REVIEWS

Flexible perovskite light-emitting diodes for display applications and beyond

Yongqi Zhang1, Shahbaz Ahmed Khan1, Dongxiang Luo2 and Guijun Li1,

+ Author Affiliations

 Corresponding author: Guijun Li, gliad@connect.ust.hk

PDF

Turn off MathJax

Abstract: The flexible perovskite light-emitting diodes (FPeLEDs), which can be expediently integrated to portable and wearable devices, have shown great potential in various applications. The FPeLEDs inherit the unique optical properties of metal halide perovskites, such as tunable bandgap, narrow emission linewidth, high photoluminescence quantum yield, and particularly, the soft nature of lattice. At present, substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency (EQE) of 24.5%. Herein, we summarize the recent progress in FPeLEDs, focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance. In addition, we present relevant applications of FPeLEDs in displays and beyond. Finally, perspective toward the future development and applications of flexible PeLEDs are also discussed.

Key words: metal halide perovskiteflexible light-emitting diodesoptical propertiesmechanical flexibilitydisplay



[1]
Jang J H, Li S, Kim D H, et al. Materials, device structures, and applications of flexible perovskite light-emitting diodes. Adv Elect Materials, 2023, 9, 2201271 doi: 10.1002/aelm.202201271
[2]
Wang J T, Wang S Z, Zhou Y H, et al. Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Sci China Mater, 2023, 66, 1 doi: 10.1007/s40843-022-2197-4
[3]
Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992, 357, 477 doi: 10.1038/357477a0
[4]
Kim S, Kwon H J, Lee S, et al. Low-power flexible organic light-emitting diode display device. Adv Mater, 2011, 23, 3511 doi: 10.1002/adma.201101066
[5]
Gu G, Burrows P E, Venkatesh S, et al. Vacuum-deposited, nonpolymeric flexible organic light-emitting devices. Opt Lett, 1997, 22, 172 doi: 10.1364/OL.22.000172
[6]
Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics. Adv Mater, 2014, 26, 4533 doi: 10.1002/adma.201401052
[7]
Xu R P, Li Y Q, Tang J X. Recent advances in flexible organic light-emitting diodes. J Mater Chem C, 2016, 4, 9116 doi: 10.1039/C6TC03230C
[8]
Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6, 105 doi: 10.1038/nphoton.2011.318
[9]
Xu J, Tan Z N, Zhang C F, et al. Colloidal nanocrystal-based light-emitting diodes fabricated on plastic–towards flexible quantum dot optoelectronics. J Appl Phys , 2009 , 105, 034312
[10]
Lin Q H, Zhu Y B, Wang Y, et al. Flexible quantum dot light-emitting device for emerging multifunctional and smart applications. Adv Mater, 2023, 35, 2210385 doi: 10.1002/adma.202210385
[11]
Akkerman Q A, D’Innocenzo V, Accornero S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc, 2015, 137, 10276 doi: 10.1021/jacs.5b05602
[12]
Liu F, Zhang Y H, Ding C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano, 2017, 11, 10373 doi: 10.1021/acsnano.7b05442
[13]
Nedelcu G, Protesescu L, Yakunin S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2015, 15, 5635 doi: 10.1021/acs.nanolett.5b02404
[14]
Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15, 3692 doi: 10.1021/nl5048779
[15]
Sutherland B R, Sargent E H. perovskite photonic sources. Nat Photonics, 2016, 10, 295 doi: 10.1038/nphoton.2016.62
[16]
Yuan M J, Quan L N, Comin R, et al. perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11, 872 doi: 10.1038/nnano.2016.110
[17]
Ren B T, Yuen G, Deng S B, et al. Multifunctional optoelectronic device based on an asymmetric active layer structure. Adv Funct Materials, 2019, 29, 1807894 doi: 10.1002/adfm.201807894
[18]
Zhang J F, Ren B T, Deng S B, et al. Voltage-dependent multicolor electroluminescent device based on halide perovskite and chalcogenide quantum-dots emitters. Adv Funct Materials, 2020, 30, 1907074 doi: 10.1002/adfm.201907074
[19]
Ye F H, Yan H B, Liu S Y, et al. Interface engineering with quaternary ammonium-based ionic liquids toward efficient blue perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2022, 14, 50393 doi: 10.1021/acsami.2c15144
[20]
Zhang J F, Zhong W, Liu Y, et al. A high-performance photodetector based on 1D perovskite radial heterostructure. Adv Opt Mater, 2021, 9, 2101504 doi: 10.1002/adom.202101504
[21]
Liu J, Wang M, Lin J H, et al. Mitigating deep-level defects through a self-healing process for highly efficient wide-bandgap inorganic CsPbI3− xBr x perovskite photovoltaics. J Mater Chem A, 2022, 10, 17237 doi: 10.1039/D2TA02022J
[22]
Li G J, Deng S B, Zhang M, et al. Achieving high open-circuit voltage for p-i-n perovskite solar cells via anode contact engineering. Sol RRL, 2018, 2, 1800151 doi: 10.1002/solr.201800151
[23]
Liu B X, Li J Z, Wang G, et al. Lattice strain modulation toward efficient blue perovskite light-emitting diodes. Sci Adv, 2022, 8, eabq0138 doi: 10.1126/sciadv.abq0138
[24]
Baikie T, Fang Y N, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1, 5628 doi: 10.1039/c3ta10518k
[25]
Bao C X, Yang J, Bai S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv Mater, 2018, 30, 1803422 doi: 10.1002/adma.201803422
[26]
Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511 doi: 10.1038/s41586-019-1036-3
[27]
Wu D J, Xu Y C, Zhou H, et al. Ultrasensitive, flexible perovskite nanowire photodetectors with long-term stability exceeding 5000 H. InfoMat, 2022, 4, e12320 doi: 10.1002/inf2.12320
[28]
Zhang Y, Li S Y, Li Z L, et al. High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett, 2021, 21, 382 doi: 10.1021/acs.nanolett.0c03759
[29]
Kim Y H, Cho H, Heo J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater, 2015, 27, 1248 doi: 10.1002/adma.201403751
[30]
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687 doi: 10.1038/nnano.2014.149
[31]
Jung D H, Park J H, Lee H E, et al. Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy, 2019, 61, 236 doi: 10.1016/j.nanoen.2019.04.061
[32]
Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222 doi: 10.1126/science.aad1818
[33]
Kumar S, Jagielski J, Kallikounis N, et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett, 2017, 17, 5277 doi: 10.1021/acs.nanolett.7b01544
[34]
Zhao L F, Rolston N, Lee K M, et al. Influence of bulky organo-ammonium halide additive choice on the flexibility and efficiency of perovskite light-emitting devices. Adv Funct Materials, 2018, 28, 1802060 doi: 10.1002/adfm.201802060
[35]
Liu Y L, Zhang L Z, Chen S, et al. Water-soluble conjugated polyelectrolyte hole transporting layer for efficient sky-blue perovskite light-emitting diodes. Small, 2021, 17, 2101477 doi: 10.1002/smll.202101477
[36]
Jiang D H, Liao Y C, Cho C J, et al. Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes. ACS Appl Mater Interfaces, 2020, 12, 14408 doi: 10.1021/acsami.9b23291
[37]
Bade S G R, Shan X, Hoang P T, et al. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv Mater, 2017, 29, 1607053 doi: 10.1002/adma.201607053
[38]
Lu M, Wu H, Zhang X Y, et al. Highly flexible CsPbI3 perovskite nanocrystal light-emitting diodes. ChemNanoMat, 2019, 5, 313 doi: 10.1002/cnma.201800359
[39]
Lee S Y, Nam Y S, Yu J C, et al. Highly efficient flexible perovskite light-emitting diodes using the modified PEDOT: PSS hole transport layer and polymer-silver nanowire composite electrode. ACS Appl Mater Interfaces, 2019, 11, 39274 doi: 10.1021/acsami.9b10771
[40]
Bade S G R, Li J Q, Shan X, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano, 2016, 10, 1795 doi: 10.1021/acsnano.5b07506
[41]
Miroshnichenko A S, Deriabin K V, Baeva M, et al. Flexible perovskite CsPbBr3 light emitting devices integrated with GaP nanowire arrays in highly transparent and durable functionalized silicones. J Phys Chem Lett, 2021, 12, 9672 doi: 10.1021/acs.jpclett.1c02611
[42]
Teo M Y, Kim N, Kee S, et al. Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl Mater Interfaces, 2017, 9, 819 doi: 10.1021/acsami.6b11988
[43]
Seo H K, Kim H, Lee J, et al. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Adv Mater, 2017, 29, 1605587 doi: 10.1002/adma.201605587
[44]
Kim H M, Kim Y C, An H J, et al. Highly stretchable and contact-responsive light-emitting diodes based on MAPbBr3–PEO composite film. J Alloys Compd, 2020, 819, 153360 doi: 10.1016/j.jallcom.2019.153360
[45]
Qian X Y, Shen Y, Zhang L J, et al. Bio-inspired pangolin design for self-healable flexible perovskite light-emitting diodes. ACS Nano, 2022, 16, 17973 doi: 10.1021/acsnano.2c06118
[46]
Shen Y, Li M N, Li Y Q, et al. Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano, 2020, 14, 6107 doi: 10.1021/acsnano.0c01908
[47]
Goldschmidt V M. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14, 477 doi: 10.1007/BF01507527
[48]
Li C, Lu X G, Ding W Z, et al. Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr Sect B, 2008, 64, 702 doi: 10.1107/S0108768108032734
[49]
Uribe J I, Ramirez D, Osorio-Guillén J M, et al. CH3NH3CaI3 perovskite: Synthesis, characterization, and first-principles studies. J Phys Chem C, 2016, 120, 16393 doi: 10.1021/acs.jpcc.6b04207
[50]
Li Z, Yang M J, Park J S, et al. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater, 2016, 28, 284 doi: 10.1021/acs.chemmater.5b04107
[51]
Saparov B, Mitzi D B. Organic-inorganic perovskites: Structural versatility for functional materials design. Chem Rev, 2016, 116, 4558 doi: 10.1021/acs.chemrev.5b00715
[52]
Zhang L, Sun C J, He T W, et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci Appl, 2021, 10, 61 doi: 10.1038/s41377-021-00501-0
[53]
Dey A, Ye J Z, De A, et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 2021, 15, 10775 doi: 10.1021/acsnano.0c08903
[54]
Ren X X, Zhang X, Xie H X, et al. Perovskite quantum dots for emerging displays: Recent progress and perspectives. Nanomaterials, 2022, 12, 2243 doi: 10.3390/nano12132243
[55]
Wang C H, Cai J H, Ye Y Y, et al. Full-visible-spectrum perovskite quantum dots by anion exchange resin assisted synthesis. Nanophotonics, 2022, 11, 1355 doi: 10.1515/nanoph-2021-0768
[56]
Yang D X, Zhao B D, Yang T, et al. Toward stable and efficient perovskite light-emitting diodes. Adv Funct Materials, 2022, 32, 2109495 doi: 10.1002/adfm.202109495
[57]
Cai J H, Wang C H, Hu X P, et al. Water-driven photoluminescence reversibility in CsPbBr3/PDMS-PUa composite. Nano Res, 2022, 15, 6466 doi: 10.1007/s12274-022-4202-0
[58]
Chen E G, Lin J Y, Yang T, et al. Asymmetric quantum-dot pixelation for color-converted white balance. ACS Photonics, 2021, 8, 2158 doi: 10.1021/acsphotonics.1c00596
[59]
Duong T, Wu Y L, Shen H P, et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater, 2017, 7, 1700228 doi: 10.1002/aenm.201700228
[60]
Swarnkar A, Chulliyil R, Ravi V K, et al. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew Chem Int Ed Engl, 2015, 54, 15424 doi: 10.1002/anie.201508276
[61]
Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358, 745 doi: 10.1126/science.aam7093
[62]
Filip M R, Eperon G E, Snaith H J, et al. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat Commun, 2014, 5, 5757 doi: 10.1038/ncomms6757
[63]
Linaburg M R, McClure E T, Majher J D, et al. Cs1– xRb xPbCl3 and Cs1– xRb xPbBr3 solid solutions: Understanding octahedral tilting in lead halide perovskites. Chem Mater, 2017, 29, 3507 doi: 10.1021/acs.chemmater.6b05372
[64]
Chiarella F, Zappettini A, Licci F, et al. Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X=Cl, Br). Phys Rev B, 2008, 77, 045129 doi: 10.1103/PhysRevB.77.045129
[65]
Ravi V K, Markad G B, Nag A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett, 2016, 1, 665 doi: 10.1021/acsenergylett.6b00337
[66]
Ren X, Hu H L, Chen Z Y, et al. Highly stable perovskite nanocrystals with pure red emission for displays. ACS Appl Nano Mater, 2023, 6, 6092 doi: 10.1021/acsanm.3c00363
[67]
Dumont A, Ho K, Kung H T, et al. Extraordinary mass transport and self-assembly: a pathway to fabricate luminescent CsPbBr3 and light-emitting diodes by vapor-phase deposition. Adv Materials Inter, 2020, 7, 2000506 doi: 10.1002/admi.202000506
[68]
Jiang N Z, Wang Z B, Zheng Y H, et al. 2D/3D Heterojunction perovskite light-emitting diodes with tunable ultrapure blue emissions. Nano Energy, 2022, 97, 107181 doi: 10.1016/j.nanoen.2022.107181
[69]
Byun J, Cho H, Wolf C, et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv Mater, 2016, 28, 7515 doi: 10.1002/adma.201601369
[70]
Tyagi P, Arveson S M, Tisdale W A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J Phys Chem Lett, 2015, 6, 1911 doi: 10.1021/acs.jpclett.5b00664
[71]
Chen Z M, Li Z C, Hopper T R, et al. Materials, photophysics and device engineering of perovskite light-emitting diodes. Rep Prog Phys, 2021, 84, 046401 doi: 10.1088/1361-6633/abefba
[72]
Li Z C, Chen Z M, Yang Y C, et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5. Nat Commun, 2019, 10, 1027 doi: 10.1038/s41467-019-09011-5
[73]
Brandt R E, Poindexter J R, Gorai P, et al. Searching for “defect-tolerant” photovoltaic materials: Combined theoretical and experimental screening. Chem Mater, 2017, 29, 4667 doi: 10.1021/acs.chemmater.6b05496
[74]
Sun S J, Fang Y N, Kieslich G, et al. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J Mater Chem A, 2015, 3, 18450 doi: 10.1039/C5TA03331D
[75]
Sun S J, Isikgor F H, Deng Z Y, et al. Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. ChemSusChem, 2017, 10, 3740 doi: 10.1002/cssc.201700991
[76]
Tu Q, Spanopoulos I, Vasileiadou E S, et al. Exploring the factors affecting the mechanical properties of 2D hybrid organic-inorganic perovskites. ACS Appl Mater Interfaces, 2020, 12, 20440 doi: 10.1021/acsami.0c02313
[77]
Tu Q, Spanopoulos I, Hao S Q, et al. Out-of-plane mechanical properties of 2D hybrid organic-inorganic perovskites by nanoindentation. ACS Appl Mater Interfaces, 2018, 10, 22167 doi: 10.1021/acsami.8b05138
[78]
Yu J G, Wang M C, Lin S C. Probing the soft and nanoductile mechanical nature of single and polycrystalline organic-inorganic hybrid perovskites for flexible functional devices. ACS Nano, 2016, 10, 11044 doi: 10.1021/acsnano.6b05913
[79]
Feng J. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater, 2014, 2, 081801 doi: 10.1063/1.4885256
[80]
Rakita Y, Cohen S R, Kedem N K, et al. Mechanical properties of APbX3 (a = Cs or CH3NH3; X= I or Br) perovskite single crystals. MRS Commun, 2015, 5, 623 doi: 10.1557/mrc.2015.69
[81]
Reyes-Martinez M A, Abdelhady A L, Saidaminov M I, et al. Time-dependent mechanical response of APbX3 (A = Cs, CH3 NH3; X = I, Br) single crystals. Adv Mater, 2017, 29, 1606556 doi: 10.1002/adma.201606556
[82]
Li J Y, Ge C Y, Zhao Z F, et al. Mechanical properties of single crystal organic–inorganic hybrid perovskite MAPbX3 (MA = CH3NH3, X = Cl, Br, I). Coatings, 2023, 13, 854 doi: 10.3390/coatings13050854
[83]
Ma L, Li W P, Yang K X, et al. A- or X-site mixture on mechanical properties of APbX3 perovskite single crystals. APL Mater, 2021, 9, 041112 doi: 10.1063/5.0015569
[84]
Kim D, Vasileiadou E S, Spanopoulos I, et al. In-plane mechanical properties of two-dimensional hybrid organic-inorganic perovskite nanosheets: Structure-property relationships. ACS Appl Mater Interfaces, 2021, 13, 31642 doi: 10.1021/acsami.1c06140
[85]
Chen C, Xuan T T, Yang Y, et al. Passivation layer of potassium iodide yielding high efficiency and stable deep red perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2022, 14, 16404 doi: 10.1021/acsami.2c00621
[86]
Cheng L P, Huang J S, Shen Y, et al. Efficient CsPbBr3 perovskite light-emitting diodes enabled by synergetic morphology control. Adv Opt Mater, 2019, 7, 1801534 doi: 10.1002/adom.201801534
[87]
Ashjari T, Arabpour Roghabadi F, Ahmadi V. Facile synthesis of durable perovskite quantum dots film with near unity photoluminescence quantum yield for efficient perovskite light emitting diode. Appl Surf Sci, 2020, 510, 145513 doi: 10.1016/j.apsusc.2020.145513
[88]
Liu Y L, Yu Z K, Chen S, et al. Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy, 2021, 80, 105511 doi: 10.1016/j.nanoen.2020.105511
[89]
Kim T, Kim J H, Park J W. All-solution-processed organic–inorganic hybrid perovskite light-emitting diodes under ambient air. Phys Status Solidi A, 2019, 216, 1900642 doi: 10.1002/pssa.201900642
[90]
Chou S Y, Ma R J, Li Y F, et al. Transparent perovskite light-emitting touch-responsive device. ACS Nano, 2017, 11, 11368 doi: 10.1021/acsnano.7b05935
[91]
Zhao F C, Chen D, Chang S, et al. Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire–polymer composite electrode. J Mater Chem C, 2017, 5, 531 doi: 10.1039/C6TC04934F
[92]
Rui H S, Li L, Zhang N, et al. Tunable deep-red electroluminescence from flexible quasi-2D perovskites light-emitting diodes. IEEE Electron Device Lett, 2019, 40, 59 doi: 10.1109/LED.2018.2883510
[93]
Li J H, Du P P, Li S R, et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv Funct Materials, 2019, 29, 1903607 doi: 10.1002/adfm.201903607
[94]
