REVIEWS

III–V compounds as single photon emitters

Xu Wang1, 2, , Lei Xu1, Yun Jiang1, Zhouyang Yin1, Christopher C. S. Chan3, , Chaoyong Deng1 and Robert A. Taylor4

+ Author Affiliations

 Corresponding author: Xu Wang, Email: xuwang@gzu.edu.cn, ccschan@ust.hk; Christopher C. S. Chan, Email: xuwang@gzu.edu.cn, ccschan@ust.hk

PDF

Turn off MathJax

Abstract: Single-photon emitters (SPEs) are one of the key components in quantum information applications. The ideal SPEs emit a single photon or a photon-pair on demand, with high purity and distinguishability. SPEs can also be integrated in photonic circuits for scalable quantum communication and quantum computer systems. Quantum dots made from III–V compounds such as InGaAs or GaN have been found to be particularly attractive SPE sources due to their well studied optical performance and state of the art industrial flexibility in fabrication and integration. Here, we review the optical and optoelectronic properties and growth methods of general SPEs. Subsequently, a brief summary of the latest advantages in III–V compound SPEs and the research progress achieved in the past few years will be discussed. We finally describe frontier challenges and conclude with the latest SPE fabrication science and technology that can open new possibilities for quantum information applications.

Key words: single photon emitterssolid-statesquantum dots2D materials



[1]
Santori C, Fattal D, Yamamoto Y. Single-photon devices and applications. Wiley, 2010
[2]
Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 2007, 445(7130), 896 doi: 10.1038/nature05586
[3]
Harrow A W, Montanaro A. Quantum computational supremacy. Nature, 2017, 549, 203 doi: 10.1038/nature23458
[4]
Hu L, Wu S H, Cai W, et al. Quantum generative adversarial learning in a superconducting quantum circuit. Sci Adv, 2019, 5(1), eaav2761 doi: 10.1126/sciadv.aav2761
[5]
Qiang X, Zhou X, Wang J, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photonics, 2018, 12(9), 534 doi: 10.1038/s41566-018-0236-y
[6]
Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 2007, 79, 135 doi: 10.1103/RevModPhys.79.135
[7]
Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photonics, 2011, 5(4), 222 doi: 10.1038/nphoton.2011.35
[8]
Chen M C, Liu C, Luo Y H, et al. Experimental demonstration of quantum pigeonhole paradox. PNAS; Proceedings of the National Academy of Sciences, 2019, 116(5), 1549 doi: 10.1073/pnas.1815462116
[9]
Liao S K, Cai W Q, Handsteiner J, et al. Satellite-relayed intercontinental quantum network. Phys Rev Lett, 2018, 120, 030501 doi: 10.1103/PhysRevLett.120.030501
[10]
Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett, 2002, 89, 067901 doi: 10.1103/PhysRevLett.89.067901
[11]
Chu S. Cold atoms and quantum control. Nature, 2002, 416(6877), 206 doi: 10.1038/416206a
[12]
Haroche S, Kleppner D. Cavity quantum electrodynamics. Phys Today, 1989, 42(1), 24 doi: 10.1063/1.881201
[13]
Dietsche E K, Larrouy A, Haroche S, et al. High-sensitivity magnetometry with a single atom in a superposition of two circular rydberg states. Nat Phys, 2019, 15(4), 326 doi: 10.1038/s41567-018-0405-4
[14]
Schmidt P O, Rosenband T, Langer C, et al. Spectroscopy using quantum logic. Science, 2005, 309(5735), 749 doi: 10.1126/science.1114375
[15]
Almendros M, Huwer J, Piro N, et al. Bandwidthtunable single-photon source in an ion-trap quantum network. Phys Rev Lett, 2009, 103, 213601 doi: 10.1103/PhysRevLett.103.213601
[16]
Higginbottom D B, Slodička L, Araneda G, et al. Pure single photons from a trapped atom source. New J Phys, 2016, 18(9), 093038 doi: 10.1088/1367-2630/18/9/093038
[17]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026 doi: 10.1038/nnano.2017.218
[18]
Benedikter J, Kaupp H, Hümmer T, et al. Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond. Phys Rev Appl, 2017, 7, 024031 doi: 10.1103/PhysRevApplied.7.024031
[19]
Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407(6803), 491 doi: 10.1038/35035032
[20]
Tran T T, Bray K, Ford M J, et al. Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol, 2015, 11(1), 37 doi: 10.1038/nnano.2015.242
[21]
He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 2015, 10(6), 497 doi: 10.1038/nnano.2015.75
[22]
Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 2015, 10(6), 507 doi: 10.1038/nnano.2015.79
[23]
Wang X, Alexander-Webber J A, Jia W, et al. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Sci Rep, 2016, 6(1), 37167 doi: 10.1038/srep37167
[24]
He X, Htoon H, Doorn S K, et al. Carbon nanotubes as emerging quantum-light sources. Nat Mater, 2018, 17(8), 663 doi: 10.1038/s41563-018-0109-2
[25]
Ding X, He Y, Duan Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 2016, 116, 020401 doi: 10.1103/PhysRevLett.116.020401
[26]
Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photonics, 2016, 10, 340 doi: 10.1038/nphoton.2016.23
[27]
Gammon D, Snow E S, Shanabrook B V, et al. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science, 1996, 273(5271), 87 doi: 10.1126/science.273.5271.87
[28]
Rice J H, Robinson J W, Na J H, et al. Biexciton and exciton dynamics in single ingan quantum dots. Nanotechnology, 2005, 16(9), 1477 doi: 10.1088/0957-4484/16/9/010
[29]
Shields A J. Semiconductor quantum light sources. Nat Photonics, 2007, 1(4), 215 doi: 10.1038/nphoton.2007.46
[30]
Andreev A D, O’Reilly E P. Optical transitions and radiative lifetime in gan/aln self-organized quantum dots. Appl Phys Lett, 2001, 79(4), 521 doi: 10.1063/1.1386405
[31]
Lee K H, Brossard F S F, Hadjipanayi M, et al. Towards registered single quantum dot photonic devices. Nanotechnology, 2008, 19(45), 455307 doi: 10.1088/0957-4484/19/45/455307
[32]
Schöll E, Hanschke L, Schweickert L, et al. Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability. Nano Lett, 2019, 19(4), 2404 doi: 10.1021/acs.nanolett.8b05132
[33]
Miyazawa T, Takemoto K, Sakuma Y, et al. Single-photon generation in the 1.55-μm optical-fiber band from an inas/inp quantum dot. Jpn J Appl Phys, 2005, 44(20), L620 doi: 10.1143/jjap.44.l620
[34]
Fotue A J, Kenfack S C, Issofa N, et al. Energy levels of magneto-optical polaron in spherical quantum dot — part 1: Strong coupling. J Semicond, 2015, 36(9), 092001 doi: 10.1088/1674-4926/36/9/092001
[35]
Michler P, Imamoğlu A, Mason M D, et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 2000, 406(6799), 968 doi: 10.1038/35023100
[36]
Mahler B, Spinicelli P, Buil S, et al. Towards non-blinking colloidal quantum dots. Nat Mater, 2008, 7(8), 659 doi: 10.1038/nmat2222
[37]
Shandilya P K, Fröch J E, Mitchell M, et al. Hexagonal boron nitride cavity optomechanics. Nano Lett, 2019, 19(2), 1343 doi: 10.1021/acs.nanolett.8b04956
[38]
Brown R H, Twiss R Q. Interferometry of the intensity fluctuations in light. I. basic theory: the correlation between photons in coherent beams of radiation. Proc R Soc A, 1957, 242, 300 doi: 10.1098/rspa.1957.0177
[39]
Wang T, Puchtler T J, Zhu T, et al. Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots. Nanoscale, 2017, 9(27), 9421 doi: 10.1039/C7NR03391E
[40]
Giesz V, Gazzano O, Nowak A K, et al. Influence of the purcell effect on the purity of bright single photon sources. Appl Phys Lett, 2013, 103(3), 033113 doi: 10.1063/1.4813902
[41]
Flagg E B, Polyakov S V, Thomay T, et al. Dynamics of nonclassical light from a single solid-state quantum emitter. Phys Rev Lett, 2012, 109, 163601 doi: 10.1103/PhysRevLett.109.163601
[42]
Fischer K A, Müller K, Lagoudakis K G, et al. Dynamical modeling of pulsed two-photon interference. New J Phys, 2016, 18(11), 113053 doi: 10.1088/1367-2630/18/11/113053
[43]
Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett, 1987, 59, 2044 doi: 10.1103/PhysRevLett.59.2044
[44]
Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518(7540), 516 doi: 10.1038/nature14246
[45]
Aaronson S, Arkhipov A. The computational complexity of linear optics. Theor Comput, 2013, 9(1), 143 doi: 10.4086/toc.2013.v009a004
[46]
Michler P. Quantum dots for quantum information technologies. In: Nano-Optics and Nanophotonics. Springer International Publishing, 2017
[47]
