J. Semicond. >  In Press

REVIEWS

Recent development of flexible perovskite solar cells and its potential applications to aerospace

Shaoqi Bian1, 2, Guangshu Xu3, , Shufang Zhang1, Qi Jiang4, Xiaoguang Ma1, , Jingbi You4 and Xinbo Chu1, 2,

+ Author Affiliations

 Corresponding author: Guangshu Xu, xgs45622136@163.com; Xiaoguang Ma, hsiaoguangma@ldu.edu.cn; Xinbo Chu, chuxinbo@semi.ac.cn

DOI: 10.1088/1674-4926/24090031CSTR: 32376.14.1674-4926.24090031

PDF

Turn off MathJax

Abstract: Due to advantages of high power-conversion efficiency (PCE), large power-to-weight ratio (PWR), low cost and solution processibility, flexible perovskite solar cells (f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage.

Key words: flexible perovskite solar cellspower-conversion efficiencystabilityaerospace application potential



[1]
Verduci R, Romano V, Brunetti G, et al. Solar energy in space applications: Review and technology perspectives. Adv Energy Mater, 2022, 12, 2200125 doi: 10.1002/aenm.202200125
[2]
NREL. Best research-cell efficiency chart from the national renewable energy laboratory.
[3]
Hu Y Z, Niu T T, Liu Y H, et al. Flexible perovskite solar cells with high power-per-weight: Progress, application, and perspectives. ACS Energy Lett, 2021, 6, 2917 doi: 10.1021/acsenergylett.1c01193
[4]
Gao Y J, Huang K Q, Long C Y, et al. Flexible perovskite solar cells: From materials and device architectures to applications. ACS Energy Lett, 2022, 7, 1412 doi: 10.1021/acsenergylett.1c02768
[5]
Ren N Y, Tan L G, Li M H, et al. 25% - Efficiency flexible perovskite solar cells via controllable growth of SnO2. iEnergy, 2024, 3, 39 doi: 10.23919/IEN.2024.0001
[6]
Kaltenbrunner M, Adam G, Głowacki E D, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat Mater, 2015, 14, 1032 doi: 10.1038/nmat4388
[7]
Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013, 4, 2761 doi: 10.1038/ncomms3761
[8]
You J B, Hong Z R, Yang Y, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8, 1674 doi: 10.1021/nn406020d
[9]
Kim B J, Kim D H, Lee Y Y, et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ Sci, 2015, 8, 916 doi: 10.1039/C4EE02441A
[10]
Shin S S, Yang W S, Noh J H, et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat Commun, 2015, 6, 7410 doi: 10.1038/ncomms8410
[11]
Yoon J, Sung H, Lee G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ Sci, 2017, 10, 337 doi: 10.1039/C6EE02650H
[12]
Chung J, Shin S S, Hwang K, et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy Environ Sci, 2020, 13, 4854 doi: 10.1039/D0EE02164D
[13]
Yang L K, Xiong Q, Li Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J Mater Chem A, 2021, 9, 1574 doi: 10.1039/D0TA10717D
[14]
Wu S F, Li Z, Zhang J, et al. Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells. Adv Mater, 2021, 33, 2105539 doi: 10.1002/adma.202105539
[15]
Gao D P, Li B, Li Z, et al. Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%. Adv Mater, 2023, 35, 2206387 doi: 10.1002/adma.202206387
[16]
Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30, 1801418 doi: 10.1002/adma.201801418
[17]
Huang K Q, Peng Y Y, Gao Y X, et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater, 2019, 9, 1901419 doi: 10.1002/aenm.201901419
[18]
Wang Z, Lu Y L, Xu Z H, et al. An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20%. Adv Sci, 2021, 8, 2101856 doi: 10.1002/advs.202101856
[19]
Dong Q S, Chen M, Liu Y H, et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5, 1587 doi: 10.1016/j.joule.2021.04.014
[20]
Zheng Z H, Li F M, Gong J, et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv Mater, 2022, 34, 2109879 doi: 10.1002/adma.202109879
[21]
Li M H, Zhou J J, Tan L G, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innovation (Camb), 2022, 3, 100310 doi: 10.1016/J.XINN.2022.100310
[22]
Chen Z Y, Cheng Q R, Chen H Y, et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv Mater, 2023, 35, 2300513 doi: 10.1002/adma.202300513
[23]
Jiang N R. Research on high-efficiency and high-stability flexible trans-perovskite solar cells. PhD Dissertation, Jilin University of China, 2022 (In Chinese)
[24]
Xue T Y, Fan B J, Jiang K J, et al. Self-healing ion-conducting elastomer towards record efficient flexible perovskite solar cells with excellent recoverable mechanical stability. Energy Environ Sci, 2024, 17, 2621 doi: 10.1039/D4EE00462K
[25]
Wang Y H, Cao R K, Meng Y Y, et al. Mechanical robust and self-healing flexible perovskite solar cells with efficiency exceeding 23%. Sci China Chem, 2024, 67, 2670 doi: 10.1007/s11426-024-1954-8
[26]
Wu Y Y, Xu G Y, Xi J C, et al. In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule, 2023, 7, 398 doi: 10.1016/j.joule.2022.12.013
[27]
Wu X X, Xu G Y, Yang F, et al. Realizing 23.9% flexible perovskite solar cells via alleviating the residual strain induced by delayed heat transfer. ACS Energy Lett, 2023, 8, 3750 doi: 10.1021/acsenergylett.3c01167
[28]
Ma Y B, You J X, Zhang L, et al. High thermal conductivity of liquid crystal elastomer for stress-less flexible perovskite solar cells. Adv Funct Mater, 2024, 34, 2405250 doi: 10.1002/adfm.202405250
[29]
Yang L, Feng J S, Liu Z K, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv Mater, 2022, 34, 2201681 doi: 10.1002/adma.202201681
[30]
Wu Y Y, Xu G Y, Shen Y X, et al. Stereoscopic polymer network for developing mechanically robust flexible perovskite solar cells with an efficiency approaching 25%. Adv Mater, 2024, 36, 2403531 doi: 10.1002/adma.202403531
