 114, 108335 doi: 10.1016/j.diamond.2021.108335
[5]
Feng M, Jin P, Meng X, et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area. J Phys D: Appl Phy, 2022, 55, 404005 doi: 10.1088/1361-6463/ac83ce
[6]
Salvadori M, Consoli F, Verona C, et al. Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Sci Rep, 2021, 11, 3071 doi: 10.1038/s41598-021-82655-w
[7]
Prawer S, Greentree A D. Diamond for quantum computing. Science, 2008, 320, 1601 doi: 10.1126/science.1158340
[8]
Schreck M, Asmussen J, Shikata S, et al. Large-area high-quality single crystal diamond. MRS Bull, 2014, 39, 504 doi: 10.1557/mrs.2014.96
[9]
Arnault J C, Lee K H, Delchevalrie J, et al. Epitaxial diamond on Ir/SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes. Diam Relat Mater, 2020, 105, 107768 doi: 10.1016/j.diamond.2020.107768
[10]
Tang Y H, Golding B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth. Appl Phys Lett, 2016, 108, 052101 doi: 10.1063/1.4941291
[11]
Kim S W, Kawamata Y, Takaya R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on ( $ 11\bar{2}0 $) sapphire substrate. Appl Phys Lett, 2020, 117, 202102 doi: 10.1063/5.0024070
[12]
Kim S W, Takaya R, Hirano S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ( $ 11\bar{2}0 $) misoriented substrate by step-flow mode. Appl Phys Express, 2021, 14, 115501 doi: 10.35848/1882-0786/ac28e7
[13]
Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater, 2019, 94, 92 doi: 10.1016/j.diamond.2019.01.027
[14]
Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep, 2017, 7, 44462 doi: 10.1038/srep44462
[15]
Lebedev V, Kustermann J, Engels J, et al. Coalescence as a key process in wafer-scale diamond heteroepitaxy. J Appl Phys, 2024, 135, 145302 doi: 10.1063/5.0189631
[16]
Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett, 2013, 103, 151905 doi: 10.1063/1.4824330
[17]
Aida H, Ihara T, Oshima R, et al. Analysis of external surface and internal lattice curvatures of freestanding heteroepitaxial diamond grown on an Ir (001)/MgO (001) substrate. Diam Relat Mater, 2023, 136, 110026 doi: 10.1016/j.diamond.2023.110026
[18]
Kasu M, Takaya R, Kim S W. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates. Diam Relat Mater, 2022, 126, 109086 doi: 10.1016/j.diamond.2022.109086
[19]
Kimura Y, Ihara T, Ojima T, et al. Physical bending of heteroepitaxial diamond grown on an Ir/MgO substrate. Diam Relat Mater, 2023, 110055 doi: 10.1016/j.diamond.2023.110055
[20]
Qu P, Jin P, Zhou G, et al. Epitaxial growth of high-quality yttria-stabilized zirconia films with uniform thickness on silicon by the combination of PLD and RF sputtering. Surf Coat Technol, 2023, 456, 129267 doi: 10.1016/j.surfcoat.2023.129267
[21]
Zhou G, Qu P, Huo X, et al. The deposition of Ir/YSZ double-layer thin films on silicon by PLD and magnetron sputtering: Growth kinetics and the effects of oxygen. Results Phys, 2023, 47, 106357 doi: 10.1016/j.rinp.2023.106357
Fig. 1.  (Color online) Schematic diagram of fabrication procedure of heteroepitaxial diamond on Ir/YSZ/Si (001). (a) 2-inch Si (001) substrate. (b) YSZ buffer layer deposition. (c) Ir buffer layer deposition. (d) Diamond nucleation by BEN. (e) Thin diamond growth. (f) Laser patterned diamond template. (g) Thick diamond growth. (h) Diamond self-detachment.

Fig. 2.  (Color online) (a) X-ray diffractograms of θ−2θ scan of the heteroepitaxial diamond on Ir/YSZ/Si (001). (b) In-plane φ scan of diamond {111} and Ir {111} at a polar angle of χ = 54.74°. (c) X-ray pole figure of diamond {111} diffraction peaks. (d) XRCs of diamond (400), (e) diamond (311), and (f) diamond (220) diffraction peaks from the freestanding diamond.

Fig. 3.  (Color online) (a) Picture of the 2-inch freestanding diamond crystal grown on Ir/YSZ/Si (001). (b) Microscope image of the as-grown diamond surface after plasma etching to reveal dislocation.

