Qingqing Wang, Yun Zheng, Chonghao Zhai, Xudong Li, Qihuang Gong, Jianwei Wang. Chip-based quantum communications[J]. Journal of Semiconductors, 2021, 42(9): 091901. doi: 10.1088/1674-4926/42/9/091901.
Q Q Wang, Y Zheng, C H Zhai, X D Li, Q H Gong, J W Wang, Chip-based quantum communications[J]. J. Semicond., 2021, 42(9): 091901. doi: 10.1088/1674-4926/42/9/091901.
Export: BibTex EndNote
In this work, the incorporation of Tantalum (Ta) into p-type metal-oxide (SnOx) semiconductor film is investigated to improve the electrical characteristics and suppress the fringe effect of thin film transistors (TFTs). The Ta-doped SnOx (SnOx:Ta) film is deposited by radio-frequency (RF) magnetron sputtering with a Sn:Ta (3at.%) target and thermally annealed at 270 °C for 30 mins. Here, we observe that the SnOx:Ta film presents increased crystallinity, reduced defect density (3.25 × 1012 cm−2eV−1), and widened bandgap (1.98 eV), in comparison with the undoped SnOx film. As a result, the SnOx:Ta TFTs exhibit a lower off-state current (Ioff), an improved on/off current ratio (2.17 × 104), a remarkably decreased subthreshold swing (SS) by 41%, and enhanced device stability. Additionally, by introducing Ta dopants, the fringe effect as well as the impact of channel width-to-length ratio (W/L) on electrical performances of the p-type oxide TFTs can be effectively suppressed. These results shall contribute to further exploration and development of p-type SnOx TFTs.