Citation: |
Shaoqi Bian, Guangshu Xu, Shufang Zhang, Qi Jiang, Xiaoguang Ma, Jingbi You, Xinbo Chu. Recent development of flexible perovskite solar cells and its potential applications to aerospace[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24090031
****
S Q Bian, G S Xu, S F Zhang, Q Jiang, X G Ma, J B You, and X B Chu, Recent development of flexible perovskite solar cells and its potential applications to aerospace[J]. J. Semicond., 2025, 46(5), 051801 doi: 10.1088/1674-4926/24090031
|
Recent development of flexible perovskite solar cells and its potential applications to aerospace
DOI: 10.1088/1674-4926/24090031
CSTR: 32376.14.1674-4926.24090031
More Information-
Abstract
Due to advantages of high power-conversion efficiency (PCE), large power-to-weight ratio (PWR), low cost and solution processibility, flexible perovskite solar cells (f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage. -
References
[1] Verduci R, Romano V, Brunetti G, et al. Solar energy in space applications: Review and technology perspectives. Adv Energy Mater, 2022, 12, 2200125 doi: 10.1002/aenm.202200125[2] NREL. Best research-cell efficiency chart from the national renewable energy laboratory.[3] Hu Y Z, Niu T T, Liu Y H, et al. Flexible perovskite solar cells with high power-per-weight: Progress, application, and perspectives. ACS Energy Lett, 2021, 6, 2917 doi: 10.1021/acsenergylett.1c01193[4] Gao Y J, Huang K Q, Long C Y, et al. Flexible perovskite solar cells: From materials and device architectures to applications. ACS Energy Lett, 2022, 7, 1412 doi: 10.1021/acsenergylett.1c02768[5] Ren N Y, Tan L G, Li M H, et al. 25% - Efficiency flexible perovskite solar cells via controllable growth of SnO2. iEnergy, 2024, 3, 39 doi: 10.23919/IEN.2024.0001[6] Kaltenbrunner M, Adam G, Głowacki E D, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat Mater, 2015, 14, 1032 doi: 10.1038/nmat4388[7] Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013, 4, 2761 doi: 10.1038/ncomms3761[8] You J B, Hong Z R, Yang Y, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8, 1674 doi: 10.1021/nn406020d[9] Kim B J, Kim D H, Lee Y Y, et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ Sci, 2015, 8, 916 doi: 10.1039/C4EE02441A[10] Shin S S, Yang W S, Noh J H, et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat Commun, 2015, 6, 7410 doi: 10.1038/ncomms8410[11] Yoon J, Sung H, Lee G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ Sci, 2017, 10, 337 doi: 10.1039/C6EE02650H[12] Chung J, Shin S S, Hwang K, et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy Environ Sci, 2020, 13, 4854 doi: 10.1039/D0EE02164D[13] Yang L K, Xiong Q, Li Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J Mater Chem A, 2021, 9, 1574 doi: 10.1039/D0TA10717D[14] Wu S F, Li Z, Zhang J, et al. Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells. Adv Mater, 2021, 33, 2105539 doi: 10.1002/adma.202105539[15] Gao D P, Li B, Li Z, et al. Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%. Adv Mater, 2023, 35, 2206387 doi: 10.1002/adma.202206387[16] Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30, 1801418 doi: 10.1002/adma.201801418[17] Huang K Q, Peng Y Y, Gao Y X, et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater, 2019, 9, 1901419 doi: 10.1002/aenm.201901419[18] Wang Z, Lu Y L, Xu Z H, et al. An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20%. Adv Sci, 2021, 8, 2101856 doi: 10.1002/advs.202101856[19] Dong Q S, Chen M, Liu Y H, et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5, 1587 doi: 