J. Semicond. > 2021, Volume 42 > Issue 10 > 101605

REVIEWS

Progress in flexible perovskite solar cells with improved efficiency

Hua Kong1, 2, Wentao Sun2, and Huanping Zhou1,

+ Author Affiliations

 Corresponding author: Wentao Sun, wtaosun@pku.edu.cn; Huanping Zhou, happy_zhou@pku.edu.cn

DOI: 10.1088/1674-4926/42/10/101605

PDF

Turn off MathJax

Abstract: Perovskite solar cell has emerged as a promising candidate in flexible electronics due to its high mechanical flexibility, excellent optoelectronic properties, light weight and low cost. With the rapid development of the device structure and materials processing, the flexible perovskite solar cells (FPSCs) deliver 21.1% power conversion efficiency. This review introduces the latest developments in the efficiency and stability of FPSCs, including flexible substrates, carrier transport layers, perovskite films and electrodes. Some suggestions on how to further improve the efficiency, environmental and mechanical stability of FPSCs are provided. Specifically, we considered that to elevate the performance of FPSCs, it is crucial to substantially improve film quality of each functional layer, develop more boost encapsulation approach and explore flexible transparent electrodes with high conductivity, transmittance, low cost and expandable processability.

Key words: perovskite solar cellsflexible electronicsthin film depositioncarrier transport



