Citation: |
Xiuli Li, Yupeng Zhu, Zhi Liu, Linzhi Peng, Xiangquan Liu, Chaoqun Niu, Jun Zheng, Yuhua Zuo, Buwen Cheng. 75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique[J]. Journal of Semiconductors, 2023, 44(1): 012301. doi: 10.1088/1674-4926/44/1/012301
****
X L Li, Y P Zhu, Z Liu, L Z Peng, X Q Liu, C Q Niu, J Zheng, Y H Zuo, B W Cheng. 75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique[J]. J. Semicond, 2023, 44(1): 012301. doi: 10.1088/1674-4926/44/1/012301
|
75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique
DOI: 10.1088/1674-4926/44/1/012301
More Information
-
Abstract
High-performance germanium (Ge) waveguide photodetectors are designed and fabricated utilizing the inductive-gain-peaking technique. With the appropriate integrated inductors, the 3-dB bandwidth of photodetectors is significantly improved owing to the inductive-gain-peaking effect without any compromises to the dark current and optical responsivity. Measured 3-dB bandwidth up to 75 GHz is realized and clear open eye diagrams at 64 Gbps are observed. In this work, the relationship between the frequency response and large signal transmission characteristics on the integrated inductors of Ge waveguide photodetectors is investigated, which indicates the high-speed performance of photodetectors using the inductive-gain-peaking technique. -
References
[1] Marpaung D, Yao J P, Capmany J. Integrated microwave photonics. Nat Photonics, 2019, 13, 80 doi: 10.1038/s41566-018-0310-5[2] Zhou D, Sun C L, Lai Y X, et al. Integrated silicon multifunctional mode-division multiplexing system. Opt Express, 2019, 27, 10798 doi: 10.1364/OE.27.010798[3] Shi Y C, Zhang Y, Wan Y T, et al. Silicon photonics for high-capacity data communications. Photonics Res, 2022, 10, A106 doi: 10.1364/PRJ.456772[4] Salamin Y, Ma P, Baeuerle B, et al. 100 GHz plasmonic photodetector. ACS Photonics, 2018, 5, 3291 doi: 10.1021/acsphotonics.8b00525[5] Liu Z, Yang F, Wu W Z, et al. 48 GHz high-performance Ge-on-SOI photodetector with zero-bias 40 Gbps grown by selective epitaxial growth. J Lightwave Technol, 2017, 35, 5306 doi: 10.1109/JLT.2017.2766266[6] Vivien L, Marris-Morini D, Fédéli J-M, et al. Metal-semiconductor-metal Ge photodetectors integrated in silicon waveguides. Appl Phy Lett, 2008, 92, 151114 doi: 10.1063/1.2909590[7] DeRose C T, Trotter D C, Zortman W A, et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 2011, 19, 24897 doi: 10.1364/OE.19.024897[8] Zhu Y P, Liu Z, Niu C Q, et al. High-speed and high-power germanium photodetector based on a trapezoidal absorber. Opt Lett, 2022, 47, 3263 doi: 10.1364/OL.461673[9] Cea M, Orden D, Fini J, et al. High-speed, zero-biased silicon-germanium photodetector. APL Photonics, 2021, 6, 041302 doi: 10.1063/5.0047037[10] Chen H, Verheyen P, De Heyn P, et al. –1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond. Opt Express, 2016, 24, 4622 doi: 10.1364/OE.24.004622[11] Lischke S, Knoll D, Mai C, et al. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt Express, 2015, 23, 27213 doi: 10.1364/OE.23.027213[12] Going R, Seok T J, Loo J, et al. Germanium wrap-around photodetectors on silicon photonics. Opt Express, 2015, 23, 11975 doi: 10.1364/OE.23.011975[13] Lischke S, Peczek A, Morgan J S, et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat Photonics, 2021, 15, 925 doi: 10.1038/s41566-021-00893-w[14] Hu X, Wu D Y, Zhang H G, et al. High-speed and high-power germanium photodetector with a lateral silicon nitride waveguide. Photonics Res, 2021, 9, 749 doi: 10.1364/PRJ.417601[15] Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15, 13965 doi: 10.1364/OE.15.013965[16] Liao S R, Feng N N, Feng D Z, et al. 36 GHz submicron silicon waveguide germanium photodetector. Opt Express, 2011, 19, 10967 doi: 10.1364/OE.19.010967[17] Vivien L, Osmond J, Fédéli J M, et al. 42 GHz p. i. n germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Express, 2009, 17, 6252 doi: 10.1364/OE.17.006252[18] Gould M, Baehr-Jones T, Ding R, et al. Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking. Opt Express, 2012, 20, 7101 doi: 10.1364/OE.20.007101[19] Novack A, Gould M, Yang Y S, et al. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. Opt Express, 2013, 21, 28387 doi: 10.1364/OE.21.028387[20] Wu D Y, Hu X, Li W Z, et al. 62 GHz germanium photodetector with inductive gain peaking electrode for photonic receiving beyond 100 Gbaud. J Semicond, 2021, 42, 020502 doi: 10.1088/1674-4926/42/2/020502[21] Shi Y, Zhou D, Yu Y, et al. 80 GHz germanium waveguide photodiode enabled by parasitic parameter engineering. Photonics Res, 2021, 9, 605 doi: 10.1364/PRJ.416887[22] Chen G Y, Yu Y, Deng S P, et al. Bandwidth improvement for germanium photodetector using wire bonding technology. Opt Express, 2015, 23, 25700 doi: 10.1364/OE.23.025700[23] Sze S M, Ng K K. Physics of semiconductor devices. Berlin Wiley-Interscience, 2006[24] Li W Z, Zhang H G, Hu X, et al. 100 Gbit/s co-designed optical receiver with hybrid integration. Opt Express, 2021, 29, 14304 doi: 10.1364/OE.421980 -
Proportional views