Lee S Y, Kim S H, Nam Y S, et al. Flexibility of semitransparent perovskite light-emitting diodes investigated by tensile properties of the perovskite layer. Nano Lett, 2019, 19, 971 doi: 10.1021/acs.nanolett.8b04200
[95]
Park J K, Kim S Y, Kim J H, et al. Spray-coated nanocrystalline CsPbBr3 perovskite thin-films for large area and efficient rigid and flexible light emitting diodes. J Alloys Compd, 2022, 918, 165560 doi: 10.1016/j.jallcom.2022.165560
[96]
Chen C, Han T H, Tan S, et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett, 2020, 20, 4673 doi: 10.1021/acs.nanolett.0c01550
[97]
Cao F, You M Q, Kong L M, et al. Mixed-dimensional MXene-based composite electrodes enable mechanically stable and efficient flexible perovskite light-emitting diodes. Nano Lett, 2022, 22, 4246 doi: 10.1021/acs.nanolett.2c01517
[98]
Kang H, Choi S R, Kim Y H, et al. Electroplated silver-nickel core-shell nanowire network electrodes for highly efficient perovskite nanoparticle light-emitting diodes. ACS Appl Mater Interfaces, 2020, 12, 39479 doi: 10.1021/acsami.0c10386
[99]
Kim H, Ra H N, Kim J S, et al. Improved performance of flexible perovskite light-emitting diodes with modified PEDOT: PSS hole transport layer. J Ind Eng Chem, 2020, 90, 117 doi: 10.1016/j.jiec.2020.07.003
[100]
Zhao J Y, Lo L W, Wan H C, et al. High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates. Adv Mater, 2021, 33, 2102095 doi: 10.1002/adma.202102095
[101]
Payandeh M, Ahmadi V, Arabpour Roghabadi F, et al. High-brightness perovskite light-emitting diodes using a printable silver microflake contact. ACS Appl Mater Interfaces, 2020, 12, 11428 doi: 10.1021/acsami.9b18527
[102]
Du P P, Li J H, Wang L, et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat Commun, 2021, 12, 4751 doi: 10.1038/s41467-021-25093-6
[103]
Zhang D Q, Zhang Q P, Ren B T, et al. Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat Photonics, 2022, 16, 284 doi: 10.1038/s41566-022-00978-0
[104]
Cantarella G, Kumar S, Jagielski J, et al. Flexible green perovskite light emitting diodes. 2018 International Flexible Electronics Technology Conference (IFETC), 2018, 1 doi: 10.1109/IFETC.2018.8583906
[105]
Liu Y S, Guo S, Yi F S, et al. Highly flexible organic-inorganic hybrid perovskite light-emitting devices based on an ultrathin Au electrode. Opt Lett, 2018, 43, 5524 doi: 10.1364/OL.43.005524
[106]
Li Y F, Chou S Y, Huang P, et al. Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv Mater, 2019, 31, 1807516 doi: 10.1002/adma.201807516
[107]
Kwon J I, Park G, Lee G H, et al. Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Sci Adv, 2022, 8, eadd0697 doi: 10.1126/sciadv.add0697
[108]
Kim T, Kim J H, Park J W. Semi-transparent organic-inorganic hybrid perovskite light-emitting diodes fabricated under high relative humidity. Solid State Electron, 2020, 165, 107749 doi: 10.1016/j.sse.2019.107749
[109]
Bi S, Zhao W, Sun Y Q, et al. Dynamic photonic perovskite light-emitting diodes with post-treatment-enhanced crystallization as writable and wipeable inscribers. Nanoscale Adv, 2021, 3, 6659 doi: 10.1039/D1NA00465D
[110]
Long J, Huang Z Q, Zhang J Q, et al. Flexible perovskite solar cells: Device design and perspective. Flex Print Electron, 2020, 5, 013002 doi: 10.1088/2058-8585/ab556e
[111]
Qin F S, Lu M, Sun S Q, et al. Paper substrates based flexible red-emitting perovskite nanocrystal light-emitting diodes. IEEE Electron Device Lett, 2023, 44, 1056 doi: 10.1109/LED.2023.3277852
[112]
Ahmad R, Surendran A, Harikesh P C, et al. Perturbation-induced seeding and crystallization of hybrid perovskites over surface-modified substrates for optoelectronic devices. ACS Appl Mater Interfaces, 2019, 11, 27727 doi: 10.1021/acsami.9b05965
[113]
Dong H, Ran C X, Gao W Y, et al. Crystallization dynamics of Sn-based perovskite thin films: Toward efficient and stable photovoltaic devices. Adv Energy Mater, 2022, 12, 2102213 doi: 10.1002/aenm.202102213
[114]
Jeon T, Kim S J, Yoon J, et al. Hybrid perovskites: Effective crystal growth for optoelectronic applications. Adv Energy Mater, 2017, 7, 1602596 doi: 10.1002/aenm.201602596
[115]
Kovaricek P, Nadazdy P, Pluharova E, et al. Crystallization of 2D hybrid organic–inorganic perovskites templated by conductive substrates. Adv Funct Materials, 2021, 31, 2009007 doi: 10.1002/adfm.202009007
[116]
Shen K C, Wang J K, Shen Y, et al. Unraveling the role of crystallization dynamics on luminescence characteristics of perovskite light-emitting diodes. Laser & Photonics Rev, 2021, 15, 2100023 doi: 10.1002/lpor.202100023
[117]
Thokala S, Kumar Gupta R, Garg A, et al. The effect of alkylamines on the morphology and optical properties of organic perovskites. Sol Energy, 2021, 226, 483 doi: 10.1016/j.solener.2021.08.074
[118]
Zhu H L, Choy W C H. Crystallization, properties, and challenges of low-bandgap Sn–Pb binary perovskites. Sol RRL, 2018, 2, 1800146 doi: 10.1002/solr.201800146
[119]
Guo Z Y, Zhang Y, Wang B Z, et al. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv Mater, 2021, 33, 2102246 doi: 10.1002/adma.202102246
[120]
Chang C Y, Chu C Y, Huang Y C, et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl Mater Interfaces, 2015, 7, 4955 doi: 10.1021/acsami.5b00052
[121]
Jiang L, Luo X, Luo Z M, et al. Interface and bulk controlled perovskite nanocrystal growth for high brightness light-emitting diodes. Chin Opt Lett, 2021, 19, 030001 doi: 10.3788/COL202119.030001
[122]
Luo X, Zheng T, Luo Z M, et al. Visual electrocardiogram synchronization monitor using perovskite-based multicolor light-emitting diodes. Acs Photonics, 2021, 8, 3337 doi: 10.1021/acsphotonics.1c01296
[123]
Jeong B, Han H, Choi Y J, et al. All-Inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv Funct Materials, 2018, 28, 1706401 doi: 10.1002/adfm.201706401
[124]
Li X, Cao B L, Wang M H, et al. perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Phys Sin, 2021, 70, 048502 doi: 10.7498/aps.70.20201379
[125]
Su H, Chen J M, Qin J, et al. Enhancing the electroluminescence of perovskite light-emitting diodes by optimizing the morphology of perovskite film to suppress leakage current. Appl Opt, 2020, 59, 7975 doi: 10.1364/AO.400296
[126]
Tian Y, Zhou C K, Worku M, et al. Highly efficient spectrally stable red perovskite light-emitting diodes. Adv Mater, 2018, 30, 1707093 doi: 10.1002/adma.201707093
[127]
Li J Q, Bade S G R, Shan X, et al. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater, 2015, 27, 5196 doi: 10.1002/adma.201502490
[128]
Li J Q, Shan X, Bade S G R, et al. Single-layer halide perovskite light-emitting diodes with sub-band gap turn-on voltage and high brightness. J Phys Chem Lett, 2016, 7, 4059 doi: 10.1021/acs.jpclett.6b01942
[129]
Zuo L J, Guo H X, DeQuilettes D W, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci Adv, 2017, 3, e1700106 doi: 10.1126/sciadv.1700106
[130]
Sun S Q, Jia P, Lu M, et al. Enhanced flexibility and stability of emissive layer enable high-performance flexible light-emitting diodes by cross-linking of biomass material. Adv Funct Materials, 2022, 32, 2204286 doi: 10.1002/adfm.202204286
[131]
Luo C Z, Xia W L, Ren Z W, et al. Highly luminescent and ultra-stable perovskite films with excellent self-healing ability for flexible lighting and wide color gamut displays. Adv Funct Materials, 2022, 32, 2113010 doi: 10.1002/adfm.202113010
[132]
Ercan E, Tsai P C, Chen J Y, et al. Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications. ACS Appl Mater Interfaces, 2019, 11, 23605 doi: 10.1021/acsami.9b05527
[133]
Lin C C, Jiang D H, Kuo C C, et al. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl Mater Interfaces, 2018, 10, 2210 doi: 10.1021/acsami.7b15989
[134]
Adeniji S, Oyewole O, Koech R, et al. Failure mechanisms of stretchable perovskite light-emitting devices under monotonic and cyclic deformations. Macro Materials & Eng, 2021, 306, 2100435 doi: 10.1002/mame.202100435
[135]
Rolston N, Printz A D, Tracy J M, et al. Effect of cation composition on the mechanical stability of perovskite solar cells. Adv Energy Mater, 2018, 8, 1702116 doi: 10.1002/aenm.201702116
[136]
Meng X C, Xing Z, Hu X T, et al. Stretchable perovskite solar cells with recoverable performance. Angew Chem Int Ed Engl, 2020, 59, 16602 doi: 10.1002/anie.202003813
[137]
Wang M, Sun H X, Cao F R, et al. Moisture-triggered self-healing flexible perovskite photodetectors with excellent mechanical stability. Adv Mater, 2021, 33, 2100625 doi: 10.1002/adma.202100625
[138]
Ge C D, Liu X T, Yang Z Q, et al. Thermal dynamic self-healing supramolecular dopant towards efficient and stable flexible perovskite solar cells. Angew Chem Int Ed Engl, 2022, 61, e202116602 doi: 10.1002/anie.202116602
[139]
Zang J Q, Cai L, Zou Y T, et al. Self-healing perovskite films enabled by fluorinated cross-linked network targeting flexible light-emitting diode. Adv Opt Mater, 2022, 10, 2200566 doi: 10.1002/adom.202200566
[140]
Bi H, Liu F Y, Wang M, et al. Construction of ultra-stable perovskite–polymer fibre membranes by electrospinning technology and its application to light-emitting diodes. Polym Int, 2021, 70, 90 doi: 10.1002/pi.6094
[141]
Hu X B, Xu Y Q, Wang J C, et al. In situ fabrication of superfine perovskite composite nanofibers with ultrahigh stability by one-step electrospinning toward white light-emitting diode. Adv Fiber Mater, 2023, 5, 183 doi: 10.1007/s42765-022-00207-x
[142]
Lê K, von Toperczer F, Ünlü F, et al. Electrospun electroluminescent CsPbBr3 fibers as flexible perovskite networks for light-emitting application. Adv Eng Mater, 2023, 25, 2201651 doi: 10.1002/adem.202201651
[143]
Wang Q, Li K, Yang H H, et al. Cesium lead iodide electrospun fibrous membranes for white light-emitting diodes. Nanotechnology, 2022, 33, 385603 doi: 10.1088/1361-6528/ac77a0
[144]
Du J H, Pei S F, Ma L P, et al. 25th anniversary article: Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater, 2014, 26, 1958 doi: 10.1002/adma.201304135
[145]
Hecht D S, Hu L B, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 2011, 23, 1482 doi: 10.1002/adma.201003188
[146]
Hou S P, Liu J, Shi F P, et al. Recent advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes. Front Chem, 2022, 10, 864186 doi: 10.3389/fchem.2022.864186
[147]
Lim K G, Han T H, Lee T W. Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy Environ Sci, 2021, 14, 2009 doi: 10.1039/D0EE02996C
[148]
Liu L H, Cao K, Chen S F, et al. Toward see-through optoelectronics: Transparent light-emitting diodes and solar cells. Adv Opt Mater, 2020, 8, 2001122 doi: 10.1002/adom.202001122
[149]
Jia P, Lu M, Sun S Q, et al. Recent advances in flexible perovskite light-emitting diodes. Adv Materials Inter, 2021, 8, 2100441 doi: 10.1002/admi.202100441
[150]
Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382, 54 doi: 10.1038/382054a0
[151]
Pang S P, Hernandez Y, Feng X L, et al. Graphene as transparent electrode material for organic electronics. Adv Mater, 2011, 23, 2779 doi: 10.1002/adma.201100304
[152]
Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457, 706 doi: 10.1038/nature07719
[153]
Gomez De Arco L, Zhang Y, Schlenker C W, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4, 2865 doi: 10.1021/nn901587x
[154]
Bae S K, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5, 574 doi: 10.1038/nnano.2010.132
[155]
Kim Y H, Sachse C, Machala M L, et al. Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv Funct Materials, 2011, 21, 1076 doi: 10.1002/adfm.201002290
[156]
Kim N, Kee S, Lee S H, et al. Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization. Adv Mater, 2014, 26, 2268 doi: 10.1002/adma.201304611
[157]
Diah A W M, Quirino J P, Belcher W, et al. Investigation of the doping efficiency of poly(styrene sulfonic acid) in poly(3, 4-ethylenedioxythiophene)/poly(styrene sulfonic acid) dispersions by capillary electrophoresis. Electrophoresis, 2014, 35, 1976 doi: 10.1002/elps.201400056
[158]
Fan X, Wang J Z, Wang H B, et al. Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT: PSS electrodes on plastic substrates. ACS Appl Mater Interfaces, 2015, 7, 16287 doi: 10.1021/acsami.5b02830
[159]
Liu L H, Yang H, Zhang Z J, et al. Photopatternable and highly conductive PEDOT: PSS electrodes for flexible perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2023, 15, 21344 doi: 10.1021/acsami.3c03108
[160]
Vosgueritchian M, Lipomi D J, Bao Z N. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Materials, 2012, 22, 421 doi: 10.1002/adfm.201101775
[161]
Lipomi D J, Lee J A, Vosgueritchian M, et al. Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem Mater, 2012, 24, 373 doi: 10.1021/cm203216m
[162]
Jeong S H, Woo S H, Han T H, et al. Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency. NPG Asia Mater, 2017, 9, e411 doi: 10.1038/am.2017.108
[163]
Jiang W, Lee S, Zhao K Y, et al. Flexible and transparent electrode of hybrid Ti3C2TX MXene-silver nanowires for high-performance quantum dot light-emitting diodes. ACS Nano, 2022, 16, 9203 doi: 10.1021/acsnano.2c01514
[164]
Meena J S, Bin Choi S, Kim J W. Review on Ti3C2-based MXene nanosheets for flexible electrodes. Electron Mater Lett, 2022, 18, 256 doi: 10.1007/s13391-022-00337-9
[165]
Nirmal K A, Ren W Q, Khot A C, et al. Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes. Adv Sci, 2023, 10, 2300433 doi: 10.1002/advs.202300433
[166]
Ahn S, Han T H, Maleski K, et al. A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv Mater, 2020, 32, 2000919 doi: 10.1002/adma.202000919
[167]
Chen H, Wang H, Wu J, et al. Flexible optoelectronic devices based on metal halide perovskites. Nano Res, 2020, 13, 1997 doi: 10.1007/s12274-020-2805-x
[168]
Karlsson M, Yi Z Y, Reichert S, et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat Commun, 2021, 12, 361 doi: 10.1038/s41467-020-20582-6
[169]
Zhang F J, Gao Y B, Lu P, et al. Engineering of hole transporting interface by incorporating the atomic-precision Ag6 nanoclusters for high-efficiency blue perovskite light-emitting diodes. Nano Lett, 2023, 23, 1582 doi: 10.1021/acs.nanolett.3c00068
[170]
Han T H, Choi M R, Woo S H, et al. Molecularly controlled interfacial layer strategy toward highly efficient simple-structured organic light-emitting diodes. Adv Mater, 2012, 24, 1487 doi: 10.1002/adma.201104316
[171]
Lu J X, Guan X, Li Y Q, et al. Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv Mater, 2021, 33, 2104414 doi: 10.1002/adma.202104414
[172]
Singh A, Hoang M T, Pham N D, et al. Band alignment with self-assembled 2D layer of carbon derived from waste to balance charge injection in perovskite crystals based rigid and flexible light emitting diodes. Adv Mater Technol, 2022, 7, 2100583 doi: 10.1002/admt.202100583
[173]
Zhao X F, Tan Z K. Large-area near-infrared perovskite light-emitting diodes. Nat Photonics, 2020, 14, 215 doi: 10.1038/s41566-019-0559-3
[174]
Dong Q, Lei L, Mendes J, et al. Operational stability of perovskite light emitting diodes. J Phys Mater, 2020, 3, 012002 doi: 10.1088/2515-7639/ab60c4
Fig. 1.  (Color online) (a) Diagram of 3D perovskite crystal structure[71]. (b) Schematics of crystal structure and multiple quantum wells structure of 2D/quasi-2D perovskite with different n value. Energy can rapidly and efficiently funnel from wide bandgap phase to narrow bandgap phase[72]. (c) Bandgap of CsPbX3 NCs, X = Cl, Cl/Br, Br, Br/I or I. Reproduced with permission from Ref. [65]. Copyright 2016, American Chemical Society. (d) Emission wavelength of CsPbX3 NCs. (e) Color gamut of combination of red, green and blue CsPbX3 NCs emitters (black triangle) on CIE chromatic coordinates compared to LCD (white dashed triangle) and NTSC TV (white solid triangle) standards. (d) and (e) are reproduced with permission from Ref. [14]. Copyright 2015, American Chemical Society. (f) Diagram of defect tolerance of conventional semiconductor and perovskites. Reproduced with permission from Ref. [73]. Copyright 2017, American Chemical Society. (g) Young’s modulus of MAPbX3 single crystals versus Pb−X bond strength, X = Cl, Br or I. Reproduced with permission from Ref. [74]. Copyright 2015, Royal Society of Chemistry. (h) Young’s modulus of APbX3 single crystals versus Pb−X bond distance, A = MA or FA and X = Cl, Br or I. Reproduced with permission from Ref. [75]. Copyright 2017, Wiley−VCH. Out-of-plane elastic modulus of 2D/quasi-2D single crystal perovskites with different (i) B−X bond, (j) n value, (k) length of alkyl chains and (l) species of organic spacers. (i) and (l) are reproduced with permission from Ref. [76]. Copyright 2020, American Chemical Society. (j) and (k) are reproduced with permission from Ref. [77]. Copyright 2018, American Chemical Society. (m) Stress-strain curve of single crystal and polycrystalline perovskites with different grains amounts under tensile loading. Extensively amorphous occurs in polycrystalline perovskites during yielding process. Reproduced with permission from Ref. [78]. Copyright 2016, American Chemical Society.

