Citation: |
Sangyeob Kim, Jeongtae Kim, Dong-Seok Kim, Hyuncheol Bae, Min-Woo Ha, Ogyun Seok. Radiation hardness of 1.2 kV SiC power devices with advanced edge termination structures under proton irradiation[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25040023
****
S Kim, J Kim, D S Kim, H Bae, M W Ha, and O Seok, Radiation hardness of 1.2 kV SiC power devices with advanced edge termination structures under proton irradiation[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25040023
|
Radiation hardness of 1.2 kV SiC power devices with advanced edge termination structures under proton irradiation
DOI: 10.1088/1674-4926/25040023
CSTR: 32376.14.1674-4926.25040023
More Information-
Abstract
This work presents a systematic analysis of proton-induced total ionizing dose (TID) effects in 1.2 kV silicon carbide (SiC) power devices with various edge termination structures. Three edge terminations including ring-assisted junction termination extension (RA-JTE), multiple floating zone JTE (MFZ-JTE), and field limiting rings (FLR) were fabricated and irradiated with 45 MeV protons at fluences ranging from 1 × 1012 to 1 × 1014 cm−2. Experimental results, supported by TCAD simulations, show that the RA-JTE structure maintained stable breakdown performance with less than 1% variation due to its effective electric field redistribution by multiple P+ rings. In contrast, MFZ-JTE and FLR exhibit breakdown voltage shifts of 6.1% and 15.2%, respectively, under the highest fluence. These results demonstrate the superior radiation tolerance of the RA-JTE structure under TID conditions and provide practical design guidance for radiation-hardened SiC power devices in space and other high-radiation environments.-
Keywords:
- SiC,
- proton irradiation,
- edge termination,
- radiation hardness,
- TID effects
-
References
[1] Fard M T, He J B, Huang H, et al. Aircraft distributed electric propulsion technologies: A review. IEEE Trans Transp Electrif, 2022, 8(4), 4067 doi: 10.1109/TTE.2022.3197332[2] Felgemacher C, Araújo S V, Zacharias P, et al. Cosmic radiation ruggedness of Si and SiC power semiconductors. 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2016, 51[3] Wang D, Hemming S, Yang Y H, et al. Multilevel inverters for electric aircraft applications: Current status and future trends. IEEE Trans Transp Electrif, 2024, 10(2), 3258 doi: 10.1109/TTE.2023.3296284[4] Dobynde M, Harikumaran J, Guo J N, et al. Cosmic radiation reliability analysis for aircraft power electronics. IEEE Trans Transp Electrif, 2024, 10(1), 344 doi: 10.1109/TTE.2023.3278319[5] Harikumaran J, Buticchi G, Migliazza G, et al. Failure modes and reliability oriented system design for aerospace power electronic converters. IEEE Open J Ind Electron Soc, 2020, 2, 53[6] Yu Q K, Ali W, Cao S, et al. Application of total ionizing dose radiation test standards to SiC MOSFETs. IEEE Trans Nucl Sci, 2022, 69(5), 1127 doi: 10.1109/TNS.2021.3135123[7] Baba T, Ahmed Siddiqui N, Bte Saidin N, et al. Radiation-induced degradation of silicon carbide MOSFETs–A review. Mater Sci Eng B, 2024, 300, 117096 doi: 10.1016/j.mseb.2023.117096[8] Peng C, Lei Z F, Zhang Z G, et al. Bias and temperature dependence of radiation-induced degradation for SiC MOSFETs. IEEE Trans Nucl Sci, 2024, 71(5), 1186 doi: 10.1109/TNS.2024.3384767[9] Liang S W, Wu Z Y, Shu L, et al. Observations on ruggedness degradation of planar-gate SiC MOSFETs after total ionizing dose radiation. 2023 IEEE Energy Conversion Congress and Exposition (ECCE), 2023, 5379[10] Feng H N, Liang X W, Pu X J, et al. Special degradation effects of 60Co γ-rays irradiation on electrical parameters of SiC MOSFETs. IEEE Trans Nucl Sci, 2023, 70(9), 2165 doi: 10.1109/TNS.2023.3298063[11] Yang S, Liang X W, Cui J W, et al. Impact of switching frequencies on the TID response of SiC power MOSFETs. J Semicond, 2021, 42(8), 082802 doi: 10.1088/1674-4926/42/8/082802[12] Liu T, Ma R Y, Li S H, et al. Comparative investigation on ionizing irradiation- induced threshold voltage degradation for 1200-V DT SiC MOSFET by experiment and simulation. IEEE Trans Nucl Sci, 2024, 71(11), 2386 doi: 10.1109/TNS.2024.3479201[13] Liang X W, Wei Y, Zhang D, et al. Impact of total ionizing dose effects on the threshold voltage hysteresis of SiC MOSFETs. IEEE Trans Electron Devices, 2024, 71(11), 6889 doi: 10.1109/TED.2024.3457572[14] Hazdra P, Popelka S. Displacement damage and total ionisation dose effects on 4H-SiC power devices. IET Power Electron, 2019, 12(15), 3910 doi: 10.1049/iet-pel.2019.0049[15] Siddiqui A, Hallén A, Usman M. Proton Irradiation-Induced Displacement Damage in 650 V Si and SiC Power Diodes. Phys Status Solidi A, 2023, 220(21), 2300300 doi: 10.1002/pssa.202300300[16] Lin Y X, Chao D