[1]
Graetzel M, Janssen R A J, Mitzi D B, et al. Materials interface engineering for solution-processed photovoltaics. Nature, 2012, 488, 304 doi: 10.1038/nature11476
[2]
Chen W, Wu Y, Yue Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350, 944 doi: 10.1126/science.aad1015
[3]
Chen H, Ye F, Tang W T, et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 550, 92 doi: 10.1038/nature23877
[4]
Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722 doi: 10.1126/science.aai9081
[5]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r
[6]
Wang L G, Zhou H P, Hu J N, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 2019, 363, 265 doi: 10.1126/science.aau5701
[7]
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13, 460 doi: 10.1038/s41566-019-0398-2
[8]
Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511 doi: 10.1038/s41586-019-1036-3
[9]
Weber D. CH3NH3SnBr xI3– x (x = 0–3), a Sn(II)-system with cubic perovskite structure. Zeitschrift Fur Naturforschung B, 2014, 33, 862 doi: 10.1515/znb-1978-0809
[10]
D Weber. CH3NH3PBX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift Fur Naturforschung B, 2014, 33, 1443 doi: 10.1515/znb-1978-1214
[11]
Kim M, Kim G H, Lee T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3, 2179 doi: 10.1016/j.joule.2019.06.014
[12]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, 316 doi: 10.1038/nature12340
[13]
Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542 doi: 10.1126/science.1254050
[14]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356, 1376 doi: 10.1126/science.aan2301
[15]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517, 476 doi: 10.1038/nature14133
[16]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, 1234 doi: 10.1126/science.aaa9272
[17]
Yang L K, Xiong Q, Li Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J Mater Chem A, 2021, 9, 1574 doi: 10.1039/D0TA10717D
[18]
Kumar M H, Yantara N, Dharani S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun (Camb), 2013, 49, 11089 doi: 10.1039/c3cc46534a
[19]
Roldán-Carmona C, Malinkiewicz O, Soriano A, et al. Flexible high efficiency perovskite solar cells. Energy Environ Sci, 2014, 7, 994 doi: 10.1039/c3ee43619e
[20]
Shin S S, Yang W S, Noh J H, et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat Commun, 2015, 6, 7410 doi: 10.1038/ncomms8410
[21]
Yang D, Yang R X, Ren X D, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv Mater, 2016, 28, 5206 doi: 10.1002/adma.201600446
[22]
Yoon J, Sung H, Lee G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ Sci, 2017, 10, 337 doi: 10.1039/C6EE02650H
[23]
Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30, 1801418 doi: 10.1002/adma.201801418
[24]
Huang K Q, Peng Y Y, Gao Y X, et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater, 2019, 9, 1901419 doi: 10.1002/aenm.201901419
[25]
Meng X C, Cai Z R, Zhang Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat Commun, 2020, 11, 3016 doi: 10.1038/s41467-020-16831-3
[26]
Dong Q S, Chen M, Liu Y H, et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5, 1587 doi: 10.1016/j.joule.2021.04.014
[27]
Li M, Yang Y G, Wang Z K, et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv Mater, 2019, 31, 1901519 doi: 10.1002/adma.201901519
[28]
Zardetto V, Brown T M, Reale A, et al. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci B, 2011, 49, 638 doi: 10.1002/polb.22227
[29]
Lee M, Jo Y, Kim D S, et al. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate. J Mater Chem A, 2015, 3, 4129 doi: 10.1039/C4TA06011C
[30]
Lee M, Ko Y, Jun Y. Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. J Mater Chem A, 2015, 3, 19310 doi: 10.1039/C5TA02779A
[31]
Lee M, Ko Y, Min B K, et al. Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate. ChemSusChem, 2016, 9, 31 doi: 10.1002/cssc.201501332
[32]
Troughton J, Bryant D, Wojciechowski K, et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J Mater Chem A, 2015, 3, 9141 doi: 10.1039/C5TA01755F
[33]
Han G S, Lee S, Duff M L, et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates. ACS Appl Mater Interfaces, 2018, 10, 4697 doi: 10.1021/acsami.7b16499
[34]
Xiao Y M, Han G Y, Zhou H H, et al. An efficient titanium foil based perovskite solar cell: Using a titanium dioxide nanowire array anode and transparent poly(3, 4-ethylenedioxythiophene) electrode. RSC Adv, 2016, 6, 2778 doi: 10.1039/C5RA23430A
[35]
Abdollahi Nejand B, Nazari P, Gharibzadeh S, et al. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem Commun Camb Engl, 2017, 53, 747 doi: 10.1039/C6CC07573H
[36]
Tavakoli M M, Tsui K H, Zhang Q, et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 2015, 9, 10287 doi: 10.1021/acsnano.5b04284