Liu F, Brash A J, O’Hara J, et al. High purcell factor generation of indistinguishable on-chip single photons. Nat Nanotechnol, 2018, 13(9), 835 doi: 10.1038/s41565-018-0188-x
[48]
Munsch M, Malik NS, Dupuy E, et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a gaussian optical beam. Phys Rev Lett, 2013, 110, 177402 doi: 10.1103/PhysRevLett.110.177402
[49]
Claudon J, Bleuse J, Malik N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics, 2010, 4(3), 174 doi: 10.1038/nphoton.2009.287x
[50]
Gschrey M, Thoma A, Schnauber P, et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three dimensional in situ electron-beam lithography. Nat Commun, 2015, 6, 7662 doi: 10.1038/ncomms8662
[51]
Sapienza L, Davanço M, Badolato A, et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat Commun, 2015, 6, 7833 doi: 10.1038/ncomms8833
[52]
Gazzano O, Michaelis de Vasconcellos S, Arnold C, et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 2013, 4, 1425 doi: 10.1038/ncomms2434
[53]
Unsleber S, He Y M, Gerhardt S, et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt Express, 2016, 24(8), 8539 doi: 10.1364/oe.24.008539
[54]
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete. Phys Rev, 1935, 47, 777 doi: 10.1103/PhysRev.47.777
[55]
Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys Rev Lett, 1998, 81, 5932 doi: 10.1103/PhysRevLett.81.5932
[56]
Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys Rev Lett, 1993, 70, 1895 doi: 10.1103/PhysRevLett.70.1895
[57]
Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86, 5188 doi: 10.1103/PhysRevLett.86.5188
[58]
Andersen U L, Ralph T C. High-fidelity teleportation of continuous-variable quantum states using delocalized single photons. Phys Rev Lett, 2013, 111, 050504 doi: 10.1103/PhysRevLett.111.050504
[59]
Goldstein L, Glas F, Marzin J Y, et al. Growth by molecular beam epitaxy and characterization of InAs/GaAs strainedlayer superlattices. Appl Phys Lett, 1985, 47(10), 1099 doi: 10.1063/1.96342
[60]
Clarke E, Spencer P, Harbord E, et al. optical properties and device characterisation of InAs/GaAs quantum dot bilayers. J Phys Conf Ser, 2008, 107, 012003 doi: 10.1088/1742-6596/107/1/012003
[61]
Konishi T, Clarke E, Burrows C W, et al. Spatial regularity of InAs-GaAs quantum dots: quantifying the dependence of lateral ordering on growth rate. Sci Rep, 2017, 7, 42606 doi: 10.1038/srep42606
[62]
Haffouz S, Zeuner K D, Dalacu D, et al. Bright single inasp quantum dots at telecom wavelengths in position-controlled inp nanowires: The role of the photonic waveguide. Nano Lett, 2018, 18(5), 3047 doi: 10.1021/acs.nanolett.8b00550
[63]
Schweickert L, Jöns K D, Zeuner K D, et al. On-demand generation of background-free single photons from a solid-state source. Appl Phys Lett, 2018, 112(9), 093106 doi: 10.1063/1.5020038
[64]
Huber D, Reindl M, Huo Y, et al. Highly indistinguishable and strongly entangled photons from symmetric gaas quantum dots. Nat Commun, 2017, 8, 15506 doi: 10.1038/ncomms15506
[65]
Patton B, Langbein W, Woggon U, et al. Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys Rev B, 2003, 68, 125316 doi: 10.1103/PhysRevB.68.125316
[66]
Portalupi S L, Hornecker G, Giesz V, et al. Bright phonon-tuned single-photon source. Nano Lett, 2015, 15(10), 6290 doi: 10.1021/acs.nanolett.5b00876
[67]
Santori C, Fattal D, Vuckovic J, et al. Single-photon generation with InAs quantum dots. New J Phys, 2004, 6, 89 doi: 10.1088/1367-2630/6/1/089
[68]
Marzin J Y. Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys Rev Lett, 1994, 73(5), 716 doi: 10.1103/PhysRevLett.73.716
[69]
Fafard S, Leonard D, Merz J L, et al. Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots. Appl Phys Lett, 1994, 65(11), 1388 doi: 10.1063/1.112060
[70]
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290(5500), 2282 doi: 10.1126/science.290.5500.2282
[71]
Benisty H, De Neve H, Weisbuch C. Impact of planar microcavity effects on light extraction – part ii: selected exact simulations and role of photon recycling. IEEE J Quantum Electron, 1998, 34(9), 1632 doi: 10.1109/3.709579
[72]
Giesz V, Portalupi S L, Grange T, et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys Rev B, 2015, 92, 161302 doi: 10.1103/PhysRevB.92.161302
[73]
Wang H, Duan Z C, Li Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 2016, 116, 213601 doi: 10.1103/PhysRevLett.116.213601
[74]
He Y M, Wang H, Gerhardt S, et al. Polarized indistinguishable single photons from a quantum dot in an elliptical micropillar. arXiv: 1809.10992v1, 2018
[75]
Müller T, Skiba-Szymanska J, Krysa A B, et al. A quantum light-emitting diode for the standard telecom window around 1550 nm. Nat Commun, 2018, 9, 862 doi: 10.1038/s41467-018-03251-7
[76]
Santori C, Fattal D, Vučković J, et al. Indistinguishable photons from a single-photon device. Nature, 2002, 419(6907), 594 doi: 10.1038/nature01086
[77]
Hanschke L, Fischer K A, Appel S, et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inform, 2018, 4, 1 doi: 10.1038/s41534-018-0092-0
[78]
Fischbach S, Kaganskiy A, Tauscher E B Y, et al. Efficient single-photon source based on a deterministically fabricated single quantum dot-microstructure with backside gold mirror. Appl Phys Lett, 2017, 111(1), 011106 doi: 10.1063/1.4991389
[79]
Tanaka K, Nakamura T, Takamatsu W, et al. Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities. Phys Rev Lett, 1995, 74, 3380 doi: 10.1103/PhysRevLett.74.3380
[80]
Bayer M, Reinecke T L, Weidner F, et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys Rev Lett, 2001, 86, 3168 doi: 10.1103/PhysRevLett.86.3168
[81]
Peter E, Senellart P, Martrou D, et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett, 2005, 95, 067401 doi: 10.1103/PhysRevLett.95.067401
[82]
Purcell E M. Spontaneous emission probabilities at radio frequencies. NATO ASI Series, 1995, 839 doi: 10.1007/978-1-4615-1963-8_40
[83]
Thompson R J, Turchette Q A, Carnal O, et al. Nonlinear spectroscopy in the strong-coupling regime of cavity qed. Phys Rev A, 1998, 57, 3084 doi: 10.1103/PhysRevA.57.3084
[84]
Park K D, May M A, Leng H, et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. arXiv: 1902.10314v1, 2019
[85]
Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability. Phys Rev Lett, 2019, 122, 113602 doi: 10.1103/PhysRevLett.122.113602
[86]
Nuttall L P, Brossard F S F, Lennon S A, et al. Optical fabrication and characterisation of su-8 disk photonic waveguide heterostructure cavities. Opt Express, 2017, 25(20), 24615 doi: 10.1364/oe.25.024615
[87]
Chung T H, Juska G, Moroni S T, et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nat Photonics, 2016, 10(12), 782 doi: 10.1038/nphoton.2016.203
[88]
Huo Y H, Rastelli A, Schmidt O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on gaas (001) substrate. Appl Phys Lett, 2013, 102(15), 152105 doi: 10.1063/1.4802088
[89]
Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9, 2994 doi: 10.1038/s41467-018-05456-2
[90]
Liu J, Su R, Wei Y, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 2019, 14, 586 doi: 10.1038/s41565-019-0435-9
[91]
Yamamoto Y, Slusher R E. Optical processes in microcavities. Phys Today, 1993, 46(6), 66 doi: 10.1063/1.881356
[92]
Guo X, Zhou X, Wang J H, et al. Critical surface phase of 2(2Œ4) reconstructed zig-zag chains on inas(001). Thin Solid Films, 2014, 562, 326 doi: 10.1016/j.tsf.2014.02.116
[93]
Gschrey M, Gericke F, Schüßler A, et al. In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Appl Phys Lett, 2013, 102(25), 251113 doi: 10.1063/1.4812343
[94]
Dousse A, Lanco L, Suffczyński J, et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using farfield optical lithography. Phys Rev Lett, 2008, 101, 267404 doi: 10.1103/PhysRevLett.101.267404
[95]
Kistner C, Heindel T, Schneider C, et al. Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems. Opt Express, 2008, 16(19), 15006 doi: 10.1364/oe.16.015006
[96]
Kojima T, Kojima K, Asano T, et al. Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging. Appl Phys Lett, 2013, 102(1), 011110 doi: 10.1063/1.4773882
[97]
Badolato A, Hennessy K, Atatüre M, et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 2005, 308(5725), 1158 doi: 10.1126/science.1109815
[98]