10.1016/j.joule.2021.04.014[20] Zheng Z H, Li F M, Gong J, et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv Mater, 2022, 34, 2109879 doi: 10.1002/adma.202109879[21] Li M H, Zhou J J, Tan L G, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innovation (Camb), 2022, 3, 100310 doi: 10.1016/J.XINN.2022.100310[22] Chen Z Y, Cheng Q R, Chen H Y, et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv Mater, 2023, 35, 2300513 doi: 10.1002/adma.202300513[23] Jiang N R. Research on high-efficiency and high-stability flexible trans-perovskite solar cells. PhD Dissertation, Jilin University of China, 2022 (In Chinese)[24] Xue T Y, Fan B J, Jiang K J, et al. Self-healing ion-conducting elastomer towards record efficient flexible perovskite solar cells with excellent recoverable mechanical stability. Energy Environ Sci, 2024, 17, 2621 doi: 10.1039/D4EE00462K[25] Wang Y H, Cao R K, Meng Y Y, et al. Mechanical robust and self-healing flexible perovskite solar cells with efficiency exceeding 23%. Sci China Chem, 2024, 67, 2670 doi: 10.1007/s11426-024-1954-8[26] Wu Y Y, Xu G Y, Xi J C, et al. In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule, 2023, 7, 398 doi: 10.1016/j.joule.2022.12.013[27] Wu X X, Xu G Y, Yang F, et al. Realizing 23.9% flexible perovskite solar cells via alleviating the residual strain induced by delayed heat transfer. ACS Energy Lett, 2023, 8, 3750 doi: 10.1021/acsenergylett.3c01167[28] Ma Y B, You J X, Zhang L, et al. High thermal conductivity of liquid crystal elastomer for stress-less flexible perovskite solar cells. Adv Funct Mater, 2024, 34, 2405250 doi: 10.1002/adfm.202405250[29] Yang L, Feng J S, Liu Z K, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv Mater, 2022, 34, 2201681 doi: 10.1002/adma.202201681[30] Wu Y Y, Xu G Y, Shen Y X, et al. Stereoscopic polymer network for developing mechanically robust flexible perovskite solar cells with an efficiency approaching 25%. Adv Mater, 2024, 36, 2403531 doi: 10.1002/adma.202403531[31] Long C Y, Huang K Q, Chang J H, et al. Creating a dual-functional 2D perovskite layer at the interface to enhance the performance of flexible perovskite solar cells. Small, 2021, 17, 2102368 doi: 10.1002/smll.202102368[32] Han B, Wang Y H, Liu C, et al. Rational design of ferroelectric 2D perovskite for improving the efficiency of flexible perovskite solar cells over 23 %. Angew Chem Int Ed, 2023, 62, e202217526 doi: 10.1002/anie.202217526[33] Meng Y Y, Liu C, Cao R K, et al. Pre-buried ETL with bottom-up strategy toward flexible perovskite solar cells with efficiency over 23%. Adv Funct Mater, 2023, 33, 2214788 doi: 10.1002/adfm.202214788[34] Zou Y Q, Song Q L, Zhou J G, et al. Ammonium sulfate to modulate crystallization for high-performance rigid and flexible perovskite solar cells. Small, 2024, 20, 2401456 doi: 10.1002/smll.202401456[35] Sun Q, Meng X X, Liu G, et al. SnO2 surface modification and perovskite buried interface passivation by 2, 5-furandicarboxylic acid for flexible perovskite solar cells. Adv Funct Mater, 2024, 34, 2404686 doi: 10.1002/adfm.202404686[36] Xu W Z, Chen B, Zhang Z, et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat Photonics, 2024, 18, 379 doi: 10.1038/s41566-023-01373-z[37] Tu S L, Gang Y, Lin Y Q, et al. Triple cross-linking engineering strategies for efficient and stable inverted flexible perovskite solar cells. Small, 2024, 20, 2310868 doi: 10.1002/smll.202310868[38] Wang Z Y, Wang J T, Li Z, et al. Crosslinking and densification by plasma-enhanced molecular layer deposition for