[37]
Dai X Z, Deng Y H, van Brackle C H, et al. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv Energy Mater, 2020, 10, 1903108 doi: 10.1002/aenm.201903108
[38]
Dou B, Miller E M, Christians J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: Implications of the TCO. J Phys Chem Lett, 2017, 8, 4960 doi: 10.1021/acs.jpclett.7b02128
[39]
Mahmood K, Sarwar S, Mehran M T. Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv, 2017, 7, 17044 doi: 10.1039/C7RA00002B
[40]
Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 2014, 8, 133 doi: 10.1038/nphoton.2013.342
[41]
Jin T Y, Li W, Li Y Q, et al. High-performance flexible perovskite solar cells enabled by low-temperature ALD-assisted surface passivation. Adv Opt Mater, 2018, 6, 1801153 doi: 10.1002/adom.201801153
[42]
Zuo L J, Gu Z W, Ye T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J Am Chem Soc, 2015, 137, 2674 doi: 10.1021/ja512518r
[43]
Azmi R, Lee C L, Jung I H, et al. Simultaneous improvement in efficiency and stability of low-temperature-processed perovskite solar cells by interfacial control. Adv Energy Mater, 2018, 8, 1702934 doi: 10.1002/aenm.201702934
[44]
Azmi R, Hadmojo W T, Sinaga S, et al. High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Adv Energy Mater, 2018, 8, 1701683 doi: 10.1002/aenm.201701683
[45]
Song J X, Liu L J, Wang X F, et al. Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. J Mater Chem A, 2017, 5, 13439 doi: 10.1039/C7TA03331A
[46]
Huang X K, Yang J, Mao S, et al. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv Mater, 2014, 26, 4326 doi: 10.1002/adma.201400578
[47]
Yang J L, Siempelkamp B D, Mosconi E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater, 2015, 27, 4229 doi: 10.1021/acs.chemmater.5b01598
[48]
Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013, 4, 2761 doi: 10.1038/ncomms3761
[49]
Yang D, Yang R X, Zhang J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci, 2015, 8, 3208 doi: 10.1039/C5EE02155C
[50]
Di Giacomo F, Zardetto V, D'Epifanio A, et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv Energy Mater, 2015, 5, 1401808 doi: 10.1002/aenm.201401808
[51]
Jeong I, Jung H, Park M, et al. A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. Nano Energy, 2016, 28, 380 doi: 10.1016/j.nanoen.2016.09.004
[52]
Dkhissi Y, Huang F Z, Rubanov S, et al. Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J Power Sources, 2015, 278, 325 doi: 10.1016/j.jpowsour.2014.12.104
[53]
Ahn N, Kwak K, Jang M S, et al. Trapped charge-driven degradation of perovskite solar cells. Nat Commun, 2016, 7, 1 doi: 10.1038/ncomms13422
[54]
Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun, 2014, 5, 3834 doi: 10.1038/ncomms4834
[55]
Wu B, Fu K W, Yantara N, et al. Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis. Adv Energy Mater, 2015, 5, 1500829 doi: 10.1002/aenm.201500829
[56]
Kim B J, Kim M C, Lee D G, et al. Interface design of hybrid electron extraction layer for relieving hysteresis and retarding charge recombination in perovskite solar cells. Adv Mater Interfaces, 2018, 5, 1800993 doi: 10.1002/admi.201800993
[57]
Wang C L, Zhao D W, Grice C R, et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J Mater Chem A, 2016, 4, 12080 doi: 10.1039/C6TA04503K
[58]
Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2017, 2, 16177 doi: 10.1038/nenergy.2016.177
[59]
Park M, Kim J Y, Son H J, et al. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy, 2016, 26, 208 doi: 10.1016/j.nanoen.2016.04.060
[60]
Wang C L, Guan L, Zhao D W, et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells. ACS Energy Lett, 2017, 2, 2118 doi: 10.1021/acsenergylett.7b00644
[61]
Shin S S, Yang W S, Yeom E J, et al. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells. J Phys Chem Lett, 2016, 7, 1845 doi: 10.1021/acs.jpclett.6b00295
[62]
Ha J, Kim H, Lee H, et al. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Sol Energy Mater Sol Cells, 2017, 161, 338 doi: 10.1016/j.solmat.2016.11.031
[63]
Chung J, Shin S S, Hwang K, et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy Environ Sci, 2020, 13, 4854 doi: 10.1039/D0EE02164D
[64]
Yin X, Chen P, Que M, et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano, 2016, 10, 3630 doi: 10.1021/acsnano.5b08135
[65]
Zhang H, Cheng J Q, Lin F, et al. Pinhole-free and surface-nanostructured NiO x film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 2016, 10, 1503 doi: 10.1021/acsnano.5b07043
[66]
Jo J W, Seo M S, Park M, et al. Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material. Adv Funct Mater, 2016, 26, 4464 doi: 10.1002/adfm.201600746
