REVIEWS

Broadband photonic structures for quantum light sources

Zhe He1, Jiawei Yang2, Lidan Zhou2, Yan Chen3, Tianming Zhao1, , Ying Yu2, and Jin Liu1

+ Author Affiliations

 Corresponding author: Tianming Zhao, zhaotm@mail.sysu.edu.cn; Ying Yu, Email: yuying26@mail.sysu.edu.cn

PDF

Turn off MathJax

Abstract: Quantum light sources serve as one of the key elements in quantum photonic technologies. Such sources made from semiconductor material, e.g., quantum dots (QDs), are particularly appealing because of their great potential of scalability enabled by the modern planar nanofabrication technologies. So far, non-classic light sources based on semiconductor QDs are currently outperforming their counterparts using nonlinear optical process, for instance, parametric down conversion and four-wave mixing. To fully exploring the potential of semiconductor QDs, it is highly desirable to integrate QDs with a variety of photonic nanostructures for better device performance due to the improved light-matter interaction. Among different designs, the photonic nanostructures exhibiting broad operation spectral range is particularly interesting to overcome the QD spectral inhomogeneity and exciton fine structure splitting for the generations of single-photon and entangled photon pair respectively. In this review, we focus on recent progress on high-performance semiconductor quantum light sources that is achieved by integrating single QDs with a variety of broadband photonic nanostructures i.e. waveguide, lens and low-Q cavity.

Key words: photonic nanowirephotonic crystal waveguidesolid immersion lensmicro-lenscircular Bragg grating