[31]
Long C Y, Huang K Q, Chang J H, et al. Creating a dual-functional 2D perovskite layer at the interface to enhance the performance of flexible perovskite solar cells. Small, 2021, 17, 2102368 doi: 10.1002/smll.202102368
[32]
Han B, Wang Y H, Liu C, et al. Rational design of ferroelectric 2D perovskite for improving the efficiency of flexible perovskite solar cells over 23 %. Angew Chem Int Ed, 2023, 62, e202217526 doi: 10.1002/anie.202217526
[33]
Meng Y Y, Liu C, Cao R K, et al. Pre-buried ETL with bottom-up strategy toward flexible perovskite solar cells with efficiency over 23%. Adv Funct Mater, 2023, 33, 2214788 doi: 10.1002/adfm.202214788
[34]
Zou Y Q, Song Q L, Zhou J G, et al. Ammonium sulfate to modulate crystallization for high-performance rigid and flexible perovskite solar cells. Small, 2024, 20, 2401456 doi: 10.1002/smll.202401456
[35]
Sun Q, Meng X X, Liu G, et al. SnO2 surface modification and perovskite buried interface passivation by 2, 5-furandicarboxylic acid for flexible perovskite solar cells. Adv Funct Mater, 2024, 34, 2404686 doi: 10.1002/adfm.202404686
[36]
Xu W Z, Chen B, Zhang Z, et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat Photonics, 2024, 18, 379 doi: 10.1038/s41566-023-01373-z
[37]
Tu S L, Gang Y, Lin Y Q, et al. Triple cross-linking engineering strategies for efficient and stable inverted flexible perovskite solar cells. Small, 2024, 20, 2310868 doi: 10.1002/smll.202310868
[38]
Wang Z Y, Wang J T, Li Z, et al. Crosslinking and densification by plasma-enhanced molecular layer deposition for hermetic seal of flexible perovskite solar cells. Nano Energy, 2023, 109, 108232 doi: 10.1016/j.nanoen.2023.108232
[39]
Woo J H, Park S Y, Koo D, et al. Highly elastic and corrosion-resistive metallic glass thin films for flexible encapsulation. ACS Appl Mater Interfaces, 2022, 14, 5578 doi: 10.1021/acsami.1c20551
[40]
Hughes D, Spence M, Thomas S K, et al. Effectiveness of poly(methyl methacrylate) spray encapsulation for perovskite solar cells. J Phys Energy, 2024, 6, 025001 doi: 10.1088/2515-7655/ad20f5
[41]
Mujahid M, Chen C, Hu W, et al. Progress of high-throughput and low-cost flexible perovskite solar cells. Sol RRL, 2020, 4, 1900556 doi: 10.1002/solr.201900556
[42]
Ren N Y, Chen B B, Li R J, et al. Humidity-resistant flexible perovskite solar cells with over 20% efficiency. Sol RRL, 2021, 5, 2000795 doi: 10.1002/solr.202000795
[43]
Parvazian E, Watson T. The roll-to-roll revolution to tackle the industrial leap for perovskite solar cells. Nat Commun, 2024, 15, 3983. doi: 10.1038/s41467-024-48518-4
[44]
Galagan Y, Di Giacomo F, Gorter H, et al. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv Energy Mater, 2018, 8, 1801935 doi: 10.1002/aenm.201801935
[45]
Werner J, Boyd C C, Moot T, et al. Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ Sci, 2020, 13, 3393 doi: 10.1039/D0EE01923B
[46]
Beynon D, Parvazian E, Hooper K, et al. All-printed roll-to-roll perovskite photovoltaics enabled by solution-processed carbon electrode. Adv Mater, 2023, 35, 2208561 doi: 10.1002/adma.202208561
[47]
Weerasinghe H C, MacAdam N, Kim J E, et al. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat Commun, 2024, 15, 1656 doi: 10.1038/s41467-024-46016-1
[48]
Dang Z Y, Shamsi J, Palazon F, et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano, 2017, 11, 2124 doi: 10.1021/acsnano.6b08324
[49]
Chen X Y, Wang Z W. Investigating chemical and structural instabilities of lead halide perovskite induced by electron beam irradiation. Micron, 2019, 116, 73 doi: 10.1016/j.micron.2018.09.010
[50]
Svanström S, García Fernández A, Sloboda T, et al. X-ray stability and degradation mechanism of lead halide perovskites and lead halides. Phys Chem Chem Phys, 2021, 23, 12479 doi: 10.1039/D1CP01443A
[51]
Yang S, Xu Z Y, Xue S, et al. Organohalide lead perovskites: More stable than glass under gamma-ray radiation. Adv Mater, 2019, 31, 1805547 doi: 10.1002/adma.201805547
[52]
Boldyreva A G, Frolova L A, Zhidkov I S, et al. Unravelling the material composition effects on the gamma Ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records. J Phys Chem Lett, 2020, 11, 2630 doi: 10.1021/acs.jpclett.0c00581
[53]
Stuckelberger M E, Nietzold T, West B M, et al. Effects of X-rays on perovskite solar cells. J Phys Chem C, 2020, 124, 17949 doi: 10.1021/acs.jpcc.0c04645
[54]
Cardinaletti I, Vangerven T, Nagels S, et al. Organic and perovskite solar cells for space applications. Sol Energy Mater Sol Cells, 2018, 182, 121 doi: 10.1016/j.solmat.2018.03.024
[55]
Reb L K, Böhmer M, Predeschly B, et al. Perovskite and organic solar cells on a rocket flight. Joule, 2020, 4, 1880 doi: 10.1016/j.joule.2020.07.004
[56]
Wang H, Jiang X, Cao Y X, et al. The first record of diurnal performance evolution of perovskite solar cells in near space. Adv Energy Mater, 2023, 13, 2202643 doi: 10.1002/aenm.202202643
[57]
People’s Daily. Successful launch of Jubilee 2 Remote 3 Launch Vehicle.
[58]
Electronic Engineering Album. Scientists at the University of Potsdam receive the first experimental data on perovskite stacked batteries from space.
Fig. 1.  (Color online) (a) n–i–p and (b) p–i–n structure of f-PSC device structure. (c) The power wight ratio of f-PSCs and other type of solar cells[6].