Fig. 2.  (Color online) (a) Diagram of FPeLEDs device structure. (b) Schematic of the synergetic effect of PEABr and PEG on modulating crystallization. (c) SEM images of perovskite films with composition of CsPbBr3 and CsPbBr3/PEG/PEABr. (b) and (c) are reproduced with permission from Ref. [86]. Copyright 2018, Wiley−VCH. (d) SEM images of perovskite QDs films without and with PVP. (e) PLQY of perovskite QDs films with PVP under different exciting intensities. (d) and (e) are reproduced with permission from Ref. [87]. Copyright 2020, Elsevier. (f) SEM images of perovskite films depositing on pristine and ETA-modified PEDOT:PSS films. Reproduced with permission from Ref. [46]. Copyright 2020, American Chemical Society. (g) Schematic of mechanism of passivation KI layer between HTL and EML. Reproduced with permission from Ref. [85]. Copyright 2022, American Chemical Society. (h) Schematic of encapsulation growth method. (i) Comparison of energy transfer between control and modified perovskite films grown by encapsulation growth method. (h) and (i) are reproduced with permission from Ref. [88]. Copyright 2021, Elsevier. (j) Schematics of the N2-asisted spin-coating method. Reproduced with permission from Ref. [89]. Copyright 2019, Wiley−VCH. (k) Schematics of the mechanism of flash light annealing. (l) Maximum CE of devices using thermal annealing and flash light annealing under different energy density. (k) and (l) are reproduced with permission from Ref. [31]. Copyright 2019, Elsevier.

