ARTICLES

Optical transmitter module with hybrid integration of DFB laser diode and proton-exchanged LiNbO3 modulator chip

Xuyang Wang1, 2, 3, He Jia3, Junhui Li3, Yumei Guo3 and Yu Liu1,

+ Author Affiliations

 Corresponding author: Yu Liu, yliu@semi.ac.cn

PDF

Turn off MathJax

Abstract: In this work, a hybrid integrated optical transmitter module was designed and fabricated. A proton-exchanged Mach–Zehnder lithium niobate (LiNbO3) modulator chip was chosen to enhance the output extinction ratio. A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator. The whole optical path structure, including the laser chip, lens, fiber, and modulator chip, was simulated to achieve high optical output efficiency. After a series of process improvements, a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz (from 2 GHz) was obtained. The optical output efficiency of the whole module reached approximately 21%. The link performance of the module was also measured.

Key words: optical transmitter modulehybrid integrationDFB laser chipLiNbO3 modulator chip



[1]
Li G L, Yu P K L. Optical intensity modulators for digital and analog applications. J Lightwave Technol, 2003, 21, 2010 doi: 10.1109/JLT.2003.815654
[2]
Dagli N. Wide-bandwidth lasers and modulators for RF photonics. IEEE Trans Microw Theory Tech, 1999, 47, 1151 doi: 10.1109/22.775453
[3]
Huang J N, Li C, Lu R G, et al. Beyond the 100 Gbaud directly modulated laser for short reach applications. J Semicond, 2021, 42, 041306 doi: 10.1088/1674-4926/42/4/041306
[4]
Liu D P, Tang J, Meng Y, et al. Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator. J Semicond, 2021, 42, 082301 doi: 10.1088/1674-4926/42/8/082301
[5]
Wang X X, Weigel P O, Zhao J, et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photonics, 2019, 4, 096101 doi: 10.1063/1.5115243
[6]
Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 2000, 6, 69 doi: 10.1109/2944.826874
[7]
Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics. Laser Photonics Rev, 2013, 7, 506 doi: 10.1002/lpor.201200032
[8]
Lu Z Y, B Lu, Luo Y, et al. Design and research on small hybrid integrated teansmitter module of semiconductor and DFB laser. J Opto Laser, 2021, 32, 181
[9]
Li Y, Lan T, Li J, et al. High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide. Appl Opt, 2020, 59, 6694 doi: 10.1364/AO.395897
[10]
Li L Y, Ma Y X, Zhang Y S, et al. Multi-tip edge coupler for integration of a distributed feedback semiconductor laser with a thin-film lithium niobate modulator. Appl Opt, 2021, 60, 4814 doi: 10.1364/AO.425773
[11]
Qiu M. Vertically coupled photonic crystal optical filters. Opt Lett, 2005, 30, 1476 doi: 10.1364/OL.30.001476
[12]
Chakravarty S, Teng M, Safian R, et al. Hybrid material integration in silicon photonic integrated circuits. J Semicond, 2021, 42, 041303 doi: 10.1088/1674-4926/42/4/041303
[13]
Matsumoto K, Kanaya Y, Kishikawa J, et al. Characteristics of film InP layer and Si substrate bonded interface bonded by wafer direct bonding. 2015 11th Conference on Lasers and Electro-Optics Pacific Rim, 2015, 7375926 doi: 10.1109/CLEOPR.2015.7375926
[14]
Olmstead M A, Ohuchi F S. Group III selenides: Controlling dimensionality, structure, and properties through defects and heteroepitaxial growth. J Vac Sci Technol A, 2021, 39, 020801 doi: 10.1116/6.0000598
[15]
Okamoto K. Fundamentals of optical waveguides. 2nd ed. Elsevier Inc. , 2006
[16]
Zhang J, Gao C X, Xue M Y, et al. Research on frequency modulation character of the current driven DFB semiconductor laser. Mod Phys Lett B, 2019, 33, 1850422 doi: 10.1142/S0217984918504225
[17]
Alferness R C. Waveguide electrooptic modulators. IEEE Trans Microwave Theory Tech, 1982, 30, 1121 doi: 10.1109/TMTT.1982.1131213
[18]
Tan J, Chen X, Liu X, et al. Research on a bias control technique for quadrature-point locking in LiNbO3 MZ modulators. Semicond Optoe, 2018, 39(4), 575
[19]
Walton J R, Smee E J, Malladi D P. Pilot transmission schemes for wireless multi-carrier communication systems. USA Patent, US7280467, 2007
[20]
Wang L L, Kowalcyzk T. A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. J Lightwave Technol, 2010, 28, 1703 doi: 10.1109/JLT.2010.2048553
[21]
Yang G, Sergienko A V, Ndao A. Tunable polarization mode conversion using thin-film lithium niobate ridge waveguide. Opt Express, 2021, 29, 18565 doi: 10.1364/OE.426672
[22]
Fukuma M, Noda J. Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics. Appl Opt, 1980, 19, 591 doi: 10.1364/AO.19.000591
[23]
Paz-Pujalt G R, Tuschel D D, Braunstein G, et al. Characterization of proton exchange lithium niobate waveguides. J Appl Phys, 1994, 76, 3981 doi: 10.1063/1.358495
[24]
Méndez A, de la Paliza G, García-Cabañes A, et al. Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides. Appl Phys B, 2001, 73, 485 doi: 10.1007/s003400100711
Fig. 1.  (Color online) Diagrammatic sketch of the module.

