Citation: |
Xinkai Qian, Fa Zhang, Xiujuan Li, Junyue Li, Hongchao Sun, Qiye Wang, Chaoran Huang, Zhenyu Zhang, Zhe Zhou, Juqing Liu. Artificial self-powered and self-healable neuromorphic vision skin utilizing silver nanoparticle-doped ionogel photosynaptic heterostructure[J]. Journal of Semiconductors, 2025, 46(1): 012602. doi: 10.1088/1674-4926/24080036
****
X K Qian, F Zhang, X J Li, J Y Li, H C Sun, Q Y Wang, C R Huang, Z Y Zhang, Z Zhou, and J Q Liu, Artificial self-powered and self-healable neuromorphic vision skin utilizing silver nanoparticle-doped ionogel photosynaptic heterostructure[J]. J. Semicond., 2025, 46(1), 012602 doi: 10.1088/1674-4926/24080036
|
Artificial self-powered and self-healable neuromorphic vision skin utilizing silver nanoparticle-doped ionogel photosynaptic heterostructure
DOI: 10.1088/1674-4926/24080036
CSTR: 32376.14.1674-4926.24080036
More Information-
Abstract
Artificial skin should embody a softly functional film that is capable of self-powering, healing and sensing with neuromorphic processing. However, the pursuit of a bionic skin that combines high flexibility, self-healability, and zero-powered photosynaptic functionality remains elusive. In this study, we report a self-powered and self-healable neuromorphic vision skin, featuring silver nanoparticle-doped ionogel heterostructure as photoacceptor. The localized surface plasmon resonance induced by light in the nanoparticles triggers temperature fluctuations within the heterojunction, facilitating ion migration for visual sensing with synaptic behaviors. The abundant reversible hydrogen bonds in the ionogel endow the skin with remarkable mechanical flexibility and self-healing properties. We assembled a neuromorphic visual skin equipped with a 5 × 5 photosynapse array, capable of sensing and memorizing diverse light patterns.-
Keywords:
- neuromorphic vision skin,
- ionogel heterojuction,
- lspr,
- photosynapse
-
References
[1] Dai M J, Zhang X R, Wang Q J. 2D materials for photothermoelectric detectors: Mechanisms, materials, and devices. Adv Funct Mater, 2024, 34, 2312872 doi: 10.1002/adfm.202312872[2] Lee Y, Oh J Y, Lee T W. Neuromorphic skin based on emerging artificial synapses. Adv Mater Technol, 2022, 7, 2200193 doi: 10.1002/admt.202200193[3] Li X B, Sheng M, Liang J J, et al. Significantly boosted photothermoelectric effect via carrier injection in Au decorated SWCNT films for infrared detection. Adv Funct Mater, 2023, 33, 2303352 doi: 10.1002/adfm.202303352[4] Shen L F, Hu L X, Kang F W, et al. Optoelectronic neuromorphic devices and their applications. Acta Phys Sin, 2022, 71, 148505 doi: 10.7498/aps.71.20220111[5] Zhang H, Yin H F, Zhang K B, et al. Progress of surface plasmon research based on time-dependent density functional theory. Acta Phys Sin, 2015, 64, 077303 doi: 10.7498/aps.64.077303[6] Zhao W, Lei Z Y, Wu P Y. Mechanically adaptative and environmentally stable ionogels for energy harvest. Adv Sci, 2023, 10, 2300253 doi: 10.1002/advs.202300253[7] Zhong D L, Wu C, Jiang Y W, et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature, 2024, 627, 313 doi: 10.1038/s41586-024-07096-7[8] He X N , Zhang B, Liu Q J, et al. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance. Nat Commun, 2024, 15, 6431 doi: 10.1038/s41467-024-50797-w[9] Wang M X, Zhang P Y, Shamsi M, et al. Tough and stretchable ionogels by in situ phase separation. Nat Mater, 2022, 21, 359 doi: 10.1038/s41563-022-01195-4[10] Allard C. Making electronic circuits with hydrogels. Nat Rev Mater, 2024, 9, 379 doi: 10.1038/s41578-024-00692-z[11] Dong X M, Chen C, Pan K Y, et al. Nearly panoramic neuromorphic vision with transparent photosynapses. Adv Sci, 2023, 10, 2303944 doi: 10.1002/advs.202303944[12] Duan R, Qi W H, Li P K, et al. A high-performance MoS2-based visible-near-infrared photodetector from gateless photogating effect induced by nickel nanoparticles. Research, 2023, 6, 0195 doi: 10.34133/research.0195[13] Gong M G, Alamri M, Ewing D, et al. Localized surface plasmon resonance enhanced light absorption in AuCu/CsPbCl3 core/shell nanocrystals. Adv Mater, 2020, 32, 2002163 doi: 10.1002/adma.202002163[14] He J Q, Wei R L, Ge S P, et al. Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat, 2024, 6, e12493 doi: 10.1002/inf2.12493[15] Kuroiwa Y, Tatsuma T. Laser printing of translucent plasmonic full-color images with transmission-scattering dichroism of silver nanoparticles. ACS Appl Nano Mater, 2020, 3, 2472 doi: 10.1021/acsanm.9b02560[16] Lee J Y, Lee J, Bang H, et al. One-shot remote integration of macromolecular synaptic elements on a chip for ultrathin flexible neural network system. Adv Mater, 2024, 14, 2402361 doi: 10.1002/adma.202402361[17] Li R Z, Dong Y B, Qian F S, et al. CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning. PhotoniX, 2023, 4, 4 doi: 10.1186/s43074-023-00082-8[18] Liu L, Xu W L, Ni Y, et al. Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano, 2022, 16, 2282 doi: 10.1021/acsnano.1c08482[19] Luo X, Chen C, He Z X, et al. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat Commun, 2024, 15, 3086 doi: 10.1038/s41467-024-47374-6[20] Lyu B Z, Kim M, Jing H Y, et al. Large-area MXene electrode array for flexible electronics. ACS Nano, 2019, 13, 11392 doi: 10.1021/acsnano.9b04731[21] Niu H S, Wei X, Li H, et al. Micropyramid array bimodal electronic skin for intelligent material and surface shape perception based on capacitive sensing. Adv Sci, 2024, 11, 2305528 doi: 10.1002/advs.202305528[22] Oh S, Cho J I, Lee B H, et al. Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci Adv, 2021, 7, eabg9450 doi: 10.1126/sciadv.abg9450[23] Qian H L, Li S L, Hsu S W, et al. Highly-efficient electrically-driven localized surface plasmon source enabled by resonant inelastic electron tunneling. Nat Commun, 2021, 12, 3111 doi: 10.1038/s41467-021-23512-2[24] Shi Y X, Li L L, Xu Z, et al. Synergistic coupling of piezoelectric and plasmonic effects regulates the Schottky barrier in Ag nanoparticles/ultrathin g-C3N4 nanosheets heterostructure to enhance the photocatalytic activity. Appl Surf Sci, 2023, 616, 156466 doi: 10.1016/j.apsusc.2023.156466[25] Shim H, Jang S, Thukral A, et al. Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors. Proc Natl Acad Sci USA, 2022, 119, e2204852119 doi: 10.1073/pnas.2204852119[26] Tan M W M, Bark H, Thangavel G, et al. Photothermal modulated dielectric elastomer actuator for resilient soft robots. Nat Commun, 2022, 13, 6769 doi: 10.1038/s41467-022-34301-w[27] Wang K L, Wu J C, Wang M, et al. A biodegradable, stretchable, healable, and self-powered optoelectronic synapse based on ionic gelatins for neuromorphic vision system. Small, 2024, e2404566 doi: 10.1002/smll.202404566[28] Wang W C, Jiang Y W, Zhong D L, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science, 