Thon S M, Rakher M T, Kim H, et al. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Appl Phys Lett, 2009, 94(11), 111115 doi: 10.1063/1.3103885
[99]
Notomi M. Manipulating light with strongly modulated photonic crystals. Rep Prog Phys, 2010, 73(9), 096501 doi: 10.1088/0034-4885/73/9/096501
[100]
Hijlkema M, Weber B, Specht H P, et al. A single-photon server with just one atom. Nat Phys, 2007, 3(4), 253 doi: 10.1038/nphys569
[101]
Kurtsiefer C, Mayer S, Zarda P, et al. Stable solid-state source of single photons. Phys Rev Lett, 2000, 85(2), 290 doi: 10.1103/PhysRevLett.85.290
[102]
Holmes M J, Choi K, Kako S, et al. Room-temperature triggered single photon emission from a III–nitride site-controlled nanowire quantum dot. Nano Lett, 2014, 14(2), 982 doi: 10.1021/nl404400d
[103]
Jarjour A F, Taylor R A, Oliver R A, et al. Cavity-enhanced blue singlephoton emission from a single InGaN/GaN quantum dot. Appl Phys Lett, 2007, 91(5), 052101 doi: 10.1063/1.2767217
[104]
Deshpande S, Frost T, Hazari A, et al. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl Phys Lett, 2014, 105, 14 doi: 10.1063/1.4897640
[105]
Jarjour A, Oliver R, Tahraoui A, et al. Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot. Phys Rev Lett, 2007, 99(19), 197403 doi: 10.1103/PhysRevLett.99.197403
[106]
Reid B P, Kocher C, Zhu T, et al. Non-polar InGaN quantum dot emission with crystal-axis oriented linear polarization. Appl Phys Lett, 2015, 106, 17 doi: 10.1063/1.4919656
[107]
Wang T, Puchtler T J, Patra S K, et al. Direct generation of linearly polarized single photons with a deterministic axis in quantum dots. Nanophotonics, 2017, 6(5), 1175 doi: 10.1515/nanoph-2017-0027
[108]
Waks E, Inoue K, Santori C, et al. Quantum cryptography with a photon turnstile device. Extended Abstracts of the 2002 International Conference on Solid State Devices and Materials, 2002 doi: 10.7567/ssdm.2002.f-9-1
[109]
Bretagnon T, Lefebvre P, Valvin P, et al. Radiative lifetime of a single electron-hole pair in GaN/AlN quantum dots. Phys Rev B, 2006, 73(11), 113304 doi: 10.1103/PhysRevB.73.113304
[110]
Reid B P L, Zhu T, Chan C C S, et al. High temperature stability in non-polar (110) InGaN quantum dots: Exciton and biexciton dynamics. Phys Status Solidi C, 2014, 11(3/4), 702 doi: 10.1002/pssc.201300666
[111]
Kako S, Santori C, Hoshino K, et al. A gallium nitride single-photon source operating at 200 K. Nat Mater, 2006, 5(11), 887 doi: 10.1038/nmat1763
[112]
Arita M, Le Roux F, Holmes M J, et al. Ultraclean single photon emission from a gan quantum dot. Nano Lett, 2017, 17(5), 2902 doi: 10.1021/acs.nanolett.7b00109
[113]
Holmes M J, Kako S, Choi K, et al. Single photons from a hot solid-state emitter at 350 K. ACS Photonics, 2016, 3(4), 543 doi: 10.1021/acsphotonics.6b00112
[114]
Zhou Y, Wang Z, Rasmita A, et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 2018, 4(3), eaar3580 doi: 10.1126/sciadv.aar3580
[115]
Patra S K, Wang T, Puchtler T J, et al. Theoretical and experimental analysis of radiative recombination lifetimes in nonpolar InGaN/GaN quantum dots. Phys Status Solidi B, 2017, 254, 8 doi: 10.1002/pssb.201600675
[116]
Ga Ž, Holmes M, Chernysheva E, et al. Emission of linearly polarized single photons from quantum dots contained in nonpolar. semipolar and polar sections of pencil-like InGaN/GaN nanowires. ACS Photonics, 2017, 4, 657 doi: 10.1021/acsphotonics.6b01030
[117]
Kindel C, Kako S, Kawano T, et al. Collinear polarization of exciton/biexciton photoluminescence from single hexagonal GaN quantum dots. Jpn J Appl Phys, 2009, 48, 04C116 doi: 10.1143/JJAP.48.04C116
[118]
Sergent S, Kako S, Burger M, et al. Polarization properties of single zinc-blende GaN/AlN quantum dots. Phys Rev B, 2014, 90, 235312 doi: 10.1103/PhysRevB.90.235312
[119]
Lundskog A, Hsu C W, Fredrik Karlsson K, et al. Direct generation of linearly polarized photon emission with designated orientations from site-controlled ingan quantum dots. Light: Sci Appl, 2014, 3(1), e139 doi: 10.1038/lsa.2014.20
[120]
Teng C, Zhang L, Hill T A, et al. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states. Appl Phys Lett, 2015, 107, 191105 doi: 10.1063/1.4935463
[121]
Puchtler T J, Wang T, Ren C X, et al. Single-photon emission from m-plane InGaN quantum dots on GaN nanowires. Nano Lett, 2016, 16(12), 7779 doi: 10.1021/acs.nanolett.6b03980
[122]
Kocher C C,Puchtler T J, Jarman J C, et al. Highly polarized electrically driven single-photon emission from a non-polar InGaN quantum dot. Appl Phys Lett, 2017, 111(25), 251108 doi: 10.1063/1.5008720
[123]
Mendelson N, Xu ZQ, Tran T T, et al. Engineering and tuning of quantum emitters in few-layer hexagonal boron nitride. ACS Nano, 2019, 13(3), 3132 doi: 10.1021/acsnano.8b08511
[124]
Bourrellier R, Meuret S, Tararan A, et al. Bright uv single photon emission at point defects in h-BN. Nano Lett, 2016, 16(7), 4317 doi: 10.1021/acs.nanolett.6b01368
[125]
Martínez L J, Pelini T, Waselowski V, et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys Rev B, 2016, 94, 121405 doi: 10.1103/PhysRevB.94.121405
[126]
Vogl T, Campbell G, Buchler B C, et al. Fabrication and deterministic transfer of high-quality quantum emitters in hexagonal boron nitride. ACS Photonics, 2018, 5(6), 2305 doi: 10.1021/acsphotonics.8b00127
[127]
Kumar A, Low T, Fung K H, et al. Tunable light–matter interaction and the role of hyperbolicity in graphene–hbn system. Nano Lett, 2015, 15(5), 3172 doi: 10.1021/acs.nanolett.5b01191
[128]
Tawfik S A, Ali S, Fronzi M, et al. Firstprinciples investigation of quantum emission from hbn defects. Nanoscale, 2017, 9(36), 13575 doi: 10.1039/c7nr04270a
[129]
Vil’k Y N, Chupov V D, Shvaiko-Shvaikovskii V E, et al. A theoretical analysis of the formation of nonstoichiometric defects in hexagonal boron nitride. Refract Ind Ceram, 2001, 42(3/4), 146 doi: 10.1023/a:1011384129992
[130]
Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 2017, 8, 705 doi: 10.1038/s41467-017-00810-2
[131]
Tran T T, Elbadawi C, Totonjian D, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 2016, 10(8), 7331 doi: 10.1021/acsnano.6b03602
[132]
Jana M, Singh R N. Progress in cvd synthesis of layered hexagonal boron nitride with tunable properties and their applications. Int Mater Rev, 2017, 63(3), 162 doi: 10.1080/09506608.2017.1322833
[133]
Loredo J C, Zakaria N A, Somaschi N, et al. Scalable performance in solid-state single-photon sources. Optica, 2016, 3(4), 433 doi: 10.1364/optica.3.000433
[134]
Mnaymneh K, Dalacu D, McKee J, et al. Monolithic integration of single photon sources via evanescent coupling of tapered inp nanowires to sin waveguides. arXiv: 1901.00469v1, 2018
[135]
Sangouard N, Simon C, de Riedmatten H, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys, 2011, 83, 33 doi: 10.1103/RevModPhys.83.33
[136]
Weber J H, Kambs B, Kettler J, et al. Two photon interference in the telecom c-band after frequency conversion of photons from remote quantum emitters. Nat Nanotechnol, 2019, 14(1), 23 doi: 10.1038/s41565-018-0279-8
[137]
Loredo J C, Broome M A, Hilaire P, et al. Boson sampling with single-photon fock states from a bright solid-state source. Phys Rev Lett, 2017, 118, 130503 doi: 10.1103/PhysRevLett.118.130503
[138]
He Y, Ding X, Su Z E, et al. Time-bin-encoded boson sampling with a single-photon device. Phys Rev Lett, 2017, 118, 190501 doi: 10.1103/PhysRevLett.118.190501
[139]
Chang D E, Cirac J I, Kimble H J. Self-organization of atoms along a nanophotonic waveguide. Phys Rev Lett, 2013, 110, 113606 doi: 10.1103/PhysRevLett.110.113606
[140]
Cho J H, Kim Y M, Lim S H, et al. Strongly coherent single-photon emission from site-controlled ingan quantum dots embedded in GaN nanopyramids. ACS Photonics, 2018, 5(2), 439 doi: 10.1021/acsphotonics.7b00922
[141]
Carmesin C, Olbrich F, Mehrtens T, et al. Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom c-band up to 77 K. Phys Rev B, 2018, 98, 125407 doi: 10.1103/PhysRevB.98.125407
Fig. 1.  (Color online) (a) Schematic diagram of the system used to perform general QDs micro-photoluminescence spectroscopy. (b) HBT experiment set-up. (c) HOM experiment set-up. (d) Examples of HBT experiment, reproduced from Ref. [39].