Fig. 2.  (Color online) Power-conversion efficiency (PCE) development of f-PSCs in recent years.

Fig. 3.  (Color online) Improvements related to bending times and bending radius.

Fig. 4.  (Color online) (a) Schematic illustration of micro-strain relaxation caused by strong binding of MS special molecular structure to perovskite at grain boundaries. Reproduced with permission from Ref. [21], Copyright 2022, Elsevier. (b) Compositional distribution and strain modulation processes on plastic substrates with MZ. Reproduced with permission from Ref. [27], Copyright 2023, American Chemical Society. (c) Cross sectional SEM images of HCOONH4 functionalized device after 4000-cyclebends and pristine device after 4000-cycle bending. Reproduced with permission from Ref. [20], Copyright 2022, Wiley. (d) Schematic diagram of released stress at interface by PenAAc treatment. Reproduced with permission from Ref. [15], Copyright 2022, Wiley. (e) Tensile force-displacement response curves based on SnO2/PVK-C and i-PPETA/PVK-b-PPETA films. Reproduced with permission from Ref. [30], Copyright 2024, Wiley. (f) 20 000 bending cycles efficiency degradation of control and target devices. Reproduced with permission from Ref. [30], Copyright 2024, Wiley.

Fig. 5.  (Color online) (a) Schematic representation of in-situ cross-linking of FB-TA for triple function interface optimization. Reproduced with permission from Ref. [37], Copyright 2024, Wiley. (b) Long-term stability experiments on ferroelectric 2D perovskite and control devices 25 °C, RH 30% ± 5%. Reproduced with permission from Ref. [32], Copyright 2024, Wiley. (c) Stability testing of unpackaged control devices/target devices with 3AAH in ambient air. Reproduced with permission from Ref. [33], Copyright 2024, Wiley. (d) Thermal stability of PSCs based on SnCl2 and SnSO4-ETL at 85 °C. Reproduced with permission from Ref. [5], Copyright 2024 IEEE. (e) and (f) Aging efficiency decay curves of devices with FDCA and without FDCA under two conditions. Reproduced with permission from Ref. [35], Copyright 2024, Wiley. (g) Structural formulae of AES and diagrams of perovskite films with and without AES. Reproduced with permission from Ref. [34], Copyright 2024, Wiley.

Fig. 6.  (Color online) Roll-to-roll process and monolithic interconnection and strip alignment process. Reproduced with permission from Ref. [43], Copyright 2024, Springer Nature.

Fig. 7.  (Color online) (a) High altitude balloons flight verification of different types solar cells by scientists at Hasselt University. Reproduced with permission from Ref. [54], Copyright 2018, Elsevier. (b) Schematic overview of solar cell test in MAPHEUS-8mission. Reproduced with permission from Ref. [55], Copyright 2020, Elsevier. (c) Flight tests of PSCs by Chinese scientists using a near-space balloon. Reproduced with permission from Ref. [56], Copyright 2023, Wiley. (d) Hongqiu-2 satellite with perovskite modules. Copyright People’s Daily. (e) Felix Lang's satellite conducting experiments with perovskite tandem solar cells. Copyright Electronic Engineering Album.

Table 1.   Summaries of f-PSCs studies in recent years including optimization strategies, efficiency and stability.

