Citation: 
Amgad A. AlSaman, Eugeny A. Ryndin, Xinchuan Zhang, Yi Pei, Fujiang Lin. Analytical model of nonuniform charge distribution within the gated region of GaN HEMTs[J]. Journal of Semiconductors, 2023, 44(8): 082802. doi: 10.1088/16744926/44/8/082802
A A AlSaman, E A Ryndin, X C Zhang, Y Pei, F J Lin. Analytical model of nonuniform charge distribution within the gated region of GaN HEMTs[J]. J. Semicond, 2023, 44(8): 082802. doi: 10.1088/16744926/44/8/082802
Export: BibTex EndNote

Analytical model of nonuniform charge distribution within the gated region of GaN HEMTs
doi: 10.1088/16744926/44/8/082802
More Information
Abstract
A physicsbased analytical expression that predicts the charge, electrical field and potential distributions along the gated region of the GaN HEMT channel has been developed. Unlike the gradual channel approximation (GCA), the proposed model considers the nonuniform variation of the concentration under the gated region as a function of terminal applied voltages. In addition, the model can capture the influence of mobility and channel temperature on the charge distribution trend. The comparison with the hydrodynamic (HD) numerical simulation showed a high agreement of the proposed model with numerical data for different bias conditions considering the selfheating and quantization of the electron concentration. The analytical nature of the model allows us to reduce the computational and time cost of the simulation. Also, it can be used as a core expression to develop a complete physicsbased transistor Ⅳ model without GCA limitation. 
References
[1] AlSaman A A, Pei Y, Ryndin E A, et al. Accurate temperature estimation for each gate of GaN HEMT with ngate fingers. IEEE Trans Electron Devices, 2020, 67, 3577 doi: 10.1109/TED.2020.3012116[2] Hoo Teo K, Zhang Y H, Chowdhury N, et al. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J Appl Phys, 2021, 130, 160902 doi: 10.1063/5.0061555[3] Meneghini M, De Santi C, Abid I, et al. GaNbased power devices: Physics, reliability, and perspectives. J Appl Phys, 2021, 130, 181101 doi: 10.1063/5.0061354[4] Zhu G Q, Chang C, Xu Y H, et al. A smallsignal model extraction and optimization method for AlGaN/GaN HEMT up to 110 GHz. 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2020, 111 doi: 10.1109/ICTA48799.2019.9012880[5] Zhu G Q, Chang C, Xu Y H, et al. A millimeterwave scalable smallsignal modeling approach based on FWEM for AlGaN/GaN HEMT up to 110 GHz. Microw Opt Technol Lett, 2021, 63, 2145 doi: 10.1002/mop.32404[6] AlSaman A A, Ryndin E A, Pei Y, et al. An estimation of 2DEG density for GaN HEMT using analytical equation considering the charge conservation low. Solid State Electron, 2022, 188, 108209 doi: 10.1016/j.sse.2021.108209[7] Anbuselvan N, Amudhalakshmi P, Mohankumar N. Analytical modeling of 2DEG and 2DHG charge balancing in quaternary Al_{0.42}In_{0.03}Ga_{0.55}N/Al_{0.3}In_{0.7}NAl_{0.42}In_{0.03}Ga_{0.55}N/Al_{0.3}In_{0.7}N HEMTs. J Comput Electron, 2018, 17, 1191 doi: 10.1007/s1082501811642[8] Jena K, Swain R, Lenka T R. Physicsbased mathematical model of 2DEG sheet charge density and DC characteristics of AlInN/AlN/GaN MOSHEMT. Int J Numer Model Electron Netw Devices Fields, 2017, 30, e2117 doi: 10.1002/jnm.2117[9] Khandelwal S, Chauhan Y S, Fjeldly T A. Analytical modeling of surfacepotential and intrinsic charges in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 2012, 59, 2856 doi: 10.1109/TED.2012.2209654[10] Khandelwal S, Goyal N, Fjeldly T A. A physicsbased analytical model for 2DEG charge density in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 2011, 58, 3622 doi: 10.1109/TED.2011.2161314[11] Ashok A, Vasileska D, Hartin O L, et al. Electrothermal Monte Carlo simulation of GaN HEMTs including electron–electron interactions. IEEE Trans Electron Devices, 2010, 57, 562 doi: 10.1109/TED.2009.2038585[12] Si J, Wei J, Chen W J, et al. Electric field distribution around drainside gate edge in AlGaN/GaN HEMTs: Analytical approach. IEEE Trans Electron Devices, 2013, 60, 3223 doi: 10.1109/TED.2013.2272055[13] Sadi T, Kelsall R W, Pilgrim N J. Investigation of selfheating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method. IEEE Trans Electron Devices, 2006, 53, 2892 doi: 10.1109/TED.2006.885099[14] Yamakawa S, Goodnick S, Aboud S, et al. Quantum corrected fullband cellular Monte Carlo simulation of AlGaN/GaN HEMTs. J Comput Electron, 2004, 3, 299 doi: 10.1007/s1082500470656[15] Minetto A, Deutschmann B, Modolo N, et al. Hotelectron effects in AlGaN/GaN HEMTs under semiON DC stress. IEEE Trans Electron Devices, 2020, 67, 4602 doi: 10.1109/TED.2020.3025983[16] Ryndin E A, AlSaman A. A novel approach to model highspeed microelectronic switch on the basis of hydrodynamic approximation. International Conference on Micro and NanoElectronics 2018, 2019, 128 doi: 10.1117/12.2521711[17] Wang X D, Hu W D, Chen X S, et al. The study of selfheating and hotelectron effects for AlGaN/GaN doublechannel HEMTs. IEEE Trans Electron Devices, 2012, 59, 1393 doi: 10.1109/TED.2012.2188634[18] Asgari A, Kalafi M, Faraone L. A quasitwodimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs). Phys E, 2005, 28, 491 doi: 10.1016/j.physe.2005.05.054[19] Khandelwal S, Chauhan Y S, Fjeldly T A, et al. ASM GaN: Industry standard model for GaN RF and power devices—Part 1: DC, CV, and RF model. IEEE Trans Electron Devices, 2019, 66, 80 doi: 10.1109/TED.2018.2867874[20] Ali Albahrani S, Mahajan D, Hodges J, et al. ASM GaN: Industry standard model for GaN RF and power devices—PartII: Modeling of charge trapping. IEEE Trans Electron Devices, 2019, 66, 87 doi: 10.1109/TED.2018.2868261[21] Radhakrishna U, Choi P, Grajal J, et al. Study of RFcircuit linearity performance of GaN HEMT technology using the MVSG compact device model. 2016 IEEE International Electron Devices Meeting (IEDM), 2017, 3.7.1 doi: doi.org/10.1117/12.2521711[22] Radhakrishna U, Imada T, Palacios T, et al. MIT virtual source GaNFEThigh voltage (MVSGHV) model: A physics based compact model for HVGaN HEMTs. Phys Status Solidi C, 2014, 11, 848 doi: 10.1002/pssc.201300392[23] Khandelwal S, Yigletu F M, Iñiguez B, et al. A chargebased capacitance model for AlGaAs/GaAs HEMTs. Solid State Electron, 2013, 82, 38 doi: 10.1016/j.sse.2013.01.017[24] Palankovski V, Quay R. Analysis and Simulation of Heterostructure Devices. Vienna: Springer Vienna, 2004 
Proportional views