Fig. 2.  (Color online) Simplified schemes of optical transitions from different single photon sources. (a) Electron and hole confined states in a QD. The left indices show the band and envelope orbital symmetries, respectively. The right indices indicate the spin states. (b) Electron and hole confined states in a bigger QD compared with (a). Excitons and biexcitons are indicated. It should be noted that only absorption is illustrated in (a) and (b).

Fig. 3.  (Color online) (a) Image of the bright spots showing individual QDs taken with an InGaAs camera and spectrum of the QD circled in a with exciton (X), biexciton (XX), positively charged exciton (X+) and negatively charged exciton (X-) labelled[75]. (b) The measured unnormalized correlation function $ g^{(2)}(0) $[70], reprinted with permission from Ref. [70]. Copyright ©2000, The American Association for the Advancement of Science. (c) The comparison of photon extraction efficiency with pump power and photon purity from Ref. [25], Copyright ©2016, American Physical Society. (d) Two-photon interference demonstrated from the small area of peak 3[76]. Copyright ©2002, with permission from Springer Nature. (e) Resonance fluorescence of GaAs Quantum dots with near-unity photon indistinguishability. Reproduced from Ref. [32] with permission, Copyright ©2019, American Chemical Society.

Fig. 4.  (Color online) (a) Simulation of the electromagnetic field of a crystal photonic waveguide. (b) Microstructure of a bull’s eye cavity and simulation of the single-photon extraction efficiency and Purcell factor as a function of photon emission wavelength of the cavity. Reprinted with permission from Ref. [85]. Copyright ©2019, American Physical Society. (c) Microplillar cavity used in Ref. [25], copyright ©2016, American Physical Society. (d) Schematic diagram of the waveguide-coupled quantum dot–photonic crystal cavity system. Reprinted with permission from Ref. [47]. Copyright ©2018 Springer Nature. (e) and (f) illustrated a mode-gap cavity depicted in Ref. [86].

Fig. 5.  (Color online) Purity and indistinguishability as a function of brightness summarized from Table1 with a trend indicated by red-dotted lines. Red triangles are non-resonant excitation while black squares are SPEs with resonant excitation. The blue circle is from hBN and the light blue squares are photon-pair SPEs.

Fig. 6.  (Color online) (a) Schematics of a LPCVD setup to produce hBN film where ammonia borane is used as a CVD precursor. (b) A confocal PL map showing hBN luminescence. (c) hBN single photon measurement with g2(0) within 0.5, reprinted with permission from Ref. [123]. Copyright ©2019, American Chemical Society.

Table 1.   Characteristics of III–V compound-based single photon emitters.