Fig. 3.  (Color online) (a) SEM images of different perovskite films without and with 2.5 wt% PEO before and after stretching. (b) PL intensity of perovskite film with 2.5 wt% PEO after tensile tests. (a) and (b) are reproduced with permission from Ref. [44]. Copyright 2019, Elsevier. (c) PL intensity of EC-treated perovskite films as a function of bending cycles at a curvature radius of 3 mm. EL luminance of EC-treated perovskite films as a function of curvature radius. Reproduced with permission from Ref. [130]. Copyright 2022, WILEY-VCH. (d) Cohesion energy and PLQY of control, BAI, DDAI, PMAI, PEAI and FPMAI-modified perovskite films. (e) Normalized EQE of FPMAI-modified perovskite films as a function of bending cycles at a curvature radius of 1 and 2 mm. Normalized EQE of perovskite films modified by different additives as a function of curvature radius. (d) and (e) are reproduced with permission from Ref. [34]. Copyright 2018, WILEY-VCH. (f) Schematic of self-healing ability of perovskite films with MDI-PU. (g) SEM images of perovskite films with and without MDI-PU before and after annealing. (f) and (g) are reproduced with permission from Ref. [45]. Copyright 2022, American Chemical Society. (h) Schematic of self-healing ability of perovskites/fluoroelastomer composite films through strong dipole-dipole interaction between -CF3 groups. (i) Images of broken perovskites/fluoroelastomer composite films during self-healing process. (j) Normalized PL intensity of perovskite/fluoroelastomer composite films after different mechanical tests. (h)−(j) are reproduced with permission from Ref. [131]. Copyright 2022, WILEY-VCH. (k) Schematic of fabrication of perovskite/polymer composite nanofibers membrane through electrospinning. Reproduced with permission from Ref. [132]. Copyright 2019, American Chemical Society. (l) Images of perovskite/polymer composite nanofibers membrane emitting bright white light under 365 nm ultraviolet irradiation before and during stretching. Reproduced with permission from Ref. [133]. Copyright 2018, American Chemical Society.

Fig. 4.  (Color online) Comparison of advantages and disadvantages between various conductive materials. Reproduced with permission from Ref. [148]. Copyright 2020, WILEY-VCH.

Fig. 5.  (Color online) (a) Image of the fully printed FPeLED emitting bright green light at a bending state with a curvature radius of 5 mm. Reproduced with permission from Ref. [40]. Copyright 2015, American Chemical Society. (b) Normalized CE of FPeLEDs based on ITO and graphene anodes as a function of bending strain and cycles. Reproduced with permission from Ref. [43]. Copyright 2017, WILEY-VCH. (c) Normalized sheet resistance of PEDOT:PSS with and without PEO films as a function of tensile strain. Reproduced with permission from Ref. [44]. Copyright 2019, Elsevier. (d) Luminance variation of FPeLEDs based on PEDOT:PSS/DMSO/Zonyl electrodes as a function of operation time and bending cycles at a curvature radius of 1.0 or 2.5 mm. Reproduced with permission from Ref. [94]. Copyright 2019, American Chemical Society. (e) Diagram of FPeLEDs based on photopatterned PEDOT:PSS anodes. Reproduced with permission from Ref. [159]. Copyright 2023, American Chemical Society. (f) Schematic of mechanism of tunable work function AnoHIL[162]. (g) Resistance of PI/AgNWs as a function of stretch-release counts. Reproduced with permission from Ref. [106]. Copyright 2019, WILEY-VCH. (h) Sheet resistance of AgNWs/H2SO4-treated PEDOT:PSS composite electrodes (left) and luminance of corresponding FPeLEDs as a function of bending cycles at a curvature radius of 2.5 mm. (i) Images of FPeLEDs based on AgNWs/H2SO4-treated PEDOT:PSS composite anodes emitting bright light at different bending states. (h) and (i) are reproduced with permission from Ref. [39]. Copyright 2019, American Chemical Society. (j) Cross-sectional HRTEM image of Ag-Ni core-shell NWs composite electrodes. Reproduced with permission from Ref. [98]. Copyright 2020, American Chemical Society. (k) Resistance of different composite electrodes samples. Sample 1, 2 and 3 stand for AgNWs/AgNPs, AgNWs/AgNPs/PEDOT:PSS and AgNWs/AgNPs/PEDOT:PSS/MXenes composite electrodes, respectively. (l) Normalized resistance (left) and EQE (right) as a function of bending cycles at a curvature radius of 1 cm. (k) and (l) are reproduced with permission from Ref. [97]. Copyright 2022, American Chemical Society.