[1]
Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11, 22 doi: 10.1016/S1369-7021(07)70349-8
[2]
Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297, 1670 doi: 10.1126/science.1074374
[3]
Inyushkin A V, Taldenkov A N, Ralchenko V G, et al. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B, 2018, 97, 144305 doi: 10.1103/PhysRevB.97.144305
[4]
Kwak T, Lee J, Choi U, et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate. Diam Relat Mater, 2021, 114, 108335 doi: 10.1016/j.diamond.2021.108335
[5]
Feng M, Jin P, Meng X, et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area. J Phys D: Appl Phy, 2022, 55, 404005 doi: 10.1088/1361-6463/ac83ce
[6]
Salvadori M, Consoli F, Verona C, et al. Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Sci Rep, 2021, 11, 3071 doi: 10.1038/s41598-021-82655-w
[7]
Prawer S, Greentree A D. Diamond for quantum computing. Science, 2008, 320, 1601 doi: 10.1126/science.1158340
[8]
Schreck M, Asmussen J, Shikata S, et al. Large-area high-quality single crystal diamond. MRS Bull, 2014, 39, 504 doi: 10.1557/mrs.2014.96
[9]
Arnault J C, Lee K H, Delchevalrie J, et al. Epitaxial diamond on Ir/SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes. Diam Relat Mater, 2020, 105, 107768 doi: 10.1016/j.diamond.2020.107768
[10]
Tang Y H, Golding B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth. Appl Phys Lett, 2016, 108, 052101 doi: 10.1063/1.4941291
[11]
Kim S W, Kawamata Y, Takaya R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on ( $ 11\bar{2}0 $) sapphire substrate. Appl Phys Lett, 2020, 117, 202102 doi: 10.1063/5.0024070
[12]
Kim S W, Takaya R, Hirano S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ( $ 11\bar{2}0 $) misoriented substrate by step-flow mode. Appl Phys Express, 2021, 14, 115501 doi: 10.35848/1882-0786/ac28e7
[13]
Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater, 2019, 94, 92 doi: 10.1016/j.diamond.2019.01.027
[14]
Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep, 2017, 7, 44462 doi: 10.1038/srep44462
[15]
Lebedev V, Kustermann J, Engels J, et al. Coalescence as a key process in wafer-scale diamond heteroepitaxy. J Appl Phys, 2024, 135, 145302 doi: 10.1063/5.0189631
[16]
Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett, 2013, 103, 151905 doi: 10.1063/1.4824330
[17]
Aida H, Ihara T, Oshima R, et al. Analysis of external surface and internal lattice curvatures of freestanding heteroepitaxial diamond grown on an Ir (001)/MgO (001) substrate. Diam Relat Mater, 2023, 136, 110026 doi: 10.1016/j.diamond.2023.110026
[18]
Kasu M, Takaya R, Kim S W. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates. Diam Relat Mater, 2022, 126, 109086 doi: 10.1016/j.diamond.2022.109086
[19]
Kimura Y, Ihara T, Ojima T, et al. Physical bending of heteroepitaxial diamond grown on an Ir/MgO substrate. Diam Relat Mater, 2023, 110055 doi: 10.1016/j.diamond.2023.110055
[20]
Qu P, Jin P, Zhou G, et al. Epitaxial growth of high-quality yttria-stabilized zirconia films with uniform thickness on silicon by the combination of PLD and RF sputtering. Surf Coat Technol, 2023, 456, 129267 doi: 10.1016/j.surfcoat.2023.129267
[21]
Zhou G, Qu P, Huo X, et al. The deposition of Ir/YSZ double-layer thin films on silicon by PLD and magnetron sputtering: Growth kinetics and the effects of oxygen. Results Phys, 2023, 47, 106357 doi: 10.1016/j.rinp.2023.106357
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 284 Times PDF downloads: 49 Times Cited by: 0 Times

    History

    Received: 03 June 2024 Revised: 01 July 2024 Online: Accepted Manuscript: 04 July 2024Uncorrected proof: 04 July 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Pengfei Qu, Peng Jin, Guangdi Zhou, Zhen Wang, Zhanguo Wang. Growth of two-inch free-standing heteroepitaxial diamond on Ir/YSZ/Si (001) substrates via laser-patterned templates[J]. Journal of Semiconductors, 2024, 45(9): 090501. doi: 10.1088/1674-4926/24060003 P F Qu, P Jin, G D Zhou, Z Wang, and Z G Wang, Growth of two-inch free-standing heteroepitaxial diamond on Ir/YSZ/Si (001) substrates via laser-patterned templates[J]. J. Semicond., 2024, 45(9), 090501 doi: 10.1088/1674-4926/24060003Export: BibTex EndNote
      Citation:
      Pengfei Qu, Peng Jin, Guangdi Zhou, Zhen Wang, Zhanguo Wang. Growth of two-inch free-standing heteroepitaxial diamond on Ir/YSZ/Si (001) substrates via laser-patterned templates[J]. Journal of Semiconductors, 2024, 45(9): 090501. doi: 10.1088/1674-4926/24060003

      P F Qu, P Jin, G D Zhou, Z Wang, and Z G Wang, Growth of two-inch free-standing heteroepitaxial diamond on Ir/YSZ/Si (001) substrates via laser-patterned templates[J]. J. Semicond., 2024, 45(9), 090501 doi: 10.1088/1674-4926/24060003
      Export: BibTex EndNote

      Growth of two-inch free-standing heteroepitaxial diamond on Ir/YSZ/Si (001) substrates via laser-patterned templates

      doi: 10.1088/1674-4926/24060003
      More Information
      • Pengfei Qu got his Bachelor degree in 2019 from Jilin University. He is now a PhD student at Institute of Semiconductors, CAS under the supervision of Prof. Peng Jin. His current research focuses on the heteroepitaxial growth of monocrystalline diamonds
      • Peng Jin got his BS and PhD from Nankai University in 1996 and 2001, respectively. He did postdoctoral research at Institute of Semiconductors, CAS. In 2003, he joined Institute of Semiconductors, CAS as an associate professor. In 2009, he was promoted to be a professor. In 2015, he became a professor of UCAS. The current research focuses on semiconductor diamond materials and devices, low dimensional semiconductor materials and devices, scientific instruments, etc
      • Corresponding author: pengjin@semi.ac.cn
      • Received Date: 2024-06-03
      • Revised Date: 2024-07-01
      • Available Online: 2024-07-04

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return