ReferenceSourcePhotonic structureWavelength (nm)Lifetime (ns)Operation
temperature
ExcitationBlensg(2)(0)MEntanglement
fidelity
[52] (2013)InGaAsMicropillar9310.265–0.27010Non-resonant0.79±0.08
0.53±0.05
0.050.55±0.05
0.92±0.10
[72] (2015)InGaAsAdiabatic pillar9450.14±0.0420Non-resonant0.74±0.050.10±0.030.75±0.05
[50] (2015)InGaAsMicrolens932~16Non-resonant0.23±0.03<0.010.80±0.07
[51] (2015)InGaAsBulls-eye cavities9070.526Non-resonant0.48±0.050.009±0.005
[73] (2016)InGaAsMicropillar892.60.1624.3Non-resonant0.3340.0270.921
[26] (2016)InGaAsConnected pillar890 w/electrical tuned0.08–0.124Resonant0.154±0.0150.0028±0.00120.989±0.004
0.9956±0.0045
[25] (2016)InGaAsMicropillar897.440.08410Resonant0.330.009±0.0020.959±003
0.978±0.004
[114] (2017)GaNGallium nitride crystal1085–13400.736±0.004RoomNon-resonant0.05±0.02
[123] (2017)InGaNN/A420.50.156130Non-resonant0.18
[47] (2018)InGaAsPhotonic crystal cavities9150.0227±
0.0009
4Resonant0.410.026±0.0070.939±0.033
[126] (2018)hBNPlasmonic nanocavity arrays566.040.375RoomNon-resonant0.5347*0.033±0.047
[63] (2018)GaAsLow-Q planar cavity7930.1254Resonant0.50.000075±
0.000016
[134] (2018)InAsPTapered InP nanowire12551.34Non-resonant0.280.03
[131] (2016)hBNN/A660RoomNon-resonant0.3
[74] (2019)InGaAsMicropillar8741.5Resonant~0.70.05±0.020.976±0.001
[32] (2019)GaAsDBR7890.196±0.0025Resonant0.2±0.0320.0025±0.00020.95
[88] (2018)GaAsBroadband optical antenna780.3, 781.6<0.24Resonant0.3720.002±0.0020.9
[90] (2019)GaAsBragg grating bull’seye cavity770, 7720.063.2Resonant0.65±0.040.001±0.0010.901±0.0030.88±0.02
[89] (2019)InGaAsBragg grating bull’seye cavity879.4, 8810.06644Resonant0.59±0.010.014±0.0010.9±0.010.9±0.01
* denotes the brightniess of hBN after transfer comparing to its origianl brightness. Resonant and non-resonant excitation is highlighted by black and red with entangled SPE in light blue, respectively.
DownLoad: CSV
[1]
Santori C, Fattal D, Yamamoto Y. Single-photon devices and applications. Wiley, 2010
[2]
Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 2007, 445(7130), 896 doi: 10.1038/nature05586
[3]
Harrow A W, Montanaro A. Quantum computational supremacy. Nature, 2017, 549, 203 doi: 10.1038/nature23458
[4]
Hu L, Wu S H, Cai W, et al. Quantum generative adversarial learning in a superconducting quantum circuit. Sci Adv, 2019, 5(1), eaav2761 doi: 10.1126/sciadv.aav2761
[5]
Qiang X, Zhou X, Wang J, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photonics, 2018, 12(9), 534 doi: 10.1038/s41566-018-0236-y
[6]
Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 2007, 79, 135 doi: 10.1103/RevModPhys.79.135
[7]
Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photonics, 2011, 5(4), 222 doi: 10.1038/nphoton.2011.35
[8]
Chen M C, Liu C, Luo Y H, et al. Experimental demonstration of quantum pigeonhole paradox. PNAS; Proceedings of the National Academy of Sciences, 2019, 116(5), 1549 doi: 10.1073/pnas.1815462116
[9]
Liao S K, Cai W Q, Handsteiner J, et al. Satellite-relayed intercontinental quantum network. Phys Rev Lett, 2018, 120, 030501 doi: 10.1103/PhysRevLett.120.030501
[10]
Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett, 2002, 89, 067901 doi: 10.1103/PhysRevLett.89.067901
[11]
Chu S. Cold atoms and quantum control. Nature, 2002, 416(6877), 206 doi: 10.1038/416206a
[12]
Haroche S, Kleppner D. Cavity quantum electrodynamics. Phys Today, 1989, 42(1), 24 doi: 10.1063/1.881201
[13]
Dietsche E K, Larrouy A, Haroche S, et al. High-sensitivity magnetometry with a single atom in a superposition of two circular rydberg states. Nat Phys, 2019, 15(4), 326 doi: 10.1038/s41567-018-0405-4
[14]
Schmidt P O, Rosenband T, Langer C, et al. Spectroscopy using quantum logic. Science, 2005, 309(5735), 749 doi: 10.1126/science.1114375
[15]
Almendros M, Huwer J, Piro N, et al. Bandwidthtunable single-photon source in an ion-trap quantum network. Phys Rev Lett, 2009, 103, 213601 doi: 10.1103/PhysRevLett.103.213601
[16]
Higginbottom D B, Slodička L, Araneda G, et al. Pure single photons from a trapped atom source. New J Phys, 2016, 18(9), 093038 doi: 10.1088/1367-2630/18/9/093038
[17]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026 doi: 10.1038/nnano.2017.218
[18]
Benedikter J, Kaupp H, Hümmer T, et al. Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond. Phys Rev Appl, 2017, 7, 024031 doi: 10.1103/PhysRevApplied.7.024031
[19]
Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407(6803), 491 doi: 10.1038/35035032
[20]
Tran T T, Bray K, Ford M J, et al. Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol, 2015, 11(1), 37 doi: 10.1038/nnano.2015.242
[21]
He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 2015, 10(6), 497 doi: 10.1038/nnano.2015.75
[22]
Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 2015, 10(6), 507 doi: 10.1038/nnano.2015.79
[23]
Wang X, Alexander-Webber J A, Jia W, et al. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Sci Rep, 2016, 6(1), 37167 doi: 10.1038/srep37167
[24]
He X, Htoon H, Doorn S K, et al. Carbon nanotubes as emerging quantum-light sources. Nat Mater, 2018, 17(8), 663 doi: 10.1038/s41563-018-0109-2
[25]
Ding X, He Y, Duan Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 2016, 116, 020401 doi: 10.1103/PhysRevLett.116.020401
[26]
Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photonics, 2016, 10, 340 doi: 10.1038/nphoton.2016.23
[27]
Gammon D, Snow E S, Shanabrook B V, et al. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science, 1996, 273(5271), 87 doi: 10.1126/science.273.5271.87
[28]
Rice J H, Robinson J W, Na J H, et al. Biexciton and exciton dynamics in single ingan quantum dots. Nanotechnology, 2005, 16(9), 1477 doi: 10.1088/0957-4484/16/9/010
[29]
Shields A J. Semiconductor quantum light sources. Nat Photonics, 2007, 1(4), 215 doi: 10.1038/nphoton.2007.46
[30]
Andreev A D, O’Reilly E P. Optical transitions and radiative lifetime in gan/aln self-organized quantum dots. Appl Phys Lett, 2001, 79(4), 521 doi: 10.1063/1.1386405
[31]
Lee K H, Brossard F S F, Hadjipanayi M, et al. Towards registered single quantum dot photonic devices. Nanotechnology, 2008, 19(45), 455307 doi: 10.1088/0957-4484/19/45/455307
[32]
Schöll E, Hanschke L, Schweickert L, et al. Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability. Nano Lett, 2019, 19(4), 2404 doi: 10.1021/acs.nanolett.8b05132
[33]
Miyazawa T, Takemoto K, Sakuma Y, et al. Single-photon generation in the 1.55-μm optical-fiber band from an inas/inp quantum dot. Jpn J Appl Phys, 2005, 44(20), L620 doi: 10.1143/jjap.44.l620
[34]
Fotue A J, Kenfack S C, Issofa N, et al. Energy levels of magneto-optical polaron in spherical quantum dot — part 1: Strong coupling. J Semicond, 2015, 36(9), 092001 doi: 10.1088/1674-4926/36/9/092001
[35]
Michler P, Imamoğlu A, Mason M D, et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 2000, 406(6799), 968 doi: 10.1038/35023100
[36]
Mahler B, Spinicelli P, Buil S, et al. Towards non-blinking colloidal quantum dots. Nat Mater, 2008, 7(8), 659 doi: 10.1038/nmat2222
[37]
Shandilya P K, Fröch J E, Mitchell M, et al. Hexagonal boron nitride cavity optomechanics. Nano Lett, 2019, 19(2), 1343 doi: 10.1021/acs.nanolett.8b04956
[38]
Brown R H, Twiss R Q. Interferometry of the intensity fluctuations in light. I. basic theory: the correlation between photons in coherent beams of radiation. Proc R Soc A, 1957, 242, 300 doi: 10.1098/rspa.1957.0177
[39]
Wang T, Puchtler T J, Zhu T, et al. Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots. Nanoscale, 2017, 9(27), 9421 doi: 10.1039/C7NR03391E
[40]
Giesz V, Gazzano O, Nowak A K, et al. Influence of the purcell effect on the purity of bright single photon sources. Appl Phys Lett, 2013, 103(3), 033113 doi: 10.1063/1.4813902
[41]
Flagg E B, Polyakov S V, Thomay T, et al. Dynamics of nonclassical light from a single solid-state quantum emitter. Phys Rev Lett, 2012, 109, 163601 doi: 10.1103/PhysRevLett.109.163601
[42]
Fischer K A, Müller K, Lagoudakis K G, et al. Dynamical modeling of pulsed two-photon interference. New J Phys, 2016, 18(11), 113053 doi: 10.1088/1367-2630/18/11/113053
[43]
Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett, 1987, 59, 2044 doi: 10.1103/PhysRevLett.59.2044
[44]
Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518(7540), 516 doi: 10.1038/nature14246