Fig. 2.  (Color online) Diagrammatic sketch of the laser chip unit.

Fig. 3.  (Color online) Sketch of the modulator chip unit.

Fig. 4.  (Color online) Optical path of the module.

Fig. 5.  (Color online) Simulation results of normalized optical output efficiency of the module vs. (a) rotated angle of the fiber, (b) optical axis offset distance of the lens, (c) optical axis offset distance of the fiber to the cocenter optical axis, and (d) the MFD of the modulator waveguide.

Fig. 6.  (Color online) (a) MZ-modulator waveguide structure. (b) Simulation results of extinction ratio (on/off) and split ratio variation vs. normalization angle. (c) Simulation results of extinction ratio (on/off) and coupling ratio vs. two arms distance.

Fig. 7.  Simulation results of the electro-optic response of the module.

Fig. 8.  (Color online) Hybrid integrated optical transmitter module.

Fig. 9.  PI curve of the DFB laser chip.

Fig. 10.  (a) EO bandwidth and (b) ER test results of the LiNbO3 modulator chip.

Fig. 11.  (a) EO bandwidth and (b) ER test results of the module.

Fig. 12.  (Color online) Output RF power of a linear tone and of a third-order intermodulation vs. the RF input power.

Table 1.   Test results of the optical output efficiency.

Laser’s drive current (mA)Laser’s power (mW)Module’s power (mW)Optical output efficiency (%)
50.8016.603.4520.78
101.0031.106.6021.22
200.0056.3012.1521.58
227.0063.1013.7021.71
DownLoad: CSV
[1]
Li G L, Yu P K L. Optical intensity modulators for digital and analog applications. J Lightwave Technol, 2003, 21, 2010 doi: 10.1109/JLT.2003.815654
[2]
Dagli N. Wide-bandwidth lasers and modulators for RF photonics. IEEE Trans Microw Theory Tech, 1999, 47, 1151 doi: 10.1109/22.775453
[3]
Huang J N, Li C, Lu R G, et al. Beyond the 100 Gbaud directly modulated laser for short reach applications. J Semicond, 2021, 42, 041306 doi: 10.1088/1674-4926/42/4/041306
[4]
Liu D P, Tang J, Meng Y, et al. Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator. J Semicond, 2021, 42, 082301 doi: 10.1088/1674-4926/42/8/082301
[5]
Wang X X, Weigel P O, Zhao J, et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photonics, 2019, 4, 096101 doi: 10.1063/1.5115243
[6]
Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 2000, 6, 69 doi: 10.1109/2944.826874
[7]
Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics. Laser Photonics Rev, 2013, 7, 506 doi: 10.1002/lpor.201200032
[8]
Lu Z Y, B Lu, Luo Y, et al. Design and research on small hybrid integrated teansmitter module of semiconductor and DFB laser. J Opto Laser, 2021, 32, 181
[9]
Li Y, Lan T, Li J, et al. High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide. Appl Opt, 2020, 59, 6694 doi: 10.1364/AO.395897
[10]
Li L Y, Ma Y X, Zhang Y S, et al. Multi-tip edge coupler for integration of a distributed feedback semiconductor laser with a thin-film lithium niobate modulator. Appl Opt, 2021, 60, 4814 doi: 10.1364/AO.425773
[11]
Qiu M. Vertically coupled photonic crystal optical filters. Opt Lett, 2005, 30, 1476 doi: 10.1364/OL.30.001476
[12]
Chakravarty S, Teng M, Safian R, et al. Hybrid material integration in silicon photonic integrated circuits. J Semicond, 2021, 42, 041303 doi: 10.1088/1674-4926/42/4/041303
[13]
Matsumoto K, Kanaya Y, Kishikawa J, et al. Characteristics of film InP layer and Si substrate bonded interface bonded by wafer direct bonding. 2015 11th Conference on Lasers and Electro-Optics Pacific Rim, 2015, 7375926 doi: 10.1109/CLEOPR.2015.7375926
[14]
Olmstead M A, Ohuchi F S. Group III selenides: Controlling dimensionality, structure, and properties through defects and heteroepitaxial growth. J Vac Sci Technol A, 2021, 39, 020801 doi: 10.1116/6.0000598
[15]
Okamoto K. Fundamentals of optical waveguides. 2nd ed. Elsevier Inc. , 2006
[16]
Zhang J, Gao C X, Xue M Y, et al. Research on frequency modulation character of the current driven DFB semiconductor laser. Mod Phys Lett B, 2019, 33, 1850422 doi: 10.1142/S0217984918504225
[17]
Alferness R C. Waveguide electrooptic modulators. IEEE Trans Microwave Theory Tech, 1982, 30, 1121 doi: 10.1109/TMTT.1982.1131213
[18]
Tan J, Chen X, Liu X, et al. Research on a bias control technique for quadrature-point locking in LiNbO3 MZ modulators. Semicond Optoe, 2018, 39(4), 575
[19]
Walton J R, Smee E J, Malladi D P. Pilot transmission schemes for wireless multi-carrier communication systems. USA Patent, US7280467, 2007
[20]
Wang L L, Kowalcyzk T. A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. J Lightwave Technol, 2010, 28, 1703 doi: 10.1109/JLT.2010.2048553
[21]
Yang G, Sergienko A V, Ndao A. Tunable polarization mode conversion using thin-film lithium niobate ridge waveguide. Opt Express, 2021, 29, 18565 doi: 10.1364/OE.426672
[22]
Fukuma M, Noda J. Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics. Appl Opt, 1980, 19, 591 doi: 10.1364/AO.19.000591
[23]
Paz-Pujalt G R, Tuschel D D, Braunstein G, et al. Characterization of proton exchange lithium niobate waveguides. J Appl Phys, 1994, 76, 3981 doi: 10.1063/1.358495
[24]
Méndez A, de la Paliza G, García-Cabañes A, et al. Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides. Appl Phys B, 2001, 73, 485 doi: 10.1007/s003400100711
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1174 Times PDF downloads: 65 Times Cited by: 0 Times