[1]
Huber D, Reindl M, Aberl J, et al. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review. J Opt, 2018, 20(7), 073002 doi: 10.1088/2040-8986/aac4c4
[2]
He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol, 2013, 8, 213 doi: 10.1038/nnano.2012.262
[3]
Liu J, Su R, Wei Y, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 2019, 14, 586 doi: 10.1038/s41565-019-0435-9
[4]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026 doi: 10.1038/nnano.2017.218
[5]
Hanschke L, Fischer K A, Appel S, et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inform, 2018, 4(1), 43 doi: 10.1038/s41534-018-0092-0
[6]
Kolatschek S, Hepp S, Sartison M, et al. Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography. J Appl Phys, 2019, 125(4), 045701 doi: 10.1063/1.5050344
[7]
Davanço M, Rakher M T, Schuh D, et al. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl Phys Lett, 2011, 99(4), 041102 doi: 10.1063/1.3615051
[8]
Barnes W L, Björk G, Gérard J M, et al. Solid-state single photon sources: light collection strategies. Eur Phys J D, 2002, 18(2), 197 doi: 10.1140/epjd/e20020024
[9]
Srinivasan K, Borselli M, Johnson T J, et al. Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots. Appl Phys Lett, 2005, 86(15), 151106 doi: 10.1063/1.1901810
[10]
Srinivasan K, Painter O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature, 2007, 450, 862 doi: 10.1038/nature06274
[11]
Zhou T, Tang M, Xiang G, et al. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 2019, 6(4), 430 doi: 10.1364/OPTICA.6.000430
[12]
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290(5500), 2282 doi: 10.1126/science.290.5500.2282
[13]
Liu S, Wei Y, Su R, et al. A deterministic quantum dot micropillar single photon source with > 65% extraction efficiency based on fluorescence imaging method. Sci Rep, 2017, 7(1), 13986 doi: 10.1038/s41598-017-13433-w
[14]
Böckler C, Reitzenstein S, Kistner C, et al. Electrically driven high-Q quantum dot-micropillar cavities. Appl Phys Lett, 2008, 92(9), 091107 doi: 10.1063/1.2890166
[15]
Heindel T, Schneider C, Lermer M, et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 2010, 96(1), 011107 doi: 10.1063/1.3284514
[16]
Schneider C, Gold P, Reitzenstein S, et al. Quantum dot micropillar cavities with quality factors exceeding 250,000. Appl Phys B, 2016, 122(1), 19 doi: 10.1007/s00340-015-6283-x
[17]
Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photonics, 2016, 10, 340 doi: 10.1038/nphoton.2016.23
[18]
Wang H, Duan Z C, Li Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 2016, 116(21), 213601 doi: 10.1103/PhysRevLett.116.213601
[19]
Ellis B, Mayer M A, Shambat G, et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat Photonics, 2011, 5, 297 doi: 10.1038/nphoton.2011.51
[20]
Gong Y, Ellis B, Shambat G, et al. Nanobeam photonic crystal cavity quantum dot laser. Opt Express, 2010, 18(9), 8781 doi: 10.1364/OE.18.008781
[21]
Vučković J, Yamamoto Y. Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot. Appl Phys Lett, 2003, 82(15), 2374 doi: 10.1063/1.1567824
[22]
Hennessy K J, P Reese C, Badolato A, et al. High-Q photonic crystal cavities with embedded quantum dots. Proc SPIE, 2004, 5359, 210 doi: 10.1117/12.517229
[23]
Song Y, Liu M, Zhang Y, et al. High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED. J Opt Soc Am B, 2011, 28(2), 265 doi: 10.1364/JOSAB.28.000265
[24]
Englund D, Fattal D, Waks E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett, 2005, 95(1), 013904 doi: 10.1103/PhysRevLett.95.013904
[25]
Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445, 896 doi: 10.1038/nature05586
[26]
Ellis D J P, Stevenson R M, Young R J, et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl Phys Lett, 2007, 90(1), 011907 doi: 10.1063/1.2430489
[27]
Heller W, Bockelmann U, Abstreiter G. Electric-field effects on excitons in quantum dots. Phys Rev B, 1998, 57(11), 6270 doi: 10.1103/PhysRevB.57.6270
[28]
Bennett A J, Pooley M A, Stevenson R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat Physics, 2010, 6, 947 doi: 10.1038/nphys1780
[29]
Schäffler F. High-mobility Si and Ge structures. Semicond Sci Technol, 1997, 12(12), 1515 doi: 10.1088/0268-1242/12/12/001
[30]