[45]
Aaronson S, Arkhipov A. The computational complexity of linear optics. Theor Comput, 2013, 9(1), 143 doi: 10.4086/toc.2013.v009a004
[46]
Michler P. Quantum dots for quantum information technologies. In: Nano-Optics and Nanophotonics. Springer International Publishing, 2017
[47]
Liu F, Brash A J, O’Hara J, et al. High purcell factor generation of indistinguishable on-chip single photons. Nat Nanotechnol, 2018, 13(9), 835 doi: 10.1038/s41565-018-0188-x
[48]
Munsch M, Malik NS, Dupuy E, et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a gaussian optical beam. Phys Rev Lett, 2013, 110, 177402 doi: 10.1103/PhysRevLett.110.177402
[49]
Claudon J, Bleuse J, Malik N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics, 2010, 4(3), 174 doi: 10.1038/nphoton.2009.287x
[50]
Gschrey M, Thoma A, Schnauber P, et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three dimensional in situ electron-beam lithography. Nat Commun, 2015, 6, 7662 doi: 10.1038/ncomms8662
[51]
Sapienza L, Davanço M, Badolato A, et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat Commun, 2015, 6, 7833 doi: 10.1038/ncomms8833
[52]
Gazzano O, Michaelis de Vasconcellos S, Arnold C, et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 2013, 4, 1425 doi: 10.1038/ncomms2434
[53]
Unsleber S, He Y M, Gerhardt S, et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt Express, 2016, 24(8), 8539 doi: 10.1364/oe.24.008539
[54]
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete. Phys Rev, 1935, 47, 777 doi: 10.1103/PhysRev.47.777
[55]
Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys Rev Lett, 1998, 81, 5932 doi: 10.1103/PhysRevLett.81.5932
[56]
Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys Rev Lett, 1993, 70, 1895 doi: 10.1103/PhysRevLett.70.1895
[57]
Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86, 5188 doi: 10.1103/PhysRevLett.86.5188
[58]
Andersen U L, Ralph T C. High-fidelity teleportation of continuous-variable quantum states using delocalized single photons. Phys Rev Lett, 2013, 111, 050504 doi: 10.1103/PhysRevLett.111.050504
[59]
Goldstein L, Glas F, Marzin J Y, et al. Growth by molecular beam epitaxy and characterization of InAs/GaAs strainedlayer superlattices. Appl Phys Lett, 1985, 47(10), 1099 doi: 10.1063/1.96342
[60]
Clarke E, Spencer P, Harbord E, et al. optical properties and device characterisation of InAs/GaAs quantum dot bilayers. J Phys Conf Ser, 2008, 107, 012003 doi: 10.1088/1742-6596/107/1/012003
[61]
Konishi T, Clarke E, Burrows C W, et al. Spatial regularity of InAs-GaAs quantum dots: quantifying the dependence of lateral ordering on growth rate. Sci Rep, 2017, 7, 42606 doi: 10.1038/srep42606
[62]
Haffouz S, Zeuner K D, Dalacu D, et al. Bright single inasp quantum dots at telecom wavelengths in position-controlled inp nanowires: The role of the photonic waveguide. Nano Lett, 2018, 18(5), 3047 doi: 10.1021/acs.nanolett.8b00550
[63]
Schweickert L, Jöns K D, Zeuner K D, et al. On-demand generation of background-free single photons from a solid-state source. Appl Phys Lett, 2018, 112(9), 093106 doi: 10.1063/1.5020038
[64]
Huber D, Reindl M, Huo Y, et al. Highly indistinguishable and strongly entangled photons from symmetric gaas quantum dots. Nat Commun, 2017, 8, 15506 doi: 10.1038/ncomms15506
[65]
Patton B, Langbein W, Woggon U, et al. Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys Rev B, 2003, 68, 125316 doi: 10.1103/PhysRevB.68.125316
[66]
Portalupi S L, Hornecker G, Giesz V, et al. Bright phonon-tuned single-photon source. Nano Lett, 2015, 15(10), 6290 doi: 10.1021/acs.nanolett.5b00876
[67]
Santori C, Fattal D, Vuckovic J, et al. Single-photon generation with InAs quantum dots. New J Phys, 2004, 6, 89 doi: 10.1088/1367-2630/6/1/089
[68]
Marzin J Y. Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys Rev Lett, 1994, 73(5), 716 doi: 10.1103/PhysRevLett.73.716
[69]
Fafard S, Leonard D, Merz J L, et al. Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots. Appl Phys Lett, 1994, 65(11), 1388 doi: 10.1063/1.112060
[70]
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290(5500), 2282 doi: 10.1126/science.290.5500.2282
[71]
Benisty H, De Neve H, Weisbuch C. Impact of planar microcavity effects on light extraction – part ii: selected exact simulations and role of photon recycling. IEEE J Quantum Electron, 1998, 34(9), 1632 doi: 10.1109/3.709579
[72]
Giesz V, Portalupi S L, Grange T, et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys Rev B, 2015, 92, 161302 doi: 10.1103/PhysRevB.92.161302
[73]
Wang H, Duan Z C, Li Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 2016, 116, 213601 doi: 10.1103/PhysRevLett.116.213601
[74]
He Y M, Wang H, Gerhardt S, et al. Polarized indistinguishable single photons from a quantum dot in an elliptical micropillar. arXiv: 1809.10992v1, 2018
[75]
Müller T, Skiba-Szymanska J, Krysa A B, et al. A quantum light-emitting diode for the standard telecom window around 1550 nm. Nat Commun, 2018, 9, 862 doi: 10.1038/s41467-018-03251-7
[76]
Santori C, Fattal D, Vučković J, et al. Indistinguishable photons from a single-photon device. Nature, 2002, 419(6907), 594 doi: 10.1038/nature01086
[77]
Hanschke L, Fischer K A, Appel S, et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inform, 2018, 4, 1 doi: 10.1038/s41534-018-0092-0
[78]
Fischbach S, Kaganskiy A, Tauscher E B Y, et al. Efficient single-photon source based on a deterministically fabricated single quantum dot-microstructure with backside gold mirror. Appl Phys Lett, 2017, 111(1), 011106 doi: 10.1063/1.4991389
[79]
Tanaka K, Nakamura T, Takamatsu W, et al. Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities. Phys Rev Lett, 1995, 74, 3380 doi: 10.1103/PhysRevLett.74.3380
[80]
Bayer M, Reinecke T L, Weidner F, et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys Rev Lett, 2001, 86, 3168 doi: 10.1103/PhysRevLett.86.3168
[81]
Peter E, Senellart P, Martrou D, et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett, 2005, 95, 067401 doi: 10.1103/PhysRevLett.95.067401
[82]
Purcell E M. Spontaneous emission probabilities at radio frequencies. NATO ASI Series, 1995, 839 doi: 10.1007/978-1-4615-1963-8_40
[83]
Thompson R J, Turchette Q A, Carnal O, et al. Nonlinear spectroscopy in the strong-coupling regime of cavity qed. Phys Rev A, 1998, 57, 3084 doi: 10.1103/PhysRevA.57.3084
[84]
Park K D, May M A, Leng H, et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. arXiv: 1902.10314v1, 2019
[85]
Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability. Phys Rev Lett, 2019, 122, 113602 doi: 10.1103/PhysRevLett.122.113602
[86]
Nuttall L P, Brossard F S F, Lennon S A, et al. Optical fabrication and characterisation of su-8 disk photonic waveguide heterostructure cavities. Opt Express, 2017, 25(20), 24615 doi: 10.1364/oe.25.024615
[87]
Chung T H, Juska G, Moroni S T, et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nat Photonics, 2016, 10(12), 782 doi: 10.1038/nphoton.2016.203
[88]
Huo Y H, Rastelli A, Schmidt O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on gaas (001) substrate. Appl Phys Lett, 2013, 102(15), 152105 doi: 10.1063/1.4802088
[89]
Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9, 2994 doi: 10.1038/s41467-018-05456-2
[90]
Liu J, Su R, Wei Y, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 2019, 14, 586 doi: 10.1038/s41565-019-0435-9
[91]
Yamamoto Y, Slusher R E. Optical processes in microcavities. Phys Today, 1993, 46(6), 66 doi: 10.1063/1.881356
[92]
Guo X, Zhou X, Wang J H, et al. Critical surface phase of 2(2Œ4) reconstructed zig-zag chains on inas(001). Thin Solid Films, 2014, 562, 326 doi: 10.1016/j.tsf.2014.02.116
[93]
Gschrey M, Gericke F, Schüßler A, et al. In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Appl Phys Lett, 2013, 102(25), 251113 doi: 10.1063/1.4812343
[94]
Dousse A, Lanco L, Suffczyński J, et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using farfield optical lithography. Phys Rev Lett, 2008, 101, 267404 doi: 10.1103/PhysRevLett.101.267404
[95]
Kistner C, Heindel T, Schneider C, et al. Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems. Opt Express, 2008, 16(19), 15006 doi: 10.1364/oe.16.015006
[96]
Kojima T, Kojima K, Asano T, et al. Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging. Appl Phys Lett, 2013, 102(1), 011110 doi: 10.1063/1.4773882