YearsTapesEnhancement strategyPCE (%)Bending conditionsEfficiency maintenanceRef.
2022p–i–nPenAAc interface modification23.6%4 mm, 500091%[15]
2021n–i–p3CBAI growth LD-PVSK21%5 mm, 20 00080%[19]
2023p–i–nHCOONH4 pre-embedded additive22.4%7 mm, 400090%[20]
2022n–i–pMethylamine succinate (MS) additive22.5%6 mm, 10 00085%[21]
2023n–i–pDynamic self-healing crosslinking monomer TA-NI23.8%5 mm, 20 00091%[22]
2024n–i–pSelf-healing ionic conductive elastomers24.8%5 mm, 10 00091%[24]
2024n–i–pADP crosslinked elastomer23.5%5 mm, 800090%[25]
2023n–i–pOETC in situ crosslinking23.4%5 mm, 500090%[26]
2023n–i–pCross-linker (MZ)23.9%5 mm, 10 00092%[27]
2024n–i–pLiquid crystal elastomer (LCE) buffer intermediate layer22.8%4 mm, 540088.4%[28]
2022n–i–pHADI interface modification22.4%3 directions, 100090%[29]
2024n–i–pPentaerythritol triacrylate cross-linked molecules24.9%5 mm, 20 00092%[30]
DownLoad: CSV

Table 2.   Environmental and operational stability of flexible perovskite solar cells.