2023, 380, 735 doi: 10.1126/science.ade0086[29] Wang Y R, Liu D X, Zhang Y M, et al. Stretchable temperature-responsive multimodal neuromorphic electronic skin with spontaneous synaptic plasticity recovery. ACS Nano, 2022, 16, 8283 doi: 10.1021/acsnano.2c02089[30] Yang H, Khan S A, Li N, et al. Thermogalvanic gel patch for self-powered human motion recognition enabled by photo-thermal-electric conversion. Chem Eng J, 2023, 473, 145247 doi: 10.1016/j.cej.2023.145247[31] Yang Y Q, Li Y, Chen D, et al. Multicolor vision perception of flexible optoelectronic synapse with high sensitivity for skin sunburn warning. Mater Horiz, 2024, 11, 1934 doi: 10.1039/D3MH02154H[32] Yu G Y, Qian J, Zhang P, et al. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat Commun, 2019, 10, 4912 doi: 10.1038/s41467-019-12853-8[33] Balamur R, Eren G O, Kaleli H N, et al. A retina-inspired optoelectronic synapse using quantum dots for neuromorphic photostimulation of neurons. Adv Sci, 2024, 11, 2401753 doi: 10.1002/advs.202401753[34] Yu W, Deschaume O, Dedroog L, et al. Light-addressable nanocomposite hydrogels allow plasmonic actuation and in situ temperature monitoring in 3D cell matrices. Adv Funct Mater, 2022, 32, 2108234 doi: 10.1002/adfm.202108234[35] Zhang C, Li Y, Yu F, et al. Visual growth of nano-HOFs for low-power memristive spiking neuromorphic system. Nano Energy, 2023, 109, 108274 doi: 10.1016/j.nanoen.2023.108274[36] Chang K C, Liu H B, Duan X Q, et al. Optoelectronic dual-synapse based on wafer-level GaN-on-Si device incorporating embedded SiO2 barrier layers. Nano Energy, 2024, 125, 109564 doi: 10.1016/j.nanoen.2024.109564[37] Di Bartolomeo A, Genovese L, Foller T, et al. Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors. Nanotechnology, 2017, 28, 214002 doi: 10.1088/1361-6528/aa6d98[38] Guo F, Song M L, Wong M C, et al. Multifunctional optoelectronic synapse based on ferroelectric van der waals heterostructure for emulating the entire human visual system. Adv Funct Mater, 2022, 32, 2108014 doi: 10.1002/adfm.202108014[39] Lee C W, Yoo C, Han S S, et al. Centimeter-scale tellurium oxide films for artificial optoelectronic synapses with broadband responsiveness and mechanical Flexibility. ACS Nano, 2024, 18, 18635 doi: 10.1021/acsnano.4c04851[40] Liu X, Wang D H, Chen W, et al. Optoelectronic synapses with chemical-electric behaviorsin gallium nitride semiconductors for biorealistic neuromorphic functionality. Nat commun, 2024, 15, 7671 doi: 10.1038/s41467-024-51194-z[41] Ma F M, Zhu Y B, Xu Z W, et al. Optoelectronic perovskite synapses for neuromorphic computing. Adv Func Mater, 2020, 30, 1908901 doi: 10.1002/adfm.201908901[42] Hu L X, Yang J, Wang J R, et al. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv Funct Mater, 2021, 31, 2005582 doi: 10.1002/adfm.202005582[43] Wang J, Wang D, Song Z Y, et al. Efficient solar energy conversion via bionic sunlight-driven ion transport boosted by synergistic photo-electric/thermal effects. Energy Environ Sci, 2023, 16, 3146 doi: 10.1039/D3EE00720K[44] Zhang H S, Dong X M, Zhang Z C, et al. Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics. Nat Commun, 2022, 13, 4996 doi: 10.1038/s41467-022-32725-y[45] Zhang T, Fan C, Hu L X, et al. A reconfigurable all-optical-controlled synaptic device for neuromorphic computing applications. ACS Nano, 2024, 18, 16236 doi: 10.1021/acsnano.4c02278 -
Proportional views