[97]
Badolato A, Hennessy K, Atatüre M, et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 2005, 308(5725), 1158 doi: 10.1126/science.1109815
[98]
Thon S M, Rakher M T, Kim H, et al. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Appl Phys Lett, 2009, 94(11), 111115 doi: 10.1063/1.3103885
[99]
Notomi M. Manipulating light with strongly modulated photonic crystals. Rep Prog Phys, 2010, 73(9), 096501 doi: 10.1088/0034-4885/73/9/096501
[100]
Hijlkema M, Weber B, Specht H P, et al. A single-photon server with just one atom. Nat Phys, 2007, 3(4), 253 doi: 10.1038/nphys569
[101]
Kurtsiefer C, Mayer S, Zarda P, et al. Stable solid-state source of single photons. Phys Rev Lett, 2000, 85(2), 290 doi: 10.1103/PhysRevLett.85.290
[102]
Holmes M J, Choi K, Kako S, et al. Room-temperature triggered single photon emission from a III–nitride site-controlled nanowire quantum dot. Nano Lett, 2014, 14(2), 982 doi: 10.1021/nl404400d
[103]
Jarjour A F, Taylor R A, Oliver R A, et al. Cavity-enhanced blue singlephoton emission from a single InGaN/GaN quantum dot. Appl Phys Lett, 2007, 91(5), 052101 doi: 10.1063/1.2767217
[104]
Deshpande S, Frost T, Hazari A, et al. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl Phys Lett, 2014, 105, 14 doi: 10.1063/1.4897640
[105]
Jarjour A, Oliver R, Tahraoui A, et al. Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot. Phys Rev Lett, 2007, 99(19), 197403 doi: 10.1103/PhysRevLett.99.197403
[106]
Reid B P, Kocher C, Zhu T, et al. Non-polar InGaN quantum dot emission with crystal-axis oriented linear polarization. Appl Phys Lett, 2015, 106, 17 doi: 10.1063/1.4919656
[107]
Wang T, Puchtler T J, Patra S K, et al. Direct generation of linearly polarized single photons with a deterministic axis in quantum dots. Nanophotonics, 2017, 6(5), 1175 doi: 10.1515/nanoph-2017-0027
[108]
Waks E, Inoue K, Santori C, et al. Quantum cryptography with a photon turnstile device. Extended Abstracts of the 2002 International Conference on Solid State Devices and Materials, 2002 doi: 10.7567/ssdm.2002.f-9-1
[109]
Bretagnon T, Lefebvre P, Valvin P, et al. Radiative lifetime of a single electron-hole pair in GaN/AlN quantum dots. Phys Rev B, 2006, 73(11), 113304 doi: 10.1103/PhysRevB.73.113304
[110]
Reid B P L, Zhu T, Chan C C S, et al. High temperature stability in non-polar (110) InGaN quantum dots: Exciton and biexciton dynamics. Phys Status Solidi C, 2014, 11(3/4), 702 doi: 10.1002/pssc.201300666
[111]
Kako S, Santori C, Hoshino K, et al. A gallium nitride single-photon source operating at 200 K. Nat Mater, 2006, 5(11), 887 doi: 10.1038/nmat1763
[112]
Arita M, Le Roux F, Holmes M J, et al. Ultraclean single photon emission from a gan quantum dot. Nano Lett, 2017, 17(5), 2902 doi: 10.1021/acs.nanolett.7b00109
[113]
Holmes M J, Kako S, Choi K, et al. Single photons from a hot solid-state emitter at 350 K. ACS Photonics, 2016, 3(4), 543 doi: 10.1021/acsphotonics.6b00112
[114]
Zhou Y, Wang Z, Rasmita A, et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 2018, 4(3), eaar3580 doi: 10.1126/sciadv.aar3580
[115]
Patra S K, Wang T, Puchtler T J, et al. Theoretical and experimental analysis of radiative recombination lifetimes in nonpolar InGaN/GaN quantum dots. Phys Status Solidi B, 2017, 254, 8 doi: 10.1002/pssb.201600675
[116]
Ga Ž, Holmes M, Chernysheva E, et al. Emission of linearly polarized single photons from quantum dots contained in nonpolar. semipolar and polar sections of pencil-like InGaN/GaN nanowires. ACS Photonics, 2017, 4, 657 doi: 10.1021/acsphotonics.6b01030
[117]
Kindel C, Kako S, Kawano T, et al. Collinear polarization of exciton/biexciton photoluminescence from single hexagonal GaN quantum dots. Jpn J Appl Phys, 2009, 48, 04C116 doi: 10.1143/JJAP.48.04C116
[118]
Sergent S, Kako S, Burger M, et al. Polarization properties of single zinc-blende GaN/AlN quantum dots. Phys Rev B, 2014, 90, 235312 doi: 10.1103/PhysRevB.90.235312
[119]
Lundskog A, Hsu C W, Fredrik Karlsson K, et al. Direct generation of linearly polarized photon emission with designated orientations from site-controlled ingan quantum dots. Light: Sci Appl, 2014, 3(1), e139 doi: 10.1038/lsa.2014.20
[120]
Teng C, Zhang L, Hill T A, et al. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states. Appl Phys Lett, 2015, 107, 191105 doi: 10.1063/1.4935463
[121]
Puchtler T J, Wang T, Ren C X, et al. Single-photon emission from m-plane InGaN quantum dots on GaN nanowires. Nano Lett, 2016, 16(12), 7779 doi: 10.1021/acs.nanolett.6b03980
[122]
Kocher C C,Puchtler T J, Jarman J C, et al. Highly polarized electrically driven single-photon emission from a non-polar InGaN quantum dot. Appl Phys Lett, 2017, 111(25), 251108 doi: 10.1063/1.5008720
[123]
Mendelson N, Xu ZQ, Tran T T, et al. Engineering and tuning of quantum emitters in few-layer hexagonal boron nitride. ACS Nano, 2019, 13(3), 3132 doi: 10.1021/acsnano.8b08511
[124]
Bourrellier R, Meuret S, Tararan A, et al. Bright uv single photon emission at point defects in h-BN. Nano Lett, 2016, 16(7), 4317 doi: 10.1021/acs.nanolett.6b01368
[125]
Martínez L J, Pelini T, Waselowski V, et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys Rev B, 2016, 94, 121405 doi: 10.1103/PhysRevB.94.121405
[126]
Vogl T, Campbell G, Buchler B C, et al. Fabrication and deterministic transfer of high-quality quantum emitters in hexagonal boron nitride. ACS Photonics, 2018, 5(6), 2305 doi: 10.1021/acsphotonics.8b00127
[127]
Kumar A, Low T, Fung K H, et al. Tunable light–matter interaction and the role of hyperbolicity in graphene–hbn system. Nano Lett, 2015, 15(5), 3172 doi: 10.1021/acs.nanolett.5b01191
[128]
Tawfik S A, Ali S, Fronzi M, et al. Firstprinciples investigation of quantum emission from hbn defects. Nanoscale, 2017, 9(36), 13575 doi: 10.1039/c7nr04270a
[129]
Vil’k Y N, Chupov V D, Shvaiko-Shvaikovskii V E, et al. A theoretical analysis of the formation of nonstoichiometric defects in hexagonal boron nitride. Refract Ind Ceram, 2001, 42(3/4), 146 doi: 10.1023/a:1011384129992
[130]
Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 2017, 8, 705 doi: 10.1038/s41467-017-00810-2
[131]
Tran T T, Elbadawi C, Totonjian D, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 2016, 10(8), 7331 doi: 10.1021/acsnano.6b03602
[132]
Jana M, Singh R N. Progress in cvd synthesis of layered hexagonal boron nitride with tunable properties and their applications. Int Mater Rev, 2017, 63(3), 162 doi: 10.1080/09506608.2017.1322833
[133]
Loredo J C, Zakaria N A, Somaschi N, et al. Scalable performance in solid-state single-photon sources. Optica, 2016, 3(4), 433 doi: 10.1364/optica.3.000433
[134]
Mnaymneh K, Dalacu D, McKee J, et al. Monolithic integration of single photon sources via evanescent coupling of tapered inp nanowires to sin waveguides. arXiv: 1901.00469v1, 2018
[135]
Sangouard N, Simon C, de Riedmatten H, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys, 2011, 83, 33 doi: 10.1103/RevModPhys.83.33
[136]
Weber J H, Kambs B, Kettler J, et al. Two photon interference in the telecom c-band after frequency conversion of photons from remote quantum emitters. Nat Nanotechnol, 2019, 14(1), 23 doi: 10.1038/s41565-018-0279-8
[137]
Loredo J C, Broome M A, Hilaire P, et al. Boson sampling with single-photon fock states from a bright solid-state source. Phys Rev Lett, 2017, 118, 130503 doi: 10.1103/PhysRevLett.118.130503
[138]
He Y, Ding X, Su Z E, et al. Time-bin-encoded boson sampling with a single-photon device. Phys Rev Lett, 2017, 118, 190501 doi: 10.1103/PhysRevLett.118.190501
[139]
Chang D E, Cirac J I, Kimble H J. Self-organization of atoms along a nanophotonic waveguide. Phys Rev Lett, 2013, 110, 113606 doi: 10.1103/PhysRevLett.110.113606
[140]
Cho J H, Kim Y M, Lim S H, et al. Strongly coherent single-photon emission from site-controlled ingan quantum dots embedded in GaN nanopyramids. ACS Photonics, 2018, 5(2), 439 doi: 10.1021/acsphotonics.7b00922
[141]
Carmesin C, Olbrich F, Mehrtens T, et al. Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom c-band up to 77 K. Phys Rev B, 2018, 98, 125407 doi: 10.1103/PhysRevB.98.125407
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4785 Times PDF downloads: 146 Times Cited by: 0 Times