hermetic seal of flexible perovskite solar cells. Nano Energy, 2023, 109, 108232 doi: 10.1016/j.nanoen.2023.108232[39] Woo J H, Park S Y, Koo D, et al. Highly elastic and corrosion-resistive metallic glass thin films for flexible encapsulation. ACS Appl Mater Interfaces, 2022, 14, 5578 doi: 10.1021/acsami.1c20551[40] Hughes D, Spence M, Thomas S K, et al. Effectiveness of poly(methyl methacrylate) spray encapsulation for perovskite solar cells. J Phys Energy, 2024, 6, 025001 doi: 10.1088/2515-7655/ad20f5[41] Mujahid M, Chen C, Hu W, et al. Progress of high-throughput and low-cost flexible perovskite solar cells. Sol RRL, 2020, 4, 1900556 doi: 10.1002/solr.201900556[42] Ren N Y, Chen B B, Li R J, et al. Humidity-resistant flexible perovskite solar cells with over 20% efficiency. Sol RRL, 2021, 5, 2000795 doi: 10.1002/solr.202000795[43] Parvazian E, Watson T. The roll-to-roll revolution to tackle the industrial leap for perovskite solar cells. Nat Commun, 2024, 15, 3983. doi: 10.1038/s41467-024-48518-4[44] Galagan Y, Di Giacomo F, Gorter H, et al. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv Energy Mater, 2018, 8, 1801935 doi: 10.1002/aenm.201801935[45] Werner J, Boyd C C, Moot T, et al. Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ Sci, 2020, 13, 3393 doi: 10.1039/D0EE01923B[46] Beynon D, Parvazian E, Hooper K, et al. All-printed roll-to-roll perovskite photovoltaics enabled by solution-processed carbon electrode. Adv Mater, 2023, 35, 2208561 doi: 10.1002/adma.202208561[47] Weerasinghe H C, MacAdam N, Kim J E, et al. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat Commun, 2024, 15, 1656 doi: 10.1038/s41467-024-46016-1[48] Dang Z Y, Shamsi J, Palazon F, et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano, 2017, 11, 2124 doi: 10.1021/acsnano.6b08324[49] Chen X Y, Wang Z W. Investigating chemical and structural instabilities of lead halide perovskite induced by electron beam irradiation. Micron, 2019, 116, 73 doi: 10.1016/j.micron.2018.09.010[50] Svanström S, García Fernández A, Sloboda T, et al. X-ray stability and degradation mechanism of lead halide perovskites and lead halides. Phys Chem Chem Phys, 2021, 23, 12479 doi: 10.1039/D1CP01443A[51] Yang S, Xu Z Y, Xue S, et al. Organohalide lead perovskites: More stable than glass under gamma-ray radiation. Adv Mater, 2019, 31, 1805547 doi: 10.1002/adma.201805547[52] Boldyreva A G, Frolova L A, Zhidkov I S, et al. Unravelling the material composition effects on the gamma Ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records. J Phys Chem Lett, 2020, 11, 2630 doi: 10.1021/acs.jpclett.0c00581[53] Stuckelberger M E, Nietzold T, West B M, et al. Effects of X-rays on perovskite solar cells. J Phys Chem C, 2020, 124, 17949 doi: 10.1021/acs.jpcc.0c04645[54] Cardinaletti I, Vangerven T, Nagels S, et al. Organic and perovskite solar cells for space applications. Sol Energy Mater Sol Cells, 2018, 182, 121 doi: 10.1016/j.solmat.2018.03.024[55] Reb L K, Böhmer M, Predeschly B, et al. Perovskite and organic solar cells on a rocket flight. Joule, 2020, 4, 1880 doi: 10.1016/j.joule.2020.07.004[56] Wang H, Jiang X, Cao Y X, et al. The first record of diurnal performance evolution of perovskite solar cells in near space. Adv Energy Mater, 2023, 13, 2202643 doi: 10.1002/aenm.202202643[57] People’s Daily. Successful launch of Jubilee 2 Remote 3 Launch Vehicle.[58] Electronic Engineering Album. Scientists at the University of Potsdam receive the first experimental data on perovskite stacked batteries from space. -
Proportional views