Citation: |
Jiahao Chen, Tao Zhang, Ziqi Tao, Kai Su, Shengrui Xu, Xiangdong Li, Huake Su, Yachao Zhang, Yue Hao, Jincheng Zhang. A γ-irradiated AlGaN/GaN Schottky barrier diode with barrier-decreased Schottky junction and high breakdown voltage[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25040026
****
J H Chen, T Zhang, Z Q Tao, K Su, S R Xu, X D Li, H K Su, Y C Zhang, Y Hao, and J C Zhang, A γ-irradiated AlGaN/GaN Schottky barrier diode with barrier-decreased Schottky junction and high breakdown voltage[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25040026
|
A γ-irradiated AlGaN/GaN Schottky barrier diode with barrier-decreased Schottky junction and high breakdown voltage
DOI: 10.1088/1674-4926/25040026
CSTR: 32376.14.1674-4926.25040026
More Information-
Abstract
In this letter, we demonstrate the effect of γ irradiation on the lateral AlGaN/GaN Schottky barrier diodes (SBDs) with self-terminated recessed anode structure and low work-function metal tungsten (W) as anode. For a comprehensive evaluation of the radiation-resistance performance of the device, the total dose of γ irradiation is up to 100 kGy with irradiation time of 20 hours. Attributed to the barrier lowering effect of the W/GaN interface induced by γ irradiation observed in the experiment, the extracted turn-on voltage (VON) defined at anode forward current of 1 mA decreases from 0.47 to 0.43 V. Meanwhile, benefiting from the reinforced Schottky interface treated by post-anode-annealing, a high breakdown voltage (BV) of 1.75 kV is obtained for the γ-irradiated AlGaN/GaN SBD, which shows the promising application for the deep-space radiation environment and promotes the development of radiation-resistance research for GaN SBDs.-
Keywords:
- GaN,
- SBDs,
- γ irradiation,
- breakdown voltage,
- radiation-resistance
-
References
[1] Wei X, Zhang X D, Tang W X, et al. 2.0 kV/2.1 mΩ·cm2 lateral p-GaN/AlGaN/GaN hybrid anode diodes with hydrogen plasma treatment. IEEE Electron Device Lett, 2022, 43(5), 693 doi: 10.1109/LED.2022.3159240[2] Liu X K, Wang H F, Wu J Y, et al. Vertical GaN Schottky barrier diode with record low contact resistivity on N-polarity using ultrathin ITO interfacial layer. IEEE Trans Electron Devices, 2023, 70(4), 1601 doi: 10.1109/TED.2023.3241565[3] Sun N, Wang R H, et al. 1500 V recessed-free GaN-based HEMTs with ultrathin barrier epitaxial structure. Appl Phys Lett, 2024, 125(23), 232102 doi: 10.1063/5.0235148[4] Zheng X, Feng S W, Peng C, et al. Evidence of GaN HEMT Schottky gate degradation after gamma irradiation. IEEE Trans Electron Devices, 2019, 66(9), 3784 doi: 10.1109/TED.2019.2928560[5] Liu S, Zhang J C, Zhao S L, et al. Characterization of trap states in AlN/GaN superlattice channel high electron mobility transistors under total-ionizing-dose with 60Co γ-irradiation. Appl Phys Lett, 2022, 120(20), 202102 doi: 10.1063/5.0088510[6] Zhang T, Zhang J C, Zhou H, et al. A > 3 kV/2.94 mΩ·cm2 and low leakage current with low turn-on voltage lateral GaN Schottky barrier diode on silicon substrate with anode engineering technique. IEEE Electron Device Lett, 2019, 40(10), 1583 doi: 10.1109/LED.2019.2933314[7] Zhang T, Wang Y, Zhang Y N, et al. Comprehensive annealing effects on AlGaN/GaN Schottky barrier diodes with different work-function metals. IEEE Trans Electron Devices, 2021, 68(6), 2661 doi: 10.1109/TED.2021.3074896[8] Gao J N, Jin Y F, Xie B, et al. Low ON-resistance GaN Schottky barrier diode with high VON uniformity using LPCVD Si3N4 compatible self-terminated, low damage anode recess technology. IEEE Electron Device Lett, 2018, 39(6), 859 doi: 10.1109/LED.2018.2830998[9] Lee J H, Im K S, Kim J K, et al. Performance of recessed anode AlGaN/GaN Schottky barrier diode passivated with high-temperature atomic layer-deposited Al2O3 layer. IEEE Trans Electron Devices, 2019, 66(1), 324 doi: 