Hung C Y, Schlesinger T E, Reed M L. Piezoelectrically induced stress tuning of electro-optic devices. Appl Phys Lett, 1991, 59(27), 3598 doi: 10.1063/1.105644
[31]
Ding F, Singh R, Plumhof J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys Rev Lett, 2010, 104(6), 067405 doi: 10.1103/PhysRevLett.104.067405
[32]
Kim J H, Richardson C J K, Leavitt R P, et al. Quantum dots in photonic crystals for integrated quantum photonics. SPIE Nanoscience + Engineering, 2017, 10345
[33]
Friedler I, Sauvan C, Hugonin J P, et al. Solid-state single photon sources: the nanowire antenna. Opt Express, 2009, 17(4), 2095 doi: 10.1364/OE.17.002095
[34]
Bleuse J, Claudon J, Creasey M, et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys Rev Lett, 2011, 106(10), 103601 doi: 10.1103/PhysRevLett.106.103601
[35]
Friedler I , Lalanne P, Hugonin J P, et al. Efficient photonic mirrors for semiconductor nanowires. Opt Lett, 2008, 33(22), 2635 doi: 10.1364/OL.33.002635
[36]
Gregersen N, Nielsen T R, Claudon J, et al. Controlling the emission profile of a nanowire with a conical taper. Opt Lett, 2008, 33(15), 1693 doi: 10.1364/OL.33.001693
[37]
Claudon J, Gregersen N, Lalanne P, et al. Harnessing light with photonic nanowires: fundamentals and applications to quantum optics. ChemPhysChem, 2013, 14(11), 2393 doi: 10.1002/cphc.v14.11
[38]
Stepanov P, Delga A, Gregersen N, et al. Highly directive and Gaussian far-field emission from " giant” photonic trumpets. Appl Phys Lett, 2015, 107(14), 141106 doi: 10.1063/1.4932574
[39]
Bulgarini G, Reimer M E, Bavinck M B, et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett, 2014, 14(7), 4102 doi: 10.1021/nl501648f
[40]
Gregersen N, McCutcheon D P S, Mørk J, et al. A broadband tapered nanocavity for efficient nonclassical light emission. Opt Express, 2016, 24(18), 20904 doi: 10.1364/OE.24.020904
[41]
Mårtensson T, Carlberg P, Borgström M, et al. Nanowire arrays defined by nanoimprint lithography. Nano Lett, 2004, 4(4), 699 doi: 10.1021/nl035100s
[42]
Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett, 1964, 4(5), 89 doi: 10.1063/1.1753975
[43]
Mårtensson T, Borgström M, Seifert W, et al. Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology, 2003, 14(12), 1255 doi: 10.1088/0957-4484/14/12/004
[44]
Gao Q, Saxena D, Wang F, et al. Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett, 2014, 14(9), 5206 doi: 10.1021/nl5021409
[45]
Claudon J, Bleuse J, Malik N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics, 2010, 4, 174 doi: 10.1038/nphoton.2009.287x
[46]
Munsch M, Malik N S, Dupuy E, et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a gaussian optical beam. Phys Rev Lett, 2013, 110(17), 177402 doi: 10.1103/PhysRevLett.110.177402
[47]
Cadeddu D, Teissier J, Braakman F R, et al. A fiber-coupled quantum-dot on a photonic tip. Appl Phys Lett, 2016, 108(1), 011112 doi: 10.1063/1.4939264
[48]
Yeo I, de Assis P L, Gloppe A, et al. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat Nanotechnol, 2013, 9, 106 doi: 10.1038/nnano.2013.274
[49]
Munsch M, Kuhlmann A V, Cadeddu D, et al. Resonant driving of a single photon emitter embedded in a mechanical oscillator. Nat Commun, 2017, 8(1), 76 doi: 10.1038/s41467-017-00097-3
[50]
Fortuna S A, Li X. Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond Sci Technol, 2010, 25(2), 024005 doi: 10.1088/0268-1242/25/2/024005
[51]
Reimer M E, Bulgarini G, Akopian N, et al. Bright single-photon sources in bottom-up tailored nanowires. Nat Commun, 2012, 3, 737 doi: 10.1038/ncomms1746
[52]
Singh R, Bester G. Nanowire quantum dots as an ideal source of entangled photon pairs. Phys Rev Lett, 2009, 103(6), 063601 doi: 10.1103/PhysRevLett.103.063601
[53]
Huber T, Predojević A, Khoshnegar M, et al. Polarization entangled photons from quantum dots embedded in nanowires. Nano Lett, 2014, 14(12), 7107 doi: 10.1021/nl503581d
[54]
Versteegh M A M, Reimer M E, Jöns K D, et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat Commun, 2014, 5, 5298 doi: 10.1038/ncomms6298
[55]
Chen Y, Zadeh I E, D Jöns K, et al. Controlling the exciton energy of a nanowire quantum dot by strain fields. Appl Phys Lett, 2016, 108(18), 182103 doi: 10.1063/1.4948762
[56]