Fig. 6.  (Color online) (a) Energy band structure of bi-HTLs FPeLEDs. Reproduced with permission from Ref. [91]. Copyright 2017, Royal Society of Chemistry. (b) Energy band structure of FPeLEDs using Buf-HTL. Reproduced with permission from Ref. [43]. Copyright 2017, WILEY-VCH. (c) Energy band structure of FPeLEDs using PEDOT:PSS HTL modified by different contents of Zonyl. Reproduced with permission from Ref. [39]. Copyright 2019, American Chemical Society. (d) Energy band structure of FPeLEDs using pristine, IPA and PSS-Na-modified PEDOT:PSS HTL. Reproduced with permission from Ref. [99]. Copyright 2020, Elsevier. (e) Schematic of perovskite films with dendritic structure. Reproduced with permission from Ref. [171]. Copyright 2021, WILEY-VCH. (f) Energy band structure of FPeLEDs adopting perovskite/CDs composite films. Reproduced with permission from Ref. [172]. Copyright 2021, WILEY-VCH.

Fig. 7.  (Color online) (a) Schematic of fabrication process of FPeLEDs with patterned electrodes. Reproduced with permission from Ref. [159]. Copyright 2023, American Chemical Society. (b) Schematic of pixelated FPeLEDs arrays prepared by double-layer transfer printing technique. (c) EL images of ultrathin skin-attachable displays attached to human skin, leaf and edge of blade. (d) EL images of ultrathin skin-attachable displays under 20% compression, twists and water droplet[107]. (e) Schematic of writable and wipeable FPeLEDs[109]. (f) EL images of writable and wipeable FPeLEDs before and after wiping[109]. (g) Schematic of mechanism of flexible perovskite LETDs. Reproduced with permission from Ref. [90]. Copyright 2017, American Chemical Society. (h) Schematic of mechanism of ECG monitor using multi-color FPeLEDs. Reproduced with permission from Ref. [122]. Copyright 2021, American Chemical Society.

Table 1.   Performance of recently reported FPeLEDs.