    History

    Received: 06 December 2021 Revised: 25 February 2022 Online: Accepted Manuscript: 15 April 2022Uncorrected proof: 21 April 2022Published: 06 June 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xuyang Wang, He Jia, Junhui Li, Yumei Guo, Yu Liu. Optical transmitter module with hybrid integration of DFB laser diode and proton-exchanged LiNbO3 modulator chip[J]. Journal of Semiconductors, 2022, 43(6): 062303. doi: 10.1088/1674-4926/43/6/062303 X Y Wang, H Jia, J H Li, Y M Guo, Y Liu. Optical transmitter module with hybrid integration of DFB laser diode and proton-exchanged LiNbO3 modulator chip[J]. J. Semicond, 2022, 43(6): 062303. doi: 10.1088/1674-4926/43/6/062303Export: BibTex EndNote
      Citation:
      Xuyang Wang, He Jia, Junhui Li, Yumei Guo, Yu Liu. Optical transmitter module with hybrid integration of DFB laser diode and proton-exchanged LiNbO3 modulator chip[J]. Journal of Semiconductors, 2022, 43(6): 062303. doi: 10.1088/1674-4926/43/6/062303

      X Y Wang, H Jia, J H Li, Y M Guo, Y Liu. Optical transmitter module with hybrid integration of DFB laser diode and proton-exchanged LiNbO3 modulator chip[J]. J. Semicond, 2022, 43(6): 062303. doi: 10.1088/1674-4926/43/6/062303
      Export: BibTex EndNote

      Optical transmitter module with hybrid integration of DFB laser diode and proton-exchanged LiNbO3 modulator chip

      doi: 10.1088/1674-4926/43/6/062303
      More Information
      • Author Bio:

        Xuyang Wang was born in Shandong, China, in 1983. She is a Doctor student at the Institution of Semiconductors and an R&D Manager in Beijing Shiweitong Science Technology Co., Ltd, Beijing, China. She has over ten years of experience in research and development in LiNbO3 modulators. Her research now focuses bandwidth LiNbO3 modulators and hybrid integrated modules

        Yu Liu was born in Hunan. China, in 1976. He received the M.S. and Ph.D. degrees in microelectronics and solid-state electronics from the Institute of Semiconductors, Chinese Academy of Sciences (CAS), Beijing, in 2004 and 2008, respectively. He is currently a Full Professor with the Institute of Semiconductors, CAS. His research interests include high-frequency characteristics of microwave optoelectronic devices and design of high-speed optical transceiver modules

      • Corresponding author: yliu@semi.ac.cn
      • Received Date: 2021-12-06
      • Revised Date: 2022-02-25
      • Available Online: 2022-04-15

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return