Stepanov P, Elzo-Aizarna M, Bleuse J, et al. Large and uniform optical emission shifts in quantum dots strained along their growth axis. Nano Lett, 2016, 16(5), 3215 doi: 10.1021/acs.nanolett.6b00678
[57]
Sallen G, Tribu A, Aichele T, et al. Subnanosecond spectral diffusion of a single quantum dot in a nanowire. Phys Rev B, 2011, 84(4), 041405 doi: 10.1103/physrevb.84.041405
[58]
Holmes M, Kako S, Choi K, et al. Spectral diffusion and its influence on the emission linewidths of site-controlled GaN nanowire quantum dots. Phys Rev B, 2015, 92(11), 115447 doi: 10.1103/PhysRevB.92.115447
[59]
Reimer M E, Bulgarini G, Fognini A, et al. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys Rev B, 2016, 93(19), 195316 doi: 10.1103/PhysRevB.93.195316
[60]
Yeo I, Malik N S, Munsch M, et al. Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. Appl Phys Lett, 2011, 99(23), 233106 doi: 10.1063/1.3665629
[61]
Chang C C, Chi C Y, Yao M, et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett, 2012, 12(9), 4484 doi: 10.1021/nl301391h
[62]
Müller M, Bounouar S, Jöns K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics, 2014, 8, 224 doi: 10.1038/nphoton.2013.377
[63]
Jayakumar H, Predojević A, Huber T, et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys Rev Lett, 2013, 110(13), 135505 doi: 10.1103/PhysRevLett.110.135505
[64]
Kuhlmann A V, Prechtel J H, Houel J, et al. Transform-limited single photons from a single quantum dot. Nat Commun, 2015, 6, 8204 doi: 10.1038/ncomms9204
[65]
Rao V S C M, Hughes S. Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient " on chip” single photon gun. Phys Rev Lett, 2007, 99(19), 193901 doi: 10.1103/PhysRevLett.99.193901
[66]
Lund-Hansen T, Stobbe S, Julsgaard B, et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys Rev Lett, 2008, 101(11), 113903 doi: 10.1103/PhysRevLett.101.113903
[67]
Laucht A, Pütz S, Günthner T, et al. A waveguide-coupled on-chip single-photon source. Phys Rev X, 2012, 2(1), 011014 doi: 10.1103/PhysRevX.2.011014
[68]
Arcari M, Söllner I, Javadi A, et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys Rev Lett, 2014, 113(9), 093603 doi: 10.1103/PhysRevLett.113.093603
[69]
Daveau R S, Balram K C, Pregnolato T, et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 2017, 4(2), 178 doi: 10.1364/OPTICA.4.000178
[70]
Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9(1), 2994 doi: 10.1038/s41467-018-05456-2
[71]
Gschrey M, Thoma A, Schnauber P, et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun, 2015, 6, 7662 doi: 10.1038/ncomms8662
[72]
Fischbach S, Kaganskiy A, Tauscher E B Y, et al. Efficient single-photon source based on a deterministically fabricated single quantum dot-microstructure with backside gold mirror. Appl Phys Lett, 2017, 111(1), 011106 doi: 10.1063/1.4991389
[73]
Fischbach S, Schlehahn A, Thoma A, et al. Single quantum dot with microlens and 3D-printed micro-objective as integrated bright single-photon source. ACS Photonics, 2017, 4(6), 1327 doi: 10.1021/acsphotonics.7b00253
[74]
Schell A W, Kaschke J, Fischer J, et al. Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures. Sci Rep, 2013, 3, 1577 doi: 10.1038/srep01577
[75]
Gissibl T, Thiele S, Herkommer A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics, 2016, 10, 554 doi: 10.1038/nphoton.2016.121
[76]
Huber D, Reindl M, Huo Y, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun, 2017, 8, 15506 doi: 10.1038/ncomms15506
[77]
Sapienza L, Davanço M, Badolato A, et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat Commun, 2015, 6, 7833 doi: 10.1038/ncomms8833
[78]
Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 2019, 122(11), 113602 doi: 10.1103/PhysRevLett.122.113602
Fig. 1.  (Color online) (a–b) Scanning electron microscopy (SEM) image (a) of a top–down tapered GaAs nanowire waveguide with an embedded InAs QD, together with the intensity profile for a 2D-cut along the nanowire growth axis by FDTD simulation (b). (c–d) SEM image (c) of a top–down GaAs photonic trumpet with an embedded InAs QD, together with the intensity profile for a 2D-cut along the nanowire growth axis by FDTD simulation (d). (e) SEM image of a bottom–up tapered InP nanowire waveguide containing a single InAsP QD[51], reprinted with permission, Copyright 2012, Springer Nature.