    History

    Received: 06 May 2019 Revised: 10 June 2019 Online: Accepted Manuscript: 19 June 2019Uncorrected proof: 25 June 2019Published: 05 July 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xu Wang, Lei Xu, Yun Jiang, Zhouyang Yin, Christopher C. S. Chan, Chaoyong Deng, Robert A. Taylor. III–V compounds as single photon emitters[J]. Journal of Semiconductors, 2019, 40(7): 071906. doi: 10.1088/1674-4926/40/7/071906 X Wang, L Xu, Y Jiang, Z Y Yin, C C S Chan, C Y Deng, R A Taylor, III–V compounds as single photon emitters[J]. J. Semicond., 2019, 40(7): 071906. doi: 10.1088/1674-4926/40/7/071906.Export: BibTex EndNote
      Citation:
      Xu Wang, Lei Xu, Yun Jiang, Zhouyang Yin, Christopher C. S. Chan, Chaoyong Deng, Robert A. Taylor. III–V compounds as single photon emitters[J]. Journal of Semiconductors, 2019, 40(7): 071906. doi: 10.1088/1674-4926/40/7/071906

      X Wang, L Xu, Y Jiang, Z Y Yin, C C S Chan, C Y Deng, R A Taylor, III–V compounds as single photon emitters[J]. J. Semicond., 2019, 40(7): 071906. doi: 10.1088/1674-4926/40/7/071906.
      Export: BibTex EndNote

      III–V compounds as single photon emitters

      doi: 10.1088/1674-4926/40/7/071906
      More Information
      • Corresponding author: Email: xuwang@gzu.edu.cn, ccschan@ust.hk; Email: xuwang@gzu.edu.cn, ccschan@ust.hk
      • Received Date: 2019-05-06
      • Revised Date: 2019-06-10
      • Published Date: 2019-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return