Years Enhancement strategy PCE Conditions Efficiency maintenance Ref.
2021 CF3PEAI-assisted for 2D perovskite layers 21.1% Dry air, 880 h 86% [31]
2023 Ferroelectric 2D material with 3-PyA 23% 25 °C, RH 30% ± 5%, 30 d 92% [32]
2023 3AAH additive pre-built into the ETL 23.3% 25 °C, RH 30% ± 5%, 1000 h 82% [33]
2021 Al(acac)3 interfacial layer 20.87% RH > 50%, 1000 h 80% [42]
2024 Additive AES 20.1% RH 25% ± 5%, 2280 h 97% [34]
2024 FDCA multifunctional intermediate layer 24.53% No package, in the air 500 h 90% [35]
2024 Entinostat enhances interfacial binding 23.4% AM4.5G, 750 h 90% [36]
2024 Additive FB-TA 21.42% RH 85%, 85 °C, 1120 h 80% [37]
2024 Introduction of SnSO4 tin precursor 25.09% N2, AM1.5G, 800 h 90% [5]
DownLoad: CSV
[1]
Verduci R, Romano V, Brunetti G, et al. Solar energy in space applications: Review and technology perspectives. Adv Energy Mater, 2022, 12, 2200125 doi: 10.1002/aenm.202200125
[2]
NREL. Best research-cell efficiency chart from the national renewable energy laboratory.
[3]
Hu Y Z, Niu T T, Liu Y H, et al. Flexible perovskite solar cells with high power-per-weight: Progress, application, and perspectives. ACS Energy Lett, 2021, 6, 2917 doi: 10.1021/acsenergylett.1c01193
[4]
Gao Y J, Huang K Q, Long C Y, et al. Flexible perovskite solar cells: From materials and device architectures to applications. ACS Energy Lett, 2022, 7, 1412 doi: 10.1021/acsenergylett.1c02768
[5]
Ren N Y, Tan L G, Li M H, et al. 25% - Efficiency flexible perovskite solar cells via controllable growth of SnO2. iEnergy, 2024, 3, 39 doi: 10.23919/IEN.2024.0001
[6]
Kaltenbrunner M, Adam G, Głowacki E D, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat Mater, 2015, 14, 1032 doi: 10.1038/nmat4388
[7]
Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013, 4, 2761 doi: 10.1038/ncomms3761
[8]
You J B, Hong Z R, Yang Y, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8, 1674 doi: 10.1021/nn406020d
[9]
Kim B J, Kim D H, Lee Y Y, et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ Sci, 2015, 8, 916 doi: 10.1039/C4EE02441A
[10]
Shin S S, Yang W S, Noh J H, et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat Commun, 2015, 6, 7410 doi: 10.1038/ncomms8410
[11]
Yoon J, Sung H, Lee G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ Sci, 2017, 10, 337 doi: 10.1039/C6EE02650H
[12]
Chung J, Shin S S, Hwang K, et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy Environ Sci, 2020, 13, 4854 doi: 10.1039/D0EE02164D
[13]
Yang L K, Xiong Q, Li Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J Mater Chem A, 2021, 9, 1574 doi: 10.1039/D0TA10717D
[14]
Wu S F, Li Z, Zhang J, et al. Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells. Adv Mater, 2021, 33, 2105539 doi: 10.1002/adma.202105539
[15]
Gao D P, Li B, Li Z, et al. Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%. Adv Mater, 2023, 35, 2206387 doi: 10.1002/adma.202206387
[16]
Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30, 1801418 doi: 10.1002/adma.201801418
[17]
Huang K Q, Peng Y Y, Gao Y X, et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater, 2019, 9, 1901419 doi: 10.1002/aenm.201901419
[18]
Wang Z, Lu Y L, Xu Z H, et al. An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20%. Adv Sci, 2021, 8, 2101856 doi: 10.1002/advs.202101856
[19]
Dong Q S, Chen M, Liu Y H, et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5, 1587 doi: 10.1016/j.joule.2021.04.014
[20]
Zheng Z H, Li F M, Gong J, et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv Mater, 2022, 34, 2109879 doi: 10.1002/adma.202109879