Fig. 2.  (Color online) (a) Illustration of a finite PCW with a single QD embedded. (b) The band structure and waveguide modes of PCWs. (c) SEM picture of a PCW. (d) Decay dynamics for QDs that couple and uncouple to the PCWs[68], reprinted with permission, Copyright 2014, American Physical Society.

Fig. 3.  (Color online) (a) The dielectric antenna consists of, from bottom to top, a silver layer, an AlGaAs membrane (with embedded QDs), a low refractive index PMMA spacer and the GaP SIL. Most photon emission is funneled into the GaP SIL[70], reprinted with permission, Copyright 2018, Springer Nature. (b) Comparison of the photon-extraction efficiency for different micro-lens mirror structures. With DBR bottom mirror, the photon extraction efficiency reaches to a plateau value of only around 23%, while with a gold bottom mirror, it is improved to more than 80% for large numerical aperture collection objectives[71], reprinted with permission, Copyright 2015, Springer Nature. (c) Schematic view of the QD micro-lens/micro-objective device. A micro-objective is printed directed on top of a QD micro-lens[73], reprinted with permission, Copyright 2017, American Chemical Society.

Fig. 4.  (Color online) (a–c) SEM images of CBG structure[7], (a–c) are reprinted with permission, Copyright 2011, AIP Publishing. (d) The schematic of the CBR-HBR. (e) Simulated Purcell facor and collection efficiency of the CBR-HBR[3], (d) and (e) are reprinted with permission, Copyright 2019, Nature Springer.

