Colloidal quantum dots (CQDs) are highly regarded for their outstanding photovoltaic characteristics, including excellent color purity, stability, high photoluminescence quantum yield (PLQY), narrow emission spectra, and ease of solution processing. Despite significant progress in quantum dot light-emitting diodes (QLEDs) technology since its inception in 1994, blue QLEDs still fall short in efficiency and lifespan compared to red and green versions. The toxicity concerns associated with Cd/Pb-based quantum dots (QDs) have spurred the development of heavy-metal-free alternatives, such as group Ⅱ−Ⅵ (e.g., ZnSe-based QDs), group Ⅲ−Ⅴ (e.g., InP, GaN QDs), and carbon dots (CDs). In this review, we discuss the key properties and development history of quantum dots (QDs), various synthesis approaches, the role of surface ligands, and important considerations in developing core/shell (C/S) structured QDs. Additionally, we provide an outlook on the challenges and future directions for blue QLEDs.
Recently, for developing neuromorphic visual systems, adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible functionalities. In this review, based on a description of the biological adaptive functions that are favorable for dynamically perceiving, filtering, and processing information in the varying environment, we summarize the representative strategies for achieving these adaptabilities in optoelectronic transistors, including the adaptation for detecting information, adaptive synaptic weight change, and history-dependent plasticity. Moreover, the key points of the corresponding strategies are comprehensively discussed. And the applications of these adaptive optoelectronic transistors, including the adaptive color detection, signal filtering, extending the response range of light intensity, and improve learning efficiency, are also illustrated separately. Lastly, the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed. The description of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.
The traditional von Neumann architecture has demonstrated inefficiencies in parallel computing and adaptive learning, rendering it incapable of meeting the growing demand for efficient and high-speed computing. Neuromorphic computing with significant advantages such as high parallelism and ultra-low power consumption is regarded as a promising pathway to overcome the limitations of conventional computers and achieve the next-generation artificial intelligence. Among various neuromorphic devices, the artificial synapses based on electrolyte-gated transistors stand out due to their low energy consumption, multimodal sensing/recording capabilities, and multifunctional integration. Moreover, the emerging optoelectronic neuromorphic devices which combine the strengths of photonics and electronics have demonstrated substantial potential in the neuromorphic computing field. Therefore, this article reviews recent advancements in electrolyte-gated optoelectronic neuromorphic transistors. First, it provides an overview of artificial optoelectronic synapses and neurons, discussing aspects such as device structures, operating mechanisms, and neuromorphic functionalities. Next, the potential applications of optoelectronic synapses in different areas such as artificial visual system, pain system, and tactile perception systems are elaborated. Finally, the current challenges are summarized, and future directions for their developments are proposed.
Perovskite materials have emerged as promising candidates for various optoelectronic applications owing to their remarkable optoelectronic properties and easy solution processing. Metal halide perovskites, as direct-bandgap semiconductors, show an excellent class of optical gain media, which makes them applicable to the development of low-threshold or even thresholdless lasers. This mini review explores recent advances in perovskite-based laser technology, which have led to chiral single-mode microlasers, low-threshold, external-cavity-free lasing devices at room temperature, and other innovative device architectures. Including self-assembled CsPbBr₃ microwires that enable edge lasing. Realized continuous-wave (CW) pumped lasing by perovskite material pushes the research of electrically driven perovskite lasers. The capacity to regulate charge transport in halide perovskites further enhances their applicability in optoelectronic systems. The ongoing integration of perovskite materials with advanced photonic structures holds excellent potential for future innovations in laser technology and photovoltaics. We also highlight the transformative potential of perovskite materials in advancing the next generation of efficient and integrated optoelectronic devices.
Integrated perovskite-organic solar cells (IPOSCs) offer a promising hybrid approach that combines the advantages of perovskite and organic solar cells, enabling efficient photon absorption across a broad spectrum with a simplified architecture. However, challenges such as limited charge mobility in organic bulk heterojunction (BHJ) layers, and energy-level mismatch at the perovskite/BHJ interface still sustain. Recent advancements in non-fullerene acceptors (NFAs), interfacial engineering, and emerging materials have improved charge transfer/transport, and overall power conversion efficiency (PCE) of IPOSCs. This review explores key developments in IPOSCs, focusing on low-bandgap materials for near-infrared absorption, energy alignment optimization, and strategies to enhance photocurrent density and device performance. Future innovations in material selection and device architecture will be crucial for further improving the efficiency of IPOSCs, bringing them closer to practical application in next-generation photovoltaic technologies.