[21]
Li M H, Zhou J J, Tan L G, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innovation (Camb), 2022, 3, 100310 doi: 10.1016/J.XINN.2022.100310
[22]
Chen Z Y, Cheng Q R, Chen H Y, et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv Mater, 2023, 35, 2300513 doi: 10.1002/adma.202300513
[23]
Jiang N R. Research on high-efficiency and high-stability flexible trans-perovskite solar cells. PhD Dissertation, Jilin University of China, 2022 (In Chinese)
[24]
Xue T Y, Fan B J, Jiang K J, et al. Self-healing ion-conducting elastomer towards record efficient flexible perovskite solar cells with excellent recoverable mechanical stability. Energy Environ Sci, 2024, 17, 2621 doi: 10.1039/D4EE00462K
[25]
Wang Y H, Cao R K, Meng Y Y, et al. Mechanical robust and self-healing flexible perovskite solar cells with efficiency exceeding 23%. Sci China Chem, 2024, 67, 2670 doi: 10.1007/s11426-024-1954-8
[26]
Wu Y Y, Xu G Y, Xi J C, et al. In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule, 2023, 7, 398 doi: 10.1016/j.joule.2022.12.013
[27]
Wu X X, Xu G Y, Yang F, et al. Realizing 23.9% flexible perovskite solar cells via alleviating the residual strain induced by delayed heat transfer. ACS Energy Lett, 2023, 8, 3750 doi: 10.1021/acsenergylett.3c01167
[28]
Ma Y B, You J X, Zhang L, et al. High thermal conductivity of liquid crystal elastomer for stress-less flexible perovskite solar cells. Adv Funct Mater, 2024, 34, 2405250 doi: 10.1002/adfm.202405250
[29]
Yang L, Feng J S, Liu Z K, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv Mater, 2022, 34, 2201681 doi: 10.1002/adma.202201681
[30]
Wu Y Y, Xu G Y, Shen Y X, et al. Stereoscopic polymer network for developing mechanically robust flexible perovskite solar cells with an efficiency approaching 25%. Adv Mater, 2024, 36, 2403531 doi: 10.1002/adma.202403531
[31]
Long C Y, Huang K Q, Chang J H, et al. Creating a dual-functional 2D perovskite layer at the interface to enhance the performance of flexible perovskite solar cells. Small, 2021, 17, 2102368 doi: 10.1002/smll.202102368
[32]
Han B, Wang Y H, Liu C, et al. Rational design of ferroelectric 2D perovskite for improving the efficiency of flexible perovskite solar cells over 23 %. Angew Chem Int Ed, 2023, 62, e202217526 doi: 10.1002/anie.202217526
[33]
Meng Y Y, Liu C, Cao R K, et al. Pre-buried ETL with bottom-up strategy toward flexible perovskite solar cells with efficiency over 23%. Adv Funct Mater, 2023, 33, 2214788 doi: 10.1002/adfm.202214788
[34]
Zou Y Q, Song Q L, Zhou J G, et al. Ammonium sulfate to modulate crystallization for high-performance rigid and flexible perovskite solar cells. Small, 2024, 20, 2401456 doi: 10.1002/smll.202401456
[35]
Sun Q, Meng X X, Liu G, et al. SnO2 surface modification and perovskite buried interface passivation by 2, 5-furandicarboxylic acid for flexible perovskite solar cells. Adv Funct Mater, 2024, 34, 2404686 doi: 10.1002/adfm.202404686
[36]
Xu W Z, Chen B, Zhang Z, et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat Photonics, 2024, 18, 379 doi: 10.1038/s41566-023-01373-z
[37]
Tu S L, Gang Y, Lin Y Q, et al. Triple cross-linking engineering strategies for efficient and stable inverted flexible perovskite solar cells. Small, 2024, 20, 2310868 doi: 10.1002/smll.202310868
[38]
Wang Z Y, Wang J T, Li Z, et al. Crosslinking and densification by plasma-enhanced molecular layer deposition for hermetic seal of flexible perovskite solar cells. Nano Energy, 2023, 109, 108232 doi: 10.1016/j.nanoen.2023.108232
[39]
