Just Accepted

Just Accepted manuscripts are peer-reviewed and accepted for publication. They are posted online prior to technical editing formatting for publication and author proofing.

Gallium nitride blue laser diodes with pulsed current operation exceeding 15 W in optical output power
Shuiqing Li, Qiangqiang Guo, Heqing Deng, Zhibai Zhong, Jinjian Zheng, LiXun Yang, Jiangyong Zhang, Changzheng Sun, Zhibiao Hao, Bing Xiong, Yanjun Han, Jian Wang, Hongtao Li, Lin Gan, Lai Wang, Yi Luo
, Available online  

doi: 10.1088/1674-4926/24080031

Recent advances and future prospects in tactile sensors for normal and shear force detection, decoupling, and applications
Jinrong Huang, Yuchen Guo, Yongchang Jiang, Feiyu Wang, Lijia Pan, Yi Shi
, Available online  

doi: 10.1088/1674-4926/24080006

Human skin, through its complex mechanoreceptor system, possesses the exceptional ability to finely perceive and differentiate multimodal mechanical stimuli, forming the biological foundation for dexterous manipulation, environmental exploration, and tactile perception. Tactile sensors that emulate this sensory capability, particularly in the detection, decoupling, and application of normal and shear forces, have made significant strides in recent years. This review comprehensively examines the latest research advancements in tactile sensors for normal and shear force sensing, delving into the design and decoupling methods of multi-unit structures, multilayer encapsulation structures, and bionic structures. It analyzes the advantages and disadvantages of various sensing principles, including piezoresistive, capacitive, and self-powered mechanisms, and evaluates their application potential in health monitoring, robotics, wearable devices, smart prosthetics, and human-machine interaction. By systematically summarizing current research progress and technical challenges, this review aims to provide forward-looking insights into future research directions, driving the development of electronic skin technology to ultimately achieve tactile perception capabilities comparable to human skin.

Human skin, through its complex mechanoreceptor system, possesses the exceptional ability to finely perceive and differentiate multimodal mechanical stimuli, forming the biological foundation for dexterous manipulation, environmental exploration, and tactile perception. Tactile sensors that emulate this sensory capability, particularly in the detection, decoupling, and application of normal and shear forces, have made significant strides in recent years. This review comprehensively examines the latest research advancements in tactile sensors for normal and shear force sensing, delving into the design and decoupling methods of multi-unit structures, multilayer encapsulation structures, and bionic structures. It analyzes the advantages and disadvantages of various sensing principles, including piezoresistive, capacitive, and self-powered mechanisms, and evaluates their application potential in health monitoring, robotics, wearable devices, smart prosthetics, and human-machine interaction. By systematically summarizing current research progress and technical challenges, this review aims to provide forward-looking insights into future research directions, driving the development of electronic skin technology to ultimately achieve tactile perception capabilities comparable to human skin.
Artificial self-powered and self-healable neuromorphic vision skin utilizing silver nanoparticle-doped ionogel photosynaptic heterostructure
Xinkai Qian, Fa Zhang, Xiujuan Li, Junyue Li, Hongchao Sun, Qiye Wang, Chaoran Huang, Zhenyu Zhang, Zhe Zhou, Juqing Liu
, Available online  

doi: 10.1088/1674-4926/24080036

Artificial skin should embody a softly functional film that is capable of self-powering, healing and sensing with neuromorphic processing. However, the pursuit of a bionic skin that combines high flexibility, self- healability, and zero-powered photosynaptic functionality remains elusive. In this study, we report a self-powered and self-healable neuromorphic vision skin, featuring silver nanoparticle-doped ionogel heterostructure as photoacceptor. The localized surface plasmon resonance induced by light in the nanoparticles triggers temperature fluctuations within the heterojunction, facilitating ion migration for visual sensing with synaptic behaviors. The abundant reversible hydrogen bonds in the ionogel endow the skin with remarkable mechanical flexibility and self-healing properties. We assembled a neuromorphic visual skin equipped with a 5 × 5 photosynapse array, capable of sensing and memorizing diverse light patterns.

Artificial skin should embody a softly functional film that is capable of self-powering, healing and sensing with neuromorphic processing. However, the pursuit of a bionic skin that combines high flexibility, self- healability, and zero-powered photosynaptic functionality remains elusive. In this study, we report a self-powered and self-healable neuromorphic vision skin, featuring silver nanoparticle-doped ionogel heterostructure as photoacceptor. The localized surface plasmon resonance induced by light in the nanoparticles triggers temperature fluctuations within the heterojunction, facilitating ion migration for visual sensing with synaptic behaviors. The abundant reversible hydrogen bonds in the ionogel endow the skin with remarkable mechanical flexibility and self-healing properties. We assembled a neuromorphic visual skin equipped with a 5 × 5 photosynapse array, capable of sensing and memorizing diverse light patterns.