Device structure EL
(nm)
Luminance
(cd∙m−2)
EQEmax
(%)
CEmax
(cd∙A−1)
Bending radius
(mm)
Strain
(%)
Ref.
PDMS/CNT/PEO + MAPbBr3/AgNWs 360 0.14 0.6 5 [40]
PET/ITO/Buf-HTL/MAPbBr3/TPBi/Al 543 24 0.02 10.5 [29]
PET/ITO/PEDOT:PSS/MAPbBr3:PEO/AgNWs/PU 532 1030 6 [90]
Graphene/Buf-HTL/MAPbBr3/TPBi/LiF/Al 542 13 000 16.1 1.9 5.3 [43]
PDMS/PEDOT:PSS + PEO/ MAPbBr3 + PEO/EInGa 15 960 0.62 2.7 40 [37]
PET/AgNWs/PEDOT:PSS/PVK:TAPC/CH3NH3PbBr3 QDs/TmPyPB/CsF/Al 7000 2.7 10.5 2.5 [91]
PET/ITO/PEDOT:PSS/(PEA)2(FA)Pb2I7/Bphen/LiF/Al 720 212 0.148 0.44 [92]
PET/PEDOT:PSS/CsPbBr3/TPBi/LiF/AgNWs 10.1 31 [86]
PI/AgNWs/PEDOT:PSS/Poly-TPD/perovskite/TPBi/LiF/Al 13 2 [34]
PEN/ITO/LiF/CsPbBr3 + Cs4PbBr6/TPBi/NiOx/Al 520 2012 1.37 4.16 1 [93]
NOA63/composite electrode/Zonyl-treated PEDOT:PSS/
quasi-2D perovskite/TPBi/LiF/Al
532 1060 3.98 17.9 2.5 [39]
PET/PDZ/MAPbBr3/SPW-111/PFN/AgNWs 550 1260 0.17 0.79 2.5 11.1 [94]
PU/PEDOT:PSS-PEO/PVP/CsPbBr3-PEO-PVP/PU-AgNWs 524 380 0.27 5 30 [36]
PET/ITO/PEDOT:PSS:PFI/CsPbBr3/TPBi/LiF/Al 534 17 795 6.18 28.17 4 [95]
Photopolymer/Ag/ZnO/PEI/CsPbI3/TCTA/MoO3/Au 692 827 8.2 0.8 [38]
PET/ITO/HAT-CN/TAPC/CsPbBr3/PO-T2T/Liq/Al 520 17 550 10.3 10 [96]
Composite electrode/PEDOT:PSS + KCA/PEA2Csn-1PbnBr3n+1/
TPBi/LiF/Al
50 000 16.5 10 [97]
PET/Ag–Ni core–shell NW/Buf-HIL/FAPbBr3/TPBI/LiF/Al 1378 9.67 44.01 1 [98]
PET/ITO/PEDOT:PSS + PSS-Na/PEA2(FAPbBr3)2PbBr4 /TPBi/LiF/Al 529 3936 5.91 25.13 [99]
PET/PDMS/PEDOT:PSS/PEO/perovskite/PEO/PEI/AgNWs 535 10 227 0.804 2.01 2.5 [100]
PET/ITO/PEDOT:PSS/perovskite + PEG/ZnO/SMF 533 98 000 4.6 22.3 [101]
AgNWs/PET/ZnO/PEDOT:PSS/CsPbBr3/TPBi/LiF/Al 514 10 000 24.5 75 3 [46]
PEN/ITO/TB(MA)/perovskite/TPBi/LiF/Al 488 2967 8.3 14.7 [35]
PET/ITO/NiOx/CsPbBr3/TPBi/LiF/Al 516 7.1 [102]
Al/Al2O3/perovskite QWs/NiOx/IZO 520 31 667 7.3 22 8 [103]
Kapton/ITO/PEDOT:PSS/Poly-TPD/FAPbBr3 + PMMA/
3TPYMB/LiF/Al
529 0.85 3.47 10 [104]
NOA63/SU-8/MoO3/Au/PEDOT:PSS/MaPbBr3/TPBi/LiF/Al 550 11 270 3.3 5 [105]
PEN/PEDOT:PSS/MAPbBr3/BCP/LiF/Al 530 2434 1.05 [31]
VHBf/PI/AgNWs/PEDOT:PSS/TAPC:PVK/perovskite QDs/TPBi/CsF/Al 532 3187 9.2 50 [106]
PET/PEDOT:PSS/quasi-2D perovskite/TPBi/LiF/Al 493 8300 12.8 47.1 1 [88]
Encapsulation/Cu/ITO/PEDOT:PSS/Poly-TPD/CsPbBr3/
TPBi/LiF/Al/encapsulation
516 6.2 0.25 [107]
PET/ITO/PEDOT:PSS/MAPbBr3/TPBi/AgNWs 550 657 [108]
PET/ITO/PEDOT:PSS/perovskite/PEDOT:PSS/LiF/Al 520 10 000 1.35 [109]
DownLoad: CSV
[1]
Jang J H, Li S, Kim D H, et al. Materials, device structures, and applications of flexible perovskite light-emitting diodes. Adv Elect Materials, 2023, 9, 2201271 doi: 10.1002/aelm.202201271
[2]
Wang J T, Wang S Z, Zhou Y H, et al. Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Sci China Mater, 2023, 66, 1 doi: 10.1007/s40843-022-2197-4
[3]
Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992, 357, 477 doi: 10.1038/357477a0
[4]
Kim S, Kwon H J, Lee S, et al. Low-power flexible organic light-emitting diode display device. Adv Mater, 2011, 23, 3511 doi: 10.1002/adma.201101066
[5]
Gu G, Burrows P E, Venkatesh S, et al. Vacuum-deposited, nonpolymeric flexible organic light-emitting devices. Opt Lett, 1997, 22, 172 doi: 10.1364/OL.22.000172
[6]
Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics. Adv Mater, 2014, 26, 4533 doi: 10.1002/adma.201401052
[7]
Xu R P, Li Y Q, Tang J X. Recent advances in flexible organic light-emitting diodes. J Mater Chem C, 2016, 4, 9116 doi: 10.1039/C6TC03230C
[8]
Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6, 105 doi: 10.1038/nphoton.2011.318
[9]
Xu J, Tan Z N, Zhang C F, et al. Colloidal nanocrystal-based light-emitting diodes fabricated on plastic–towards flexible quantum dot optoelectronics. J Appl Phys , 2009 , 105, 034312
[10]
Lin Q H, Zhu Y B, Wang Y, et al. Flexible quantum dot light-emitting device for emerging multifunctional and smart applications. Adv Mater, 2023, 35, 2210385 doi: 10.1002/adma.202210385
[11]
Akkerman Q A, D’Innocenzo V, Accornero S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc, 2015, 137, 10276 doi: 10.1021/jacs.5b05602
[12]
Liu F, Zhang Y H, Ding C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano, 2017, 11, 10373 doi: 10.1021/acsnano.7b05442
[13]
Nedelcu G, Protesescu L, Yakunin S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2015, 15, 5635 doi: 10.1021/acs.nanolett.5b02404
[14]
Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15, 3692 doi: 10.1021/nl5048779
[15]
Sutherland B R, Sargent E H. perovskite photonic sources. Nat Photonics, 2016, 10, 295 doi: 10.1038/nphoton.2016.62
[16]
Yuan M J, Quan L N, Comin R, et al. perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11, 872 doi: 10.1038/nnano.2016.110
[17]
Ren B T, Yuen G, Deng S B, et al. Multifunctional optoelectronic device based on an asymmetric active layer structure. Adv Funct Materials, 2019, 29, 1807894 doi: 10.1002/adfm.201807894
[18]
Zhang J F, Ren B T, Deng S B, et al. Voltage-dependent multicolor electroluminescent device based on halide perovskite and chalcogenide quantum-dots emitters. Adv Funct Materials, 2020, 30, 1907074 doi: 10.1002/adfm.201907074
[19]
Ye F H, Yan H B, Liu S Y, et al. Interface engineering with quaternary ammonium-based ionic liquids toward efficient blue perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2022, 14, 50393 doi: 10.1021/acsami.2c15144
[20]
Zhang J F, Zhong W, Liu Y, et al. A high-performance photodetector based on 1D perovskite radial heterostructure. Adv Opt Mater, 2021, 9, 2101504 doi: 10.1002/adom.202101504
[21]
Liu J, Wang M, Lin J H, et al. Mitigating deep-level defects through a self-healing process for highly efficient wide-bandgap inorganic CsPbI3− xBr x perovskite photovoltaics. J Mater Chem A, 2022, 10, 17237 doi: 10.1039/D2TA02022J
[22]
Li G J, Deng S B, Zhang M, et al. Achieving high open-circuit voltage for p-i-n perovskite solar cells via anode contact engineering. Sol RRL, 2018, 2, 1800151 doi: 10.1002/solr.201800151
[23]
Liu B X, Li J Z, Wang G, et al. Lattice strain modulation toward efficient blue perovskite light-emitting diodes. Sci Adv, 2022, 8, eabq0138 doi: 10.1126/sciadv.abq0138
[24]
Baikie T, Fang Y N, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1, 5628 doi: 10.1039/c3ta10518k
[25]
Bao C X, Yang J, Bai S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv Mater, 2018, 30, 1803422 doi: 10.1002/adma.201803422
[26]
Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511 doi: 10.1038/s41586-019-1036-3
[27]
Wu D J, Xu Y C, Zhou H, et al. Ultrasensitive, flexible perovskite nanowire photodetectors with long-term stability exceeding 5000 H. InfoMat, 2022, 4, e12320 doi: 10.1002/inf2.12320
[28]
Zhang Y, Li S Y, Li Z L, et al. High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett, 2021, 21, 382 doi: 10.1021/acs.nanolett.0c03759
[29]
Kim Y H, Cho H, Heo J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater, 2015, 27, 1248 doi: 10.1002/adma.201403751
[30]
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687 doi: 10.1038/nnano.2014.149
[31]
Jung D H, Park J H, Lee H E, et al. Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy, 2019, 61, 236 doi: 10.1016/j.nanoen.2019.04.061
[32]
Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222 doi: 10.1126/science.aad1818
[33]
Kumar S, Jagielski J, Kallikounis N, et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett, 2017, 17, 5277 doi: 10.1021/acs.nanolett.7b01544
[34]
Zhao L F, Rolston N, Lee K M, et al. Influence of bulky organo-ammonium halide additive choice on the flexibility and efficiency of perovskite light-emitting devices. Adv Funct Materials, 2018, 28, 1802060 doi: 10.1002/adfm.201802060
[35]
Liu Y L, Zhang L Z, Chen S, et al. Water-soluble conjugated polyelectrolyte hole transporting layer for efficient sky-blue perovskite light-emitting diodes. Small, 2021, 17, 2101477 doi: 10.1002/smll.202101477
[36]
Jiang D H, Liao Y C, Cho C J, et al. Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes. ACS Appl Mater Interfaces, 2020, 12, 14408 doi: 10.1021/acsami.9b23291
[37]
Bade S G R, Shan X, Hoang P T, et al. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv Mater, 2017, 29, 1607053 doi: 10.1002/adma.201607053
[38]
Lu M, Wu H, Zhang X Y, et al. Highly flexible CsPbI3 perovskite nanocrystal light-emitting diodes. ChemNanoMat, 2019, 5, 313 doi: 10.1002/cnma.201800359
[39]
Lee S Y, Nam Y S, Yu J C, et al. Highly efficient flexible perovskite light-emitting diodes using the modified PEDOT: PSS hole transport layer and polymer-silver nanowire composite electrode. ACS Appl Mater Interfaces, 2019, 11, 39274 doi: 10.1021/acsami.9b10771
[40]
Bade S G R, Li J Q, Shan X, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano, 2016, 10, 1795 doi: 10.1021/acsnano.5b07506
[41]
Miroshnichenko A S, Deriabin K V, Baeva M, et al. Flexible perovskite CsPbBr3 light emitting devices integrated with GaP nanowire arrays in highly transparent and durable functionalized silicones. J Phys Chem Lett, 2021, 12, 9672 doi: 10.1021/acs.jpclett.1c02611
[42]
Teo M Y, Kim N, Kee S, et al. Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl Mater Interfaces, 2017, 9, 819 doi: 10.1021/acsami.6b11988
[43]
Seo H K, Kim H, Lee J, et al. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Adv Mater, 2017, 29, 1605587 doi: 10.1002/adma.201605587
[44]
Kim H M, Kim Y C, An H J, et al. Highly stretchable and contact-responsive light-emitting diodes based on MAPbBr3–PEO composite film. J Alloys Compd, 2020, 819, 153360 doi: 10.1016/j.jallcom.2019.153360
[45]
Qian X Y, Shen Y, Zhang L J, et al. Bio-inspired pangolin design for self-healable flexible perovskite light-emitting diodes. ACS Nano, 2022, 16, 17973 doi: 10.1021/acsnano.2c06118
[46]
Shen Y, Li M N, Li Y Q, et al. Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano, 2020, 14, 6107 doi: 10.1021/acsnano.0c01908
[47]
Goldschmidt V M. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14, 477 doi: 10.1007/BF01507527
[48]
Li C, Lu X G, Ding W Z, et al. Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr Sect B, 2008, 64, 702 doi: 10.1107/S0108768108032734
[49]
Uribe J I, Ramirez D, Osorio-Guillén J M, et al. CH3NH3CaI3 perovskite: Synthesis, characterization, and first-principles studies. J Phys Chem C, 2016, 120, 16393 doi: 10.1021/acs.jpcc.6b04207
[50]
Li Z, Yang M J, Park J S, et al. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater, 2016, 28, 284 doi: 10.1021/acs.chemmater.5b04107
[51]
Saparov B, Mitzi D B. Organic-inorganic perovskites: Structural versatility for functional materials design. Chem Rev, 2016, 116, 4558 doi: 10.1021/acs.chemrev.5b00715
[52]
Zhang L, Sun C J, He T W, et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci Appl, 2021, 10, 61 doi: 10.1038/s41377-021-00501-0
[53]
Dey A, Ye J Z, De A, et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 2021, 15, 10775 doi: 10.1021/acsnano.0c08903
[54]
Ren X X, Zhang X, Xie H X, et al. Perovskite quantum dots for emerging displays: Recent progress and perspectives. Nanomaterials, 2022, 12, 2243 doi: 10.3390/nano12132243
[55]
Wang C H, Cai J H, Ye Y Y, et al. Full-visible-spectrum perovskite quantum dots by anion exchange resin assisted synthesis. Nanophotonics, 2022, 11, 1355 doi: 10.1515/nanoph-2021-0768
[56]
Yang D X, Zhao B D, Yang T, et al. Toward stable and efficient perovskite light-emitting diodes. Adv Funct Materials, 2022, 32, 2109495 doi: 10.1002/adfm.202109495
[57]
Cai J H, Wang C H, Hu X P, et al. Water-driven photoluminescence reversibility in CsPbBr3/PDMS-PUa composite. Nano Res, 2022, 15, 6466 doi: 10.1007/s12274-022-4202-0
[58]
Chen E G, Lin J Y, Yang T, et al. Asymmetric quantum-dot pixelation for color-converted white balance. ACS Photonics, 2021, 8, 2158 doi: 10.1021/acsphotonics.1c00596
[59]
Duong T, Wu Y L, Shen H P, et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater, 2017, 7, 1700228 doi: 10.1002/aenm.201700228
[60]
Swarnkar A, Chulliyil R, Ravi V K, et al. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew Chem Int Ed Engl, 2015, 54, 15424 doi: 10.1002/anie.201508276
[61]
Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358, 745 doi: 10.1126/science.aam7093
[62]
Filip M R, Eperon G E, Snaith H J, et al. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat Commun, 2014, 5, 5757 doi: 10.1038/ncomms6757
[63]
Linaburg M R, McClure E T, Majher J D, et al. Cs1– xRb xPbCl3 and Cs1– xRb xPbBr3 solid solutions: Understanding octahedral tilting in lead halide perovskites. Chem Mater, 2017, 29, 3507 doi: 10.1021/acs.chemmater.6b05372
[64]
Chiarella F, Zappettini A, Licci F, et al. Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X=Cl, Br). Phys Rev B, 2008, 77, 045129 doi: 10.1103/PhysRevB.77.045129
[65]
Ravi V K, Markad G B, Nag A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett, 2016, 1, 665 doi: 10.1021/acsenergylett.6b00337
[66]
Ren X, Hu H L, Chen Z Y, et al. Highly stable perovskite nanocrystals with pure red emission for displays. ACS Appl Nano Mater, 2023, 6, 6092 doi: 10.1021/acsanm.3c00363
[67]
Dumont A, Ho K, Kung H T, et al. Extraordinary mass transport and self-assembly: a pathway to fabricate luminescent CsPbBr3 and light-emitting diodes by vapor-phase deposition. Adv Materials Inter, 2020, 7, 2000506 doi: 10.1002/admi.202000506
[68]
Jiang N Z, Wang Z B, Zheng Y H, et al. 2D/3D Heterojunction perovskite light-emitting diodes with tunable ultrapure blue emissions. Nano Energy, 2022, 97, 107181 doi: 10.1016/j.nanoen.2022.107181
[69]
Byun J, Cho H, Wolf C, et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv Mater, 2016, 28, 7515 doi: 10.1002/adma.201601369
[70]
Tyagi P, Arveson S M, Tisdale W A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J Phys Chem Lett, 2015, 6, 1911 doi: 10.1021/acs.jpclett.5b00664
[71]
Chen Z M, Li Z C, Hopper T R, et al. Materials, photophysics and device engineering of perovskite light-emitting diodes. Rep Prog Phys, 2021, 84, 046401 doi: 10.1088/1361-6633/abefba
[72]
Li Z C, Chen Z M, Yang Y C, et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5. Nat Commun, 2019, 10, 1027 doi: 10.1038/s41467-019-09011-5
[73]
Brandt R E, Poindexter J R, Gorai P, et al. Searching for “defect-tolerant” photovoltaic materials: Combined theoretical and experimental screening. Chem Mater, 2017, 29, 4667 doi: 10.1021/acs.chemmater.6b05496
[74]
Sun S J, Fang Y N, Kieslich G, et al. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J Mater Chem A, 2015, 3, 18450 doi: 10.1039/C5TA03331D
[75]
Sun S J, Isikgor F H, Deng Z Y, et al. Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. ChemSusChem, 2017, 10, 3740 doi: 10.1002/cssc.201700991
[76]
Tu Q, Spanopoulos I, Vasileiadou E S, et al. Exploring the factors affecting the mechanical properties of 2D hybrid organic-inorganic perovskites. ACS Appl Mater Interfaces, 2020, 12, 20440 doi: 10.1021/acsami.0c02313
[77]
Tu Q, Spanopoulos I, Hao S Q, et al. Out-of-plane mechanical properties of 2D hybrid organic-inorganic perovskites by nanoindentation. ACS Appl Mater Interfaces, 2018, 10, 22167 doi: 10.1021/acsami.8b05138
[78]
Yu J G, Wang M C, Lin S C. Probing the soft and nanoductile mechanical nature of single and polycrystalline organic-inorganic hybrid perovskites for flexible functional devices. ACS Nano, 2016, 10, 11044 doi: 10.1021/acsnano.6b05913
[79]
Feng J. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater, 2014, 2, 081801 doi: 10.1063/1.4885256
[80]
Rakita Y, Cohen S R, Kedem N K, et al. Mechanical properties of APbX3 (a = Cs or CH3NH3; X= I or Br) perovskite single crystals. MRS Commun, 2015, 5, 623 doi: 10.1557/mrc.2015.69
[81]
Reyes-Martinez M A, Abdelhady A L, Saidaminov M I, et al. Time-dependent mechanical response of APbX3 (A = Cs, CH3 NH3; X = I, Br) single crystals. Adv Mater, 2017, 29, 1606556 doi: 10.1002/adma.201606556
[82]
Li J Y, Ge C Y, Zhao Z F, et al. Mechanical properties of single crystal organic–inorganic hybrid perovskite MAPbX3 (MA = CH3NH3, X = Cl, Br, I). Coatings, 2023, 13, 854 doi: 10.3390/coatings13050854
[83]
Ma L, Li W P, Yang K X, et al. A- or X-site mixture on mechanical properties of APbX3 perovskite single crystals. APL Mater, 2021, 9, 041112 doi: 10.1063/5.0015569
[84]
Kim D, Vasileiadou E S, Spanopoulos I, et al. In-plane mechanical properties of two-dimensional hybrid organic-inorganic perovskite nanosheets: Structure-property relationships. ACS Appl Mater Interfaces, 2021, 13, 31642 doi: 10.1021/acsami.1c06140
[85]
Chen C, Xuan T T, Yang Y, et al. Passivation layer of potassium iodide yielding high efficiency and stable deep red perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2022, 14, 16404 doi: 10.1021/acsami.2c00621
[86]