Woo J H, Park S Y, Koo D, et al. Highly elastic and corrosion-resistive metallic glass thin films for flexible encapsulation. ACS Appl Mater Interfaces, 2022, 14, 5578 doi: 10.1021/acsami.1c20551
[40]
Hughes D, Spence M, Thomas S K, et al. Effectiveness of poly(methyl methacrylate) spray encapsulation for perovskite solar cells. J Phys Energy, 2024, 6, 025001 doi: 10.1088/2515-7655/ad20f5
[41]
Mujahid M, Chen C, Hu W, et al. Progress of high-throughput and low-cost flexible perovskite solar cells. Sol RRL, 2020, 4, 1900556 doi: 10.1002/solr.201900556
[42]
Ren N Y, Chen B B, Li R J, et al. Humidity-resistant flexible perovskite solar cells with over 20% efficiency. Sol RRL, 2021, 5, 2000795 doi: 10.1002/solr.202000795
[43]
Parvazian E, Watson T. The roll-to-roll revolution to tackle the industrial leap for perovskite solar cells. Nat Commun, 2024, 15, 3983. doi: 10.1038/s41467-024-48518-4
[44]
Galagan Y, Di Giacomo F, Gorter H, et al. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv Energy Mater, 2018, 8, 1801935 doi: 10.1002/aenm.201801935
[45]
Werner J, Boyd C C, Moot T, et al. Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ Sci, 2020, 13, 3393 doi: 10.1039/D0EE01923B
[46]
Beynon D, Parvazian E, Hooper K, et al. All-printed roll-to-roll perovskite photovoltaics enabled by solution-processed carbon electrode. Adv Mater, 2023, 35, 2208561 doi: 10.1002/adma.202208561
[47]
Weerasinghe H C, MacAdam N, Kim J E, et al. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat Commun, 2024, 15, 1656 doi: 10.1038/s41467-024-46016-1
[48]
Dang Z Y, Shamsi J, Palazon F, et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano, 2017, 11, 2124 doi: 10.1021/acsnano.6b08324
[49]
Chen X Y, Wang Z W. Investigating chemical and structural instabilities of lead halide perovskite induced by electron beam irradiation. Micron, 2019, 116, 73 doi: 10.1016/j.micron.2018.09.010
[50]
Svanström S, García Fernández A, Sloboda T, et al. X-ray stability and degradation mechanism of lead halide perovskites and lead halides. Phys Chem Chem Phys, 2021, 23, 12479 doi: 10.1039/D1CP01443A
[51]
Yang S, Xu Z Y, Xue S, et al. Organohalide lead perovskites: More stable than glass under gamma-ray radiation. Adv Mater, 2019, 31, 1805547 doi: 10.1002/adma.201805547
[52]
Boldyreva A G, Frolova L A, Zhidkov I S, et al. Unravelling the material composition effects on the gamma Ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records. J Phys Chem Lett, 2020, 11, 2630 doi: 10.1021/acs.jpclett.0c00581
[53]
Stuckelberger M E, Nietzold T, West B M, et al. Effects of X-rays on perovskite solar cells. J Phys Chem C, 2020, 124, 17949 doi: 10.1021/acs.jpcc.0c04645
[54]
Cardinaletti I, Vangerven T, Nagels S, et al. Organic and perovskite solar cells for space applications. Sol Energy Mater Sol Cells, 2018, 182, 121 doi: 10.1016/j.solmat.2018.03.024
[55]
Reb L K, Böhmer M, Predeschly B, et al. Perovskite and organic solar cells on a rocket flight. Joule, 2020, 4, 1880 doi: 10.1016/j.joule.2020.07.004
[56]
Wang H, Jiang X, Cao Y X, et al. The first record of diurnal performance evolution of perovskite solar cells in near space. Adv Energy Mater, 2023, 13, 2202643 doi: 10.1002/aenm.202202643
[57]
People’s Daily. Successful launch of Jubilee 2 Remote 3 Launch Vehicle.
[58]
Electronic Engineering Album. Scientists at the University of Potsdam receive the first experimental data on perovskite stacked batteries from space.
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 765 Times PDF downloads: 114 Times Cited by: 0 Times