10.1109/TED.2018.2875356[10] Zhang T, Lv Y G, Li R H, et al. Current-collapse suppression of high-performance lateral AlGaN/GaN Schottky barrier diodes by a thick GaN cap layer. IEEE Electron Device Lett, 2021, 42(4), 477 doi: 10.1109/LED.2021.3057917[11] Xu R, Chen P, Liu M H, et al. 2.7-kV AlGaN/GaN Schottky barrier diode on silicon substrate with recessed-anode structure. Solid State Electron, 2021, 175, 107953 doi: 10.1016/j.sse.2020.107953[12] Wang H Y, Mao W, Yang C, et al. Lateral AlGaN/GaN Schottky barrier diode with arrayed p-GaN islands termination. IEEE Trans Electron Devices, 2021, 68(12), 6046 doi: 10.1109/TED.2021.3118326[13] Kang X W, Zheng Y K, Wu H, et al. Thin-barrier gated-edge termination AlGaN/GaN Schottky barrier diode with low reverse leakage and high turn-on uniformity. Semicond Sci Technol, 2021, 36(9), 094001 doi: 10.1088/1361-6641/ac0b93[14] Yang C Y, Wu J H, Chung C H, et al. Optimization of forward and reverse electrical characteristics of GaN-on-Si Schottky barrier diode through ladder-shaped hybrid anode engineering. IEEE Trans Electron Devices, 2022, 69(12), 6644 doi: 10.1109/TED.2022.3217999[15] Xu R, Chen P, Zhou J, et al. High power figure-of-merit, 10.6-kV AlGaN/GaN lateral Schottky barrier diode with single channel and sub-100-µm anode-to-cathode spacing. Small, 2022, 18(37), e2107301 doi: 10.1002/smll.202107301[16] Dai J X, Yu H M, Huang H L, et al. Recess-free thin-barrier AlGaN/GaN Schottky barrier diodes with ultra-low leakage current: Experiment and simulation study. Appl Phys Lett, 2024, 124(20), 202102 doi: 10.1063/5.0188134[17] Shi Y H, Li G X, He Y H, et al. Low turn-on voltage AlGaN/GaN Schottky barrier diode with a low work function anode and high work function field plate. Appl Phys Lett, 2024, 125(12), 123501 doi: 10.1063/5.0223396[18] Zhang T, Li R H, Lu J, et al. A 0.43 V/90 nA/mm lateral AlGaN/GaN Schottky barrier diode with plasma-free groove anode technique. IEEE Electron Device Lett, 2021, 42(12), 1747 doi: 10.1109/LED.2021.3123652[19] Visvkarma A K, Sehra K, Chanchal, et al. Impact of gamma radiations on static, pulsed I–V, and RF performance parameters of AlGaN/GaN HEMT. IEEE Trans Electron Devices, 2022, 69(5), 2299 doi: 10.1109/TED.2022.3161402[20] Aoshima K, Horita M, Jun S D. Correlation between non-ionizing energy loss and production rate of electron trap at EC–(0.12–0.20) eV formed in gallium nitride by various types of radiation. Appl Phys Lett, 2023, 122(1), 012106 doi: 10.1063/5.0128709[21] Tang Y, Zhou X T, Zhang B Y, et al. Comparison of proton irradiation effects on electrical properties of quasi-vertical and lateral GaN Schottky barrier diodes. IEEE Trans Nucl Sci, 2024, 72(1), 17[22] Pu T F, Li X B, Wu J Y, et al. Recessed anode AlGaN/GaN Schottky barrier diode for temperature sensor application. IEEE Trans Electron Devices, 2021, 68(10), 5162 doi: 10.1109/TED.2021.3105498[23] Liu J Y, He S, Xu G W, et al. The characteristics of line-shaped defects and their impact mechanism on device performance in β-Ga2O3 Schottky barrier diodes. Appl Phys Lett, 2025, 126(1), 012111 doi: 10.1063/5.0244107[24] Wu J Y, Liao Z L, Wang H F, et al. Ultra-low turn-on voltage (0.37 V) vertical GaN-on-GaN Schottky barrier diode via oxygen plasma treatment. Appl Phys Lett, 2023, 123(21), 213505 doi: 10.1063/5.0171406[25] Chen H Y, Zhang T, Su H K, et al. A 614 MW/cm2 AlGaN-channel Schottky barrier diode with high breakdown voltage and high temperature sensitivity. Appl Phys Lett, 2025, 126(1), 012112 doi: 10.1063/5.0248171[26] Roul B, Mukundan S, Chandan G, et al. Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces. AIP Adv, 2015, 5(3), 037130 doi: 10.1063/1.4916264[27] Laurent M A, Gupta G, Suntrup D J III, et al. Barrier height inhomogeneity and its impact on (Al, In, Ga)N Schottky diodes. J Appl Phys, 2016, 119(6), 064501 doi: 10.1063/1.4941531 -
Proportional views