Cheng L P, Huang J S, Shen Y, et al. Efficient CsPbBr3 perovskite light-emitting diodes enabled by synergetic morphology control. Adv Opt Mater, 2019, 7, 1801534 doi: 10.1002/adom.201801534
[87]
Ashjari T, Arabpour Roghabadi F, Ahmadi V. Facile synthesis of durable perovskite quantum dots film with near unity photoluminescence quantum yield for efficient perovskite light emitting diode. Appl Surf Sci, 2020, 510, 145513 doi: 10.1016/j.apsusc.2020.145513
[88]
Liu Y L, Yu Z K, Chen S, et al. Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy, 2021, 80, 105511 doi: 10.1016/j.nanoen.2020.105511
[89]
Kim T, Kim J H, Park J W. All-solution-processed organic–inorganic hybrid perovskite light-emitting diodes under ambient air. Phys Status Solidi A, 2019, 216, 1900642 doi: 10.1002/pssa.201900642
[90]
Chou S Y, Ma R J, Li Y F, et al. Transparent perovskite light-emitting touch-responsive device. ACS Nano, 2017, 11, 11368 doi: 10.1021/acsnano.7b05935
[91]
Zhao F C, Chen D, Chang S, et al. Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire–polymer composite electrode. J Mater Chem C, 2017, 5, 531 doi: 10.1039/C6TC04934F
[92]
Rui H S, Li L, Zhang N, et al. Tunable deep-red electroluminescence from flexible quasi-2D perovskites light-emitting diodes. IEEE Electron Device Lett, 2019, 40, 59 doi: 10.1109/LED.2018.2883510
[93]
Li J H, Du P P, Li S R, et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv Funct Materials, 2019, 29, 1903607 doi: 10.1002/adfm.201903607
[94]
Lee S Y, Kim S H, Nam Y S, et al. Flexibility of semitransparent perovskite light-emitting diodes investigated by tensile properties of the perovskite layer. Nano Lett, 2019, 19, 971 doi: 10.1021/acs.nanolett.8b04200
[95]
Park J K, Kim S Y, Kim J H, et al. Spray-coated nanocrystalline CsPbBr3 perovskite thin-films for large area and efficient rigid and flexible light emitting diodes. J Alloys Compd, 2022, 918, 165560 doi: 10.1016/j.jallcom.2022.165560
[96]
Chen C, Han T H, Tan S, et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett, 2020, 20, 4673 doi: 10.1021/acs.nanolett.0c01550
[97]
Cao F, You M Q, Kong L M, et al. Mixed-dimensional MXene-based composite electrodes enable mechanically stable and efficient flexible perovskite light-emitting diodes. Nano Lett, 2022, 22, 4246 doi: 10.1021/acs.nanolett.2c01517
[98]
Kang H, Choi S R, Kim Y H, et al. Electroplated silver-nickel core-shell nanowire network electrodes for highly efficient perovskite nanoparticle light-emitting diodes. ACS Appl Mater Interfaces, 2020, 12, 39479 doi: 10.1021/acsami.0c10386
[99]
Kim H, Ra H N, Kim J S, et al. Improved performance of flexible perovskite light-emitting diodes with modified PEDOT: PSS hole transport layer. J Ind Eng Chem, 2020, 90, 117 doi: 10.1016/j.jiec.2020.07.003
[100]
Zhao J Y, Lo L W, Wan H C, et al. High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates. Adv Mater, 2021, 33, 2102095 doi: 10.1002/adma.202102095
[101]
Payandeh M, Ahmadi V, Arabpour Roghabadi F, et al. High-brightness perovskite light-emitting diodes using a printable silver microflake contact. ACS Appl Mater Interfaces, 2020, 12, 11428 doi: 10.1021/acsami.9b18527
[102]
Du P P, Li J H, Wang L, et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat Commun, 2021, 12, 4751 doi: 10.1038/s41467-021-25093-6
[103]
Zhang D Q, Zhang Q P, Ren B T, et al. Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat Photonics, 2022, 16, 284 doi: 10.1038/s41566-022-00978-0
[104]
Cantarella G, Kumar S, Jagielski J, et al. Flexible green perovskite light emitting diodes. 2018 International Flexible Electronics Technology Conference (IFETC), 2018, 1 doi: 10.1109/IFETC.2018.8583906
[105]
Liu Y S, Guo S, Yi F S, et al. Highly flexible organic-inorganic hybrid perovskite light-emitting devices based on an ultrathin Au electrode. Opt Lett, 2018, 43, 5524 doi: 10.1364/OL.43.005524
[106]
Li Y F, Chou S Y, Huang P, et al. Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv Mater, 2019, 31, 1807516 doi: 10.1002/adma.201807516
[107]
Kwon J I, Park G, Lee G H, et al. Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Sci Adv, 2022, 8, eadd0697 doi: 10.1126/sciadv.add0697
[108]
Kim T, Kim J H, Park J W. Semi-transparent organic-inorganic hybrid perovskite light-emitting diodes fabricated under high relative humidity. Solid State Electron, 2020, 165, 107749 doi: 10.1016/j.sse.2019.107749
[109]
Bi S, Zhao W, Sun Y Q, et al. Dynamic photonic perovskite light-emitting diodes with post-treatment-enhanced crystallization as writable and wipeable inscribers. Nanoscale Adv, 2021, 3, 6659 doi: 10.1039/D1NA00465D
[110]
Long J, Huang Z Q, Zhang J Q, et al. Flexible perovskite solar cells: Device design and perspective. Flex Print Electron, 2020, 5, 013002 doi: 10.1088/2058-8585/ab556e
[111]
Qin F S, Lu M, Sun S Q, et al. Paper substrates based flexible red-emitting perovskite nanocrystal light-emitting diodes. IEEE Electron Device Lett, 2023, 44, 1056 doi: 10.1109/LED.2023.3277852
[112]
Ahmad R, Surendran A, Harikesh P C, et al. Perturbation-induced seeding and crystallization of hybrid perovskites over surface-modified substrates for optoelectronic devices. ACS Appl Mater Interfaces, 2019, 11, 27727 doi: 10.1021/acsami.9b05965
[113]
Dong H, Ran C X, Gao W Y, et al. Crystallization dynamics of Sn-based perovskite thin films: Toward efficient and stable photovoltaic devices. Adv Energy Mater, 2022, 12, 2102213 doi: 10.1002/aenm.202102213
[114]
Jeon T, Kim S J, Yoon J, et al. Hybrid perovskites: Effective crystal growth for optoelectronic applications. Adv Energy Mater, 2017, 7, 1602596 doi: 10.1002/aenm.201602596
[115]
Kovaricek P, Nadazdy P, Pluharova E, et al. Crystallization of 2D hybrid organic–inorganic perovskites templated by conductive substrates. Adv Funct Materials, 2021, 31, 2009007 doi: 10.1002/adfm.202009007
[116]
Shen K C, Wang J K, Shen Y, et al. Unraveling the role of crystallization dynamics on luminescence characteristics of perovskite light-emitting diodes. Laser & Photonics Rev, 2021, 15, 2100023 doi: 10.1002/lpor.202100023
[117]
Thokala S, Kumar Gupta R, Garg A, et al. The effect of alkylamines on the morphology and optical properties of organic perovskites. Sol Energy, 2021, 226, 483 doi: 10.1016/j.solener.2021.08.074
[118]
Zhu H L, Choy W C H. Crystallization, properties, and challenges of low-bandgap Sn–Pb binary perovskites. Sol RRL, 2018, 2, 1800146 doi: 10.1002/solr.201800146
[119]
Guo Z Y, Zhang Y, Wang B Z, et al. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv Mater, 2021, 33, 2102246 doi: 10.1002/adma.202102246
[120]
Chang C Y, Chu C Y, Huang Y C, et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl Mater Interfaces, 2015, 7, 4955 doi: 10.1021/acsami.5b00052
[121]
Jiang L, Luo X, Luo Z M, et al. Interface and bulk controlled perovskite nanocrystal growth for high brightness light-emitting diodes. Chin Opt Lett, 2021, 19, 030001 doi: 10.3788/COL202119.030001
[122]
Luo X, Zheng T, Luo Z M, et al. Visual electrocardiogram synchronization monitor using perovskite-based multicolor light-emitting diodes. Acs Photonics, 2021, 8, 3337 doi: 10.1021/acsphotonics.1c01296
[123]
Jeong B, Han H, Choi Y J, et al. All-Inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv Funct Materials, 2018, 28, 1706401 doi: 10.1002/adfm.201706401
[124]
Li X, Cao B L, Wang M H, et al. perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Phys Sin, 2021, 70, 048502 doi: 10.7498/aps.70.20201379
[125]
Su H, Chen J M, Qin J, et al. Enhancing the electroluminescence of perovskite light-emitting diodes by optimizing the morphology of perovskite film to suppress leakage current. Appl Opt, 2020, 59, 7975 doi: 10.1364/AO.400296
[126]
Tian Y, Zhou C K, Worku M, et al. Highly efficient spectrally stable red perovskite light-emitting diodes. Adv Mater, 2018, 30, 1707093 doi: 10.1002/adma.201707093
[127]
Li J Q, Bade S G R, Shan X, et al. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater, 2015, 27, 5196 doi: 10.1002/adma.201502490
[128]
Li J Q, Shan X, Bade S G R, et al. Single-layer halide perovskite light-emitting diodes with sub-band gap turn-on voltage and high brightness. J Phys Chem Lett, 2016, 7, 4059 doi: 10.1021/acs.jpclett.6b01942
[129]
Zuo L J, Guo H X, DeQuilettes D W, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci Adv, 2017, 3, e1700106 doi: 10.1126/sciadv.1700106
[130]
Sun S Q, Jia P, Lu M, et al. Enhanced flexibility and stability of emissive layer enable high-performance flexible light-emitting diodes by cross-linking of biomass material. Adv Funct Materials, 2022, 32, 2204286 doi: 10.1002/adfm.202204286
[131]
Luo C Z, Xia W L, Ren Z W, et al. Highly luminescent and ultra-stable perovskite films with excellent self-healing ability for flexible lighting and wide color gamut displays. Adv Funct Materials, 2022, 32, 2113010 doi: 10.1002/adfm.202113010
[132]
Ercan E, Tsai P C, Chen J Y, et al. Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications. ACS Appl Mater Interfaces, 2019, 11, 23605 doi: 10.1021/acsami.9b05527
[133]
Lin C C, Jiang D H, Kuo C C, et al. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl Mater Interfaces, 2018, 10, 2210 doi: 10.1021/acsami.7b15989
[134]
Adeniji S, Oyewole O, Koech R, et al. Failure mechanisms of stretchable perovskite light-emitting devices under monotonic and cyclic deformations. Macro Materials & Eng, 2021, 306, 2100435 doi: 10.1002/mame.202100435
[135]
Rolston N, Printz A D, Tracy J M, et al. Effect of cation composition on the mechanical stability of perovskite solar cells. Adv Energy Mater, 2018, 8, 1702116 doi: 10.1002/aenm.201702116
[136]
Meng X C, Xing Z, Hu X T, et al. Stretchable perovskite solar cells with recoverable performance. Angew Chem Int Ed Engl, 2020, 59, 16602 doi: 10.1002/anie.202003813
[137]
Wang M, Sun H X, Cao F R, et al. Moisture-triggered self-healing flexible perovskite photodetectors with excellent mechanical stability. Adv Mater, 2021, 33, 2100625 doi: 10.1002/adma.202100625
[138]
Ge C D, Liu X T, Yang Z Q, et al. Thermal dynamic self-healing supramolecular dopant towards efficient and stable flexible perovskite solar cells. Angew Chem Int Ed Engl, 2022, 61, e202116602 doi: 10.1002/anie.202116602
[139]
Zang J Q, Cai L, Zou Y T, et al. Self-healing perovskite films enabled by fluorinated cross-linked network targeting flexible light-emitting diode. Adv Opt Mater, 2022, 10, 2200566 doi: 10.1002/adom.202200566
[140]
Bi H, Liu F Y, Wang M, et al. Construction of ultra-stable perovskite–polymer fibre membranes by electrospinning technology and its application to light-emitting diodes. Polym Int, 2021, 70, 90 doi: 10.1002/pi.6094
[141]
Hu X B, Xu Y Q, Wang J C, et al. In situ fabrication of superfine perovskite composite nanofibers with ultrahigh stability by one-step electrospinning toward white light-emitting diode. Adv Fiber Mater, 2023, 5, 183 doi: 10.1007/s42765-022-00207-x
[142]
Lê K, von Toperczer F, Ünlü F, et al. Electrospun electroluminescent CsPbBr3 fibers as flexible perovskite networks for light-emitting application. Adv Eng Mater, 2023, 25, 2201651 doi: 10.1002/adem.202201651
[143]
Wang Q, Li K, Yang H H, et al. Cesium lead iodide electrospun fibrous membranes for white light-emitting diodes. Nanotechnology, 2022, 33, 385603 doi: 10.1088/1361-6528/ac77a0
[144]
Du J H, Pei S F, Ma L P, et al. 25th anniversary article: Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater, 2014, 26, 1958 doi: 10.1002/adma.201304135
[145]
Hecht D S, Hu L B, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 2011, 23, 1482 doi: 10.1002/adma.201003188
[146]
Hou S P, Liu J, Shi F P, et al. Recent advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes. Front Chem, 2022, 10, 864186 doi: 10.3389/fchem.2022.864186
[147]
Lim K G, Han T H, Lee T W. Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy Environ Sci, 2021, 14, 2009 doi: 10.1039/D0EE02996C
[148]
Liu L H, Cao K, Chen S F, et al. Toward see-through optoelectronics: Transparent light-emitting diodes and solar cells. Adv Opt Mater, 2020, 8, 2001122 doi: 10.1002/adom.202001122
[149]
Jia P, Lu M, Sun S Q, et al. Recent advances in flexible perovskite light-emitting diodes. Adv Materials Inter, 2021, 8, 2100441 doi: 10.1002/admi.202100441
[150]
Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382, 54 doi: 10.1038/382054a0
[151]
Pang S P, Hernandez Y, Feng X L, et al. Graphene as transparent electrode material for organic electronics. Adv Mater, 2011, 23, 2779 doi: 10.1002/adma.201100304
[152]
Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457, 706 doi: 10.1038/nature07719
[153]
Gomez De Arco L, Zhang Y, Schlenker C W, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4, 2865 doi: 10.1021/nn901587x
[154]
Bae S K, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5, 574 doi: 10.1038/nnano.2010.132
[155]
Kim Y H, Sachse C, Machala M L, et al. Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv Funct Materials, 2011, 21, 1076 doi: 10.1002/adfm.201002290
[156]
Kim N, Kee S, Lee S H, et al. Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization. Adv Mater, 2014, 26, 2268 doi: 10.1002/adma.201304611
[157]
Diah A W M, Quirino J P, Belcher W, et al. Investigation of the doping efficiency of poly(styrene sulfonic acid) in poly(3, 4-ethylenedioxythiophene)/poly(styrene sulfonic acid) dispersions by capillary electrophoresis. Electrophoresis, 2014, 35, 1976 doi: 10.1002/elps.201400056
[158]
Fan X, Wang J Z, Wang H B, et al. Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT: PSS electrodes on plastic substrates. ACS Appl Mater Interfaces, 2015, 7, 16287 doi: 10.1021/acsami.5b02830
[159]
Liu L H, Yang H, Zhang Z J, et al. Photopatternable and highly conductive PEDOT: PSS electrodes for flexible perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2023, 15, 21344 doi: 10.1021/acsami.3c03108
[160]
Vosgueritchian M, Lipomi D J, Bao Z N. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Materials, 2012, 22, 421 doi: 10.1002/adfm.201101775
[161]
Lipomi D J, Lee J A, Vosgueritchian M, et al. Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem Mater, 2012, 24, 373 doi: 10.1021/cm203216m
[162]
Jeong S H, Woo S H, Han T H, et al. Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency. NPG Asia Mater, 2017, 9, e411 doi: 10.1038/am.2017.108
[163]
Jiang W, Lee S, Zhao K Y, et al. Flexible and transparent electrode of hybrid Ti3C2TX MXene-silver nanowires for high-performance quantum dot light-emitting diodes. ACS Nano, 2022, 16, 9203 doi: 10.1021/acsnano.2c01514
[164]
Meena J S, Bin Choi S, Kim J W. Review on Ti3C2-based MXene nanosheets for flexible electrodes. Electron Mater Lett, 2022, 18, 256 doi: 10.1007/s13391-022-00337-9
[165]
Nirmal K A, Ren W Q, Khot A C, et al. Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes. Adv Sci, 2023, 10, 2300433 doi: 10.1002/advs.202300433
[166]
Ahn S, Han T H, Maleski K, et al. A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv Mater, 2020, 32, 2000919 doi: 10.1002/adma.202000919
[167]
Chen H, Wang H, Wu J, et al. Flexible optoelectronic devices based on metal halide perovskites. Nano Res, 2020, 13, 1997 doi: 10.1007/s12274-020-2805-x
[168]
Karlsson M, Yi Z Y, Reichert S, et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat Commun, 2021, 12, 361 doi: 10.1038/s41467-020-20582-6
[169]
Zhang F J, Gao Y B, Lu P, et al. Engineering of hole transporting interface by incorporating the atomic-precision Ag6 nanoclusters for high-efficiency blue perovskite light-emitting diodes. Nano Lett, 2023, 23, 1582 doi: 10.1021/acs.nanolett.3c00068
[170]
Han T H, Choi M R, Woo S H, et al. Molecularly controlled interfacial layer strategy toward highly efficient simple-structured organic light-emitting diodes. Adv Mater, 2012, 24, 1487 doi: 10.1002/adma.201104316
[171]
Lu J X, Guan X, Li Y Q, et al. Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv Mater, 2021, 33, 2104414 doi: 10.1002/adma.202104414
[172]
Singh A, Hoang M T, Pham N D, et al. Band alignment with self-assembled 2D layer of carbon derived from waste to balance charge injection in perovskite crystals based rigid and flexible light emitting diodes. Adv Mater Technol, 2022, 7, 2100583 doi: 10.1002/admt.202100583
[173]
Zhao X F, Tan Z K. Large-area near-infrared perovskite light-emitting diodes. Nat Photonics, 2020, 14, 215 doi: 10.1038/s41566-019-0559-3
[174]
Dong Q, Lei L, Mendes J, et al. Operational stability of perovskite light emitting diodes. J Phys Mater, 2020, 3, 012002 doi: 10.1088/2515-7639/ab60c4
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1012 Times PDF downloads: 178 Times Cited by: 0 Times