    History

    Received: 17 September 2024 Revised: 13 November 2024 Online: Accepted Manuscript: 24 December 2024Uncorrected proof: 18 February 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shaoqi Bian, Guangshu Xu, Shufang Zhang, Qi Jiang, Xiaoguang Ma, Jingbi You, Xinbo Chu. Recent development of flexible perovskite solar cells and its potential applications to aerospace[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24090031 ****S Q Bian, G S Xu, S F Zhang, Q Jiang, X G Ma, J B You, and X B Chu, Recent development of flexible perovskite solar cells and its potential applications to aerospace[J]. J. Semicond., 2025, 46(5), 051801 doi: 10.1088/1674-4926/24090031
      Citation:
      Shaoqi Bian, Guangshu Xu, Shufang Zhang, Qi Jiang, Xiaoguang Ma, Jingbi You, Xinbo Chu. Recent development of flexible perovskite solar cells and its potential applications to aerospace[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24090031 ****
      S Q Bian, G S Xu, S F Zhang, Q Jiang, X G Ma, J B You, and X B Chu, Recent development of flexible perovskite solar cells and its potential applications to aerospace[J]. J. Semicond., 2025, 46(5), 051801 doi: 10.1088/1674-4926/24090031

      Recent development of flexible perovskite solar cells and its potential applications to aerospace

      DOI: 10.1088/1674-4926/24090031
      CSTR: 32376.14.1674-4926.24090031
      More Information
      • Shaoqi Bian got his BS from Ludong University in 2023. Now, he is a postgraduate of Ludong university under supervision of Prof. Xinbo Chu. His research focuses on inverted and flexible perovskite solar cells
      • Xinbo Chu received his doctoral degree from Institute of Semiconductors Chinese Academy of Sciences in 2015. He is currently a Professor of Ludong University. His research interests include halide perovskite material-based photon-electronic devices, as solar cell and photodetector
      • Corresponding author: xgs45622136@163.comhsiaoguangma@ldu.edu.cnchuxinbo@semi.ac.cn
      • Received Date: 2024-09-17
      • Revised Date: 2024-11-13
      • Available Online: 2024-12-24

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return