[1]
Huber D, Reindl M, Aberl J, et al. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review. J Opt, 2018, 20(7), 073002 doi: 10.1088/2040-8986/aac4c4
[2]
He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol, 2013, 8, 213 doi: 10.1038/nnano.2012.262
[3]
Liu J, Su R, Wei Y, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 2019, 14, 586 doi: 10.1038/s41565-019-0435-9
[4]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026 doi: 10.1038/nnano.2017.218
[5]
Hanschke L, Fischer K A, Appel S, et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inform, 2018, 4(1), 43 doi: 10.1038/s41534-018-0092-0
[6]
Kolatschek S, Hepp S, Sartison M, et al. Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography. J Appl Phys, 2019, 125(4), 045701 doi: 10.1063/1.5050344
[7]
Davanço M, Rakher M T, Schuh D, et al. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl Phys Lett, 2011, 99(4), 041102 doi: 10.1063/1.3615051
[8]
Barnes W L, Björk G, Gérard J M, et al. Solid-state single photon sources: light collection strategies. Eur Phys J D, 2002, 18(2), 197 doi: 10.1140/epjd/e20020024
[9]
Srinivasan K, Borselli M, Johnson T J, et al. Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots. Appl Phys Lett, 2005, 86(15), 151106 doi: 10.1063/1.1901810
[10]
Srinivasan K, Painter O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature, 2007, 450, 862 doi: 10.1038/nature06274
[11]
Zhou T, Tang M, Xiang G, et al. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 2019, 6(4), 430 doi: 10.1364/OPTICA.6.000430
[12]
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290(5500), 2282 doi: 10.1126/science.290.5500.2282
[13]
Liu S, Wei Y, Su R, et al. A deterministic quantum dot micropillar single photon source with > 65% extraction efficiency based on fluorescence imaging method. Sci Rep, 2017, 7(1), 13986 doi: 10.1038/s41598-017-13433-w
[14]
Böckler C, Reitzenstein S, Kistner C, et al. Electrically driven high-Q quantum dot-micropillar cavities. Appl Phys Lett, 2008, 92(9), 091107 doi: 10.1063/1.2890166
[15]
Heindel T, Schneider C, Lermer M, et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 2010, 96(1), 011107 doi: 10.1063/1.3284514
[16]
Schneider C, Gold P, Reitzenstein S, et al. Quantum dot micropillar cavities with quality factors exceeding 250,000. Appl Phys B, 2016, 122(1), 19 doi: 10.1007/s00340-015-6283-x
[17]
Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photonics, 2016, 10, 340 doi: 10.1038/nphoton.2016.23
[18]
Wang H, Duan Z C, Li Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 2016, 116(21), 213601 doi: 10.1103/PhysRevLett.116.213601
[19]
Ellis B, Mayer M A, Shambat G, et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat Photonics, 2011, 5, 297 doi: 10.1038/nphoton.2011.51
[20]
Gong Y, Ellis B, Shambat G, et al. Nanobeam photonic crystal cavity quantum dot laser. Opt Express, 2010, 18(9), 8781 doi: 10.1364/OE.18.008781
[21]
Vučković J, Yamamoto Y. Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot. Appl Phys Lett, 2003, 82(15), 2374 doi: 10.1063/1.1567824
[22]
Hennessy K J, P Reese C, Badolato A, et al. High-Q photonic crystal cavities with embedded quantum dots. Proc SPIE, 2004, 5359, 210 doi: 10.1117/12.517229
[23]
Song Y, Liu M, Zhang Y, et al. High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED. J Opt Soc Am B, 2011, 28(2), 265 doi: 10.1364/JOSAB.28.000265
[24]
Englund D, Fattal D, Waks E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett, 2005, 95(1), 013904 doi: 10.1103/PhysRevLett.95.013904
[25]
Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445, 896 doi: 10.1038/nature05586
[26]
Ellis D J P, Stevenson R M, Young R J, et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl Phys Lett, 2007, 90(1), 011907 doi: 10.1063/1.2430489
[27]
Heller W, Bockelmann U, Abstreiter G. Electric-field effects on excitons in quantum dots. Phys Rev B, 1998, 57(11), 6270 doi: 10.1103/PhysRevB.57.6270
[28]
Bennett A J, Pooley M A, Stevenson R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat Physics, 2010, 6, 947 doi: 10.1038/nphys1780
[29]
Schäffler F. High-mobility Si and Ge structures. Semicond Sci Technol, 1997, 12(12), 1515 doi: 10.1088/0268-1242/12/12/001
[30]
Hung C Y, Schlesinger T E, Reed M L. Piezoelectrically induced stress tuning of electro-optic devices. Appl Phys Lett, 1991, 59(27), 3598 doi: 10.1063/1.105644
[31]
Ding F, Singh R, Plumhof J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys Rev Lett, 2010, 104(6), 067405 doi: 10.1103/PhysRevLett.104.067405
[32]
Kim J H, Richardson C J K, Leavitt R P, et al. Quantum dots in photonic crystals for integrated quantum photonics. SPIE Nanoscience + Engineering, 2017, 10345
[33]
Friedler I, Sauvan C, Hugonin J P, et al. Solid-state single photon sources: the nanowire antenna. Opt Express, 2009, 17(4), 2095 doi: 10.1364/OE.17.002095
[34]
Bleuse J, Claudon J, Creasey M, et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys Rev Lett, 2011, 106(10), 103601 doi: 10.1103/PhysRevLett.106.103601
[35]
Friedler I , Lalanne P, Hugonin J P, et al. Efficient photonic mirrors for semiconductor nanowires. Opt Lett, 2008, 33(22), 2635 doi: 10.1364/OL.33.002635
[36]
Gregersen N, Nielsen T R, Claudon J, et al. Controlling the emission profile of a nanowire with a conical taper. Opt Lett, 2008, 33(15), 1693 doi: 10.1364/OL.33.001693
[37]
Claudon J, Gregersen N, Lalanne P, et al. Harnessing light with photonic nanowires: fundamentals and applications to quantum optics. ChemPhysChem, 2013, 14(11), 2393 doi: 10.1002/cphc.v14.11
[38]
Stepanov P, Delga A, Gregersen N, et al. Highly directive and Gaussian far-field emission from " giant” photonic trumpets. Appl Phys Lett, 2015, 107(14), 141106 doi: 10.1063/1.4932574
[39]
Bulgarini G, Reimer M E, Bavinck M B, et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett, 2014, 14(7), 4102 doi: 10.1021/nl501648f
[40]
Gregersen N, McCutcheon D P S, Mørk J, et al. A broadband tapered nanocavity for efficient nonclassical light emission. Opt Express, 2016, 24(18), 20904 doi: 10.1364/OE.24.020904
[41]