    History

    Received: 25 September 2023 Revised: 12 November 2023 Online: Accepted Manuscript: 26 January 2024Uncorrected proof: 19 February 2024Published: 10 May 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yongqi Zhang, Shahbaz Ahmed Khan, Dongxiang Luo, Guijun Li. Flexible perovskite light-emitting diodes for display applications and beyond[J]. Journal of Semiconductors, 2024, 45(5): 051601. doi: 10.1088/1674-4926/45/5/051601 Y Q Zhang, S A Khan, D X Luo, and G J Li, Flexible perovskite light-emitting diodes for display applications and beyond[J]. J. Semicond., 2024, 45(5), 051601 doi: 10.1088/1674-4926/45/5/051601Export: BibTex EndNote
      Citation:
      Yongqi Zhang, Shahbaz Ahmed Khan, Dongxiang Luo, Guijun Li. Flexible perovskite light-emitting diodes for display applications and beyond[J]. Journal of Semiconductors, 2024, 45(5): 051601. doi: 10.1088/1674-4926/45/5/051601

      Y Q Zhang, S A Khan, D X Luo, and G J Li, Flexible perovskite light-emitting diodes for display applications and beyond[J]. J. Semicond., 2024, 45(5), 051601 doi: 10.1088/1674-4926/45/5/051601
      Export: BibTex EndNote

      Flexible perovskite light-emitting diodes for display applications and beyond

      doi: 10.1088/1674-4926/45/5/051601
      More Information
      • Yongqi Zhang got his bachelor's degree in 2022 from Shenzhen University and now is pursuing a master's degree in Shenzhen University. His research interests focus on the development of high-efficiency light-emitting diodes for displays
      • Shahbaz Ahmed Khan got his bachelor's and master's degrees in electrical engineering from the University of Engineering and Technology, Taxila, and he is now pursuing his PhD degree at Shenzhen University. His research interests focus on the development of high-efficiency, highly stable perovskite solar cells
      • Dongxiang Luo is an associate professor in Huangpu Hydrogen Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University in July 2021. He received the B.S. degree in electronic science and technology from Shenyang University of Technology in June 2009, with Ph.D. degree in materials physics and chemistry from South China University of Technology in June 2014. He worked as a postdoctoral fellow in the State Key Laboratory of Luminescent Materials and Devices, South China University of Technology from 2014 to 2016. His research focuses on semiconductor optoelectronic materials and devices
      • Guijun Li is a professor at the College of Physics and Optoelectronic Engineering, Shenzhen University, China. He received his PhD degree in electronic and computer engineering from the Hong Kong University of Science and Technology (HKUST) in 2016, and worked at the State Key Laboratory of Advanced Displays and Optoelectronics (SKL) of HKUST as a research associate. His current research interest focuses on advanced photovoltaics and displays
      • Corresponding author: gliad@connect.ust.hk
      • Received Date: 2023-09-25
      • Revised Date: 2023-11-12
      • Available Online: 2024-01-26

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return