Due to advantages of high power-conversion efficiency (PCE), large power-to-weight ratio (PWR), low cost and solution processibility, flexible perovskite solar cells (f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage.
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computation, leading to high energy consumption, significant latency, and reduced operational efficiency. Neuromorphic computing, inspired by the architecture of the human brain, offers a promising alternative by integrating memory and computational functions, enabling parallel, high-speed, and energy-efficient information processing. Among various neuromorphic technologies, ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multidimensional control strategies. This review provides a comprehensive overview of recent progress in ion-modulation optoelectronic neuromorphic devices. It elucidates the key mechanisms underlying ionic modulation of light fields, including ion migration dynamics and capture and release of charge through ions. Furthermore, the synthesis of active materials and the properties of these devices are analyzed in detail. The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems, neuromorphic computing, and other bionic fields. Finally, the existing challenges and future directions for the development of optoelectronic neuromorphic devices are discussed, providing critical insights for advancing this promising field.
Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring, wearable healthcare, imaging sensing, and portable optical communications. Perovskites stand out as particularly promising materials for photodetectors, offering exceptional optoelectronic properties, tunable band gaps, low-temperature solution processing, and notable mechanical flexibility. In this review, we explore the latest progress in flexible perovskite photodetectors, emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability. Additionally, we discuss typical applications of these devices and offer insights into future directions and potential applications.
Infrared optoelectronic sensing is the core of many critical applications such as night vision, health and medication, military, space exploration, etc. Further including mechanical flexibility as a new dimension enables novel features of adaptability and conformability, promising for developing next-generation optoelectronic sensory applications toward reduced size, weight, price, power consumption, and enhanced performance (SWaP3). However, in this emerging research frontier, challenges persist in simultaneously achieving high infrared response and good mechanical deformability in devices and integrated systems. Therefore, we perform a comprehensive review of the design strategies and insights of flexible infrared optoelectronic sensors, including the fundamentals of infrared photodetectors, selection of materials and device architectures, fabrication techniques and design strategies, and the discussion of architectural and functional integration towards applications in wearable optoelectronics and advanced image sensing. Finally, this article offers insights into future directions to practically realize the ultra-high performance and smart sensors enabled by infrared-sensitive materials, covering challenges in materials development and device micro-/nanofabrication. Benchmarks for scaling these techniques across fabrication, performance, and integration are presented, alongside perspectives on potential applications in medication and health, biomimetic vision, and neuromorphic sensory systems, etc.
Heart rate variability (HRV) that can reflect the dynamic balance between the sympathetic nervous and parasympathetic nervous of human autonomic nervous system (ANS) has attracted considerable attention. However, traditional electrocardiogram (ECG) devices for HRV analysis are bulky, and hard wires are needed to attach measuring electrodes to the chest, resulting in the poor wearable experience during the long-term measurement. Compared with that, wearable electronics enabling continuously cardiac signals monitoring and HRV assessment provide a desirable and promising approach for helping subjects determine sleeping issues, cardiovascular diseases, or other threats to physical and mental well-being. Until now, significant progress and advances have been achieved in wearable electronics for HRV monitoring and applications for predicting human physical and mental well-being. In this review, the latest progress in the integration of wearable electronics and HRV analysis as well as practical applications in assessment of human physical and mental health are included. The commonly used methods and physiological signals for HRV analysis are briefly summarized. Furthermore, we highlighted the research on wearable electronics concerning HRV assessment and diverse applications such as stress estimation, drowsiness detection, etc. Lastly, the current limitations of the integrated wearable HRV system are concluded, and possible solutions in such a research direction are outlined.
- First
- Prev
- 1
- 2
- 3
- 4
- 5
- Next
- Last
- Total: 25
- To
- Go