Mårtensson T, Carlberg P, Borgström M, et al. Nanowire arrays defined by nanoimprint lithography. Nano Lett, 2004, 4(4), 699 doi: 10.1021/nl035100s
[42]
Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett, 1964, 4(5), 89 doi: 10.1063/1.1753975
[43]
Mårtensson T, Borgström M, Seifert W, et al. Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology, 2003, 14(12), 1255 doi: 10.1088/0957-4484/14/12/004
[44]
Gao Q, Saxena D, Wang F, et al. Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett, 2014, 14(9), 5206 doi: 10.1021/nl5021409
[45]
Claudon J, Bleuse J, Malik N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics, 2010, 4, 174 doi: 10.1038/nphoton.2009.287x
[46]
Munsch M, Malik N S, Dupuy E, et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a gaussian optical beam. Phys Rev Lett, 2013, 110(17), 177402 doi: 10.1103/PhysRevLett.110.177402
[47]
Cadeddu D, Teissier J, Braakman F R, et al. A fiber-coupled quantum-dot on a photonic tip. Appl Phys Lett, 2016, 108(1), 011112 doi: 10.1063/1.4939264
[48]
Yeo I, de Assis P L, Gloppe A, et al. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat Nanotechnol, 2013, 9, 106 doi: 10.1038/nnano.2013.274
[49]
Munsch M, Kuhlmann A V, Cadeddu D, et al. Resonant driving of a single photon emitter embedded in a mechanical oscillator. Nat Commun, 2017, 8(1), 76 doi: 10.1038/s41467-017-00097-3
[50]
Fortuna S A, Li X. Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond Sci Technol, 2010, 25(2), 024005 doi: 10.1088/0268-1242/25/2/024005
[51]
Reimer M E, Bulgarini G, Akopian N, et al. Bright single-photon sources in bottom-up tailored nanowires. Nat Commun, 2012, 3, 737 doi: 10.1038/ncomms1746
[52]
Singh R, Bester G. Nanowire quantum dots as an ideal source of entangled photon pairs. Phys Rev Lett, 2009, 103(6), 063601 doi: 10.1103/PhysRevLett.103.063601
[53]
Huber T, Predojević A, Khoshnegar M, et al. Polarization entangled photons from quantum dots embedded in nanowires. Nano Lett, 2014, 14(12), 7107 doi: 10.1021/nl503581d
[54]
Versteegh M A M, Reimer M E, Jöns K D, et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat Commun, 2014, 5, 5298 doi: 10.1038/ncomms6298
[55]
Chen Y, Zadeh I E, D Jöns K, et al. Controlling the exciton energy of a nanowire quantum dot by strain fields. Appl Phys Lett, 2016, 108(18), 182103 doi: 10.1063/1.4948762
[56]
Stepanov P, Elzo-Aizarna M, Bleuse J, et al. Large and uniform optical emission shifts in quantum dots strained along their growth axis. Nano Lett, 2016, 16(5), 3215 doi: 10.1021/acs.nanolett.6b00678
[57]
Sallen G, Tribu A, Aichele T, et al. Subnanosecond spectral diffusion of a single quantum dot in a nanowire. Phys Rev B, 2011, 84(4), 041405 doi: 10.1103/physrevb.84.041405
[58]
Holmes M, Kako S, Choi K, et al. Spectral diffusion and its influence on the emission linewidths of site-controlled GaN nanowire quantum dots. Phys Rev B, 2015, 92(11), 115447 doi: 10.1103/PhysRevB.92.115447
[59]
Reimer M E, Bulgarini G, Fognini A, et al. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys Rev B, 2016, 93(19), 195316 doi: 10.1103/PhysRevB.93.195316
[60]
Yeo I, Malik N S, Munsch M, et al. Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. Appl Phys Lett, 2011, 99(23), 233106 doi: 10.1063/1.3665629
[61]
Chang C C, Chi C Y, Yao M, et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett, 2012, 12(9), 4484 doi: 10.1021/nl301391h
[62]
Müller M, Bounouar S, Jöns K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics, 2014, 8, 224 doi: 10.1038/nphoton.2013.377
[63]
Jayakumar H, Predojević A, Huber T, et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys Rev Lett, 2013, 110(13), 135505 doi: 10.1103/PhysRevLett.110.135505
[64]
Kuhlmann A V, Prechtel J H, Houel J, et al. Transform-limited single photons from a single quantum dot. Nat Commun, 2015, 6, 8204 doi: 10.1038/ncomms9204
[65]
Rao V S C M, Hughes S. Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient " on chip” single photon gun. Phys Rev Lett, 2007, 99(19), 193901 doi: 10.1103/PhysRevLett.99.193901
[66]
Lund-Hansen T, Stobbe S, Julsgaard B, et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys Rev Lett, 2008, 101(11), 113903 doi: 10.1103/PhysRevLett.101.113903
[67]
Laucht A, Pütz S, Günthner T, et al. A waveguide-coupled on-chip single-photon source. Phys Rev X, 2012, 2(1), 011014 doi: 10.1103/PhysRevX.2.011014
[68]
Arcari M, Söllner I, Javadi A, et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys Rev Lett, 2014, 113(9), 093603 doi: 10.1103/PhysRevLett.113.093603
[69]
Daveau R S, Balram K C, Pregnolato T, et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 2017, 4(2), 178 doi: 10.1364/OPTICA.4.000178
[70]
Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9(1), 2994 doi: 10.1038/s41467-018-05456-2
[71]
Gschrey M, Thoma A, Schnauber P, et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun, 2015, 6, 7662 doi: 10.1038/ncomms8662
[72]
Fischbach S, Kaganskiy A, Tauscher E B Y, et al. Efficient single-photon source based on a deterministically fabricated single quantum dot-microstructure with backside gold mirror. Appl Phys Lett, 2017, 111(1), 011106 doi: 10.1063/1.4991389
[73]
Fischbach S, Schlehahn A, Thoma A, et al. Single quantum dot with microlens and 3D-printed micro-objective as integrated bright single-photon source. ACS Photonics, 2017, 4(6), 1327 doi: 10.1021/acsphotonics.7b00253
[74]
Schell A W, Kaschke J, Fischer J, et al. Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures. Sci Rep, 2013, 3, 1577 doi: 10.1038/srep01577
[75]
Gissibl T, Thiele S, Herkommer A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics, 2016, 10, 554 doi: 10.1038/nphoton.2016.121
[76]
Huber D, Reindl M, Huo Y, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun, 2017, 8, 15506 doi: 10.1038/ncomms15506
[77]
Sapienza L, Davanço M, Badolato A, et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat Commun, 2015, 6, 7833 doi: 10.1038/ncomms8833
[78]
Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 2019, 122(11), 113602 doi: 10.1103/PhysRevLett.122.113602
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4553 Times PDF downloads: 177 Times Cited by: 0 Times