S, Liang J H, et al. Electrical deterioration of 4H-SiC MOS capacitors due to bulk and interface traps induced by proton irradiation. Microelectron Reliab, 2023, 142, 114927 doi: 10.1016/j.microrel.2023.114927[17] Sozzi G, Sapienza S, Chiorboli G, et al. Carrier lifetime dependence on temperature and proton irradiation in 4H-SiC device: An experimental law. IEEE Access, 2024, 12, 74230 doi: 10.1109/ACCESS.2024.3405382[18] Chao D S, Shih H Y, Jiang J Y, et al. Influence of displacement damage induced by neutron irradiation on effective carrier density in 4H-SiC SBDs and MOSFETs. Jpn J Appl Phys, 2019, 58, SBBD08[19] Grome C A, Ji W. A brief review of single-event burnout failure mechanisms and design tolerances of silicon carbide power MOSFETs. Electronics, 2024, 13(8), 1414 doi: 10.3390/electronics13081414[20] Witulski A F, Ball D R, Galloway K F, et al. Single-event burnout mechanisms in SiC power MOSFETs. IEEE Trans Nucl Sci, 2018, 65(8), 1951 doi: 10.1109/TNS.2018.2849405[21] Ball D R, Galloway K F, Johnson R A, et al. Effects of breakdown voltage on single-event burnout tolerance of high-voltage SiC power MOSFETs. IEEE Trans Nucl Sci, 2021, 68(7), 1430 doi: 10.1109/TNS.2021.3079846[22] Peng C, Lei Z F, Zhang Z G, et al. Influence of temperature on atmospheric neutron-induced SEB failure rate for SiC MOSFETs. IEEE Trans Nucl Sci, 2024, 71(2), 160 doi: 10.1109/TNS.2023.3348108[23] Wang Y, Zhou J C, Lin M, et al. A comparative study of single-event-burnout for 4H-SiC UMOSFET. IEEE J Electron Devices Soc, 2022, 10, 373 doi: 10.1109/JEDS.2022.3158810[24] Iannaccone G, Sbrana C, Morelli I, et al. Power electronics based on wide-bandgap semiconductors: Opportunities and challenges. IEEE Access, 2021, 9, 139446 doi: 10.1109/ACCESS.2021.3118897[25] Spaziani L, Lu L. Silicon, GaN and SiC: There’s room for all: An application space overview of device considerations. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018, 8[26] Casady J B, Johnson R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid State Electron, 1996, 39(10), 1409 doi: 10.1016/0038-1101(96)00045-7[27] Lauenstein J M, Casey M C, Ladbury R L, et al. Space radiation effects on SiC power device reliability. 2021 IEEE International Reliability Physics Symposium (IRPS), 2021, 1[28] Pearton S J, Aitkaliyeva A, Xian M H, et al. Review: Radiation damage in wide and ultra-wide bandgap semiconductors. ECS J Solid State Sci Technol, 2021, 10(5), 055008 doi: 10.1149/2162-8777/abfc23[29] Rafí J M, Pellegrini G, Godignon P, et al. Electron, neutron, and proton irradiation effects on SiC radiation detectors. IEEE Trans Nucl Sci, 2020, 67(12), 2481 doi: 10.1109/TNS.2020.3029730[30] Witczak S C, Martin W A, Palko J W, et al. Displacement damage in an irradiated 4H-SiC MESFET. IEEE Trans Nucl Sci, 2025, 72(5), 1755 doi: 10.1109/TNS.2025.3550298[31] Zeng Q, Yang Z C, Wang X F, et al. Research progress on radiation damage mechanism of SiC MOSFETs under various irradiation conditions. IEEE Trans Electron Devices, 2024, 71(3), 1718 doi: 10.1109/TED.2024.3359172[32] Pérez R, Mestres N, Blanqué S, et al. A highly effective edge termination design for SiC planar high power devices. Mater Sci Forum, 2004, 457/458/459/460, 1253[33] Sung W, Van Brunt E, Baliga B J, et al. A new edge termination technique for high-voltage devices in 4H-SiC–multiple-floating-zone junction termination extension. IEEE Electron Device Lett, 2011, 32(7), 880 doi: 10.1109/LED.2011.2144561[34] Hirao T, Onose H, Kan Y S, et al. Edge termination with enhanced field-limiting rings insensitive to surface charge for high-voltage SiC power devices. IEEE Trans Electron Devices, 2020, 67(7), 2850 doi: 10.1109/TED.2020.2992577[35] Tan B, Tian X L, Lu J, et al. Design and optimization of four-region multistep field limiting rings for 10kV 4H-SiC IGBTs. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2018, 1[36] Deng X C, Xu S D, Zhang B, et al. A near ideal edge termination technique for ultrahigh-voltage 4H-SiC devices with multi-zone gradient field limiting ring. 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), 2018, 144[37] Broderick L Z, Moult J, Rusch O, et al. Highly efficient floating field rings for SiC power electronic devices-A systematic experimental study. Key Eng Mater, 2023, 946, 103 doi: 10.4028/p-0z5887[38] Wen Y, Xu X J, Zhu H, et al. Design and characteristics of an etching field limiting ring for 10kV SiC power device. 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), 2019, 37[39] Kim C, Yoon H, Kim D S, et al. Comparison analysis of radiation effects on 1.2 kV SiC metal-oxide-semiconductor field-effect transistors with gamma-ray and proton irradiation. Electronics, 2024, 13(7), 1352 doi: 10.3390/electronics13071352 -
Proportional views