    History

    Received: 10 May 2019 Revised: 10 June 2019 Online: Accepted Manuscript: 13 June 2019Uncorrected proof: 14 June 2019Published: 05 July 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhe He, Jiawei Yang, Lidan Zhou, Yan Chen, Tianming Zhao, Ying Yu, Jin Liu. Broadband photonic structures for quantum light sources[J]. Journal of Semiconductors, 2019, 40(7): 071905. doi: 10.1088/1674-4926/40/7/071905 Z He, J W Yang, L D Zhou, Y Chen, T M Zhao, Y Yu, J Liu, Broadband photonic structures for quantum light sources[J]. J. Semicond., 2019, 40(7): 071905. doi: 10.1088/1674-4926/40/7/071905.Export: BibTex EndNote
      Citation:
      Zhe He, Jiawei Yang, Lidan Zhou, Yan Chen, Tianming Zhao, Ying Yu, Jin Liu. Broadband photonic structures for quantum light sources[J]. Journal of Semiconductors, 2019, 40(7): 071905. doi: 10.1088/1674-4926/40/7/071905

      Z He, J W Yang, L D Zhou, Y Chen, T M Zhao, Y Yu, J Liu, Broadband photonic structures for quantum light sources[J]. J. Semicond., 2019, 40(7): 071905. doi: 10.1088/1674-4926/40/7/071905.
      Export: BibTex EndNote

      Broadband photonic structures for quantum light sources

      doi: 10.1088/1674-4926/40/7/071905
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return