[67]
Qiu W M, Paetzold U W, Gehlhaar R, et al. An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. J Mater Chem A, 2015, 3, 22824 doi: 10.1039/C5TA07515G
[68]
Bi C, Chen B, Wei H T, et al. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv Mater, 2017, 29, 1605900 doi: 10.1002/adma.201605900
[69]
Xiao M D, Huang F Z, Huang W C, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem, 2014, 126, 10056 doi: 10.1002/ange.201405334
[70]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[71]
Yang Z B, Chueh C C, Zuo F, et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv Energy Mater, 2015, 5, 1500328 doi: 10.1002/aenm.201500328
[72]
Wang Z, Zeng L X, Zhang C L, et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv Funct Mater, 2020, 30, 2001240 doi: 10.1002/adfm.202001240
[73]
Chen C, Wu C, Ding X D, et al. Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI2Br solar cells. Nano Energy, 2020, 71, 104604 doi: 10.1016/j.nanoen.2020.104604
[74]
Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442 doi: 10.1126/science.aap9282
[75]
Xi J, Xi K, Sadhanala A, et al. Chemical sintering reduced grain boundary defects for stable planar perovskite solar cells. Nano Energy, 2019, 56, 741 doi: 10.1016/j.nanoen.2018.11.021
[76]
Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501, 395 doi: 10.1038/nature12509
[77]
Lei T, Li F H, Zhu X Y, et al. Flexible perovskite solar modules with functional layers fully vacuum deposited. Sol RRL, 2020, 4, 2000292 doi: 10.1002/solr.202000292
[78]
Kim Y Y, Yang T Y, Suhonen R, et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat Commun, 2020, 11, 5146 doi: 10.1038/s41467-020-18940-5
[79]
Yang Z C, Zhang W J, Wu S H, et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci Adv, 2021, 7, eabg3749 doi: 10.1126/sciadv.abg3749
[80]
Razza S, Castro-Hermosa S, Di Carlo A, et al. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater, 2016, 4, 091508 doi: 10.1063/1.4962478
[81]
Zuo C T, Vak D, Angmo D C, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46, 185 doi: 10.1016/j.nanoen.2018.01.037
[82]
Tai Q D, Guo X Y, Tang G Q, et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew Chem Int Ed, 2019, 58, 806 doi: 10.1002/anie.201811539
[83]
Meng X C, Xing Z, Hu X T, et al. Stretchable perovskite solar cells with recoverable performance. Angew Chem Int Ed, 2020, 59, 16602 doi: 10.1002/anie.202003813
[84]
Kim B J, Kim D H, Lee Y Y, et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ Sci, 2015, 8, 916 doi: 10.1039/C4EE02441A
[85]
Louwet F, Groenendaal L, Dhaen J, et al. PEDOT/PSS: Synthesis, characterization, properties and applications. Synth Met, 2003, 135/136, 115 doi: 10.1016/S0379-6779(02)00518-0
[86]
Huang J, Miller P F, de Mello J C, et al. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synth Met, 2003, 139, 569 doi: 10.1016/S0379-6779(03)00280-7
[87]
Kaltenbrunner M, Adam G, Głowacki E D, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat Mater, 2015, 14, 1032 doi: 10.1038/nmat4388
[88]
Han J, Yuan S, Liu L N, et al. Fully indium-free flexible Ag nanowires/ZnO:F composite transparent conductive electrodes with high haze. J Mater Chem A, 2015, 3, 5375 doi: 10.1039/C4TA05728G
[89]
Lu H, Sun J, Zhang H, et al. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale, 2016, 8, 5946 doi: 10.1039/C6NR00011H
[90]
Sears K K, Fievez M, Gao M, et al. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-Die coated silver nanowire electrodes. Sol RRL, 2017, 1, 1700059 doi: 10.1002/solr.201700059
[91]
Li Y W, Meng L, Yang Y, et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun, 2016, 7, 10214 doi: 10.1038/ncomms10214
[92]
Bian H, Bai D L, Jin Z W, et al. Graded bandgap CsPbI2+ xBr1− x perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2018, 2, 1500 doi: 10.1016/j.joule.2018.04.012
[93]
Li Z, Kulkarni S A, Boix P P, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano, 2014, 8, 6797 doi: 10.1021/nn501096h
[94]
Wang X Y, Li Z, Xu W J, et al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy, 2015, 11, 728 doi: 10.1016/j.nanoen.2014.11.042
[95]
Jeon I, Chiba T, Delacou C, et al. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: Investigation of electron-blocking layers and dopants. Nano Lett, 2015, 15, 6665 doi: 10.1021/acs.nanolett.5b02490
[96]
Luo Q, Ma H, Hao F, et al. Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv Funct Mater, 2017, 27, 1703068 doi: 10.1002/adfm.201703068
[97]
Deng J, Qiu L B, Lu X, et al. Elastic perovskite solar cells. J Mater Chem A, 2015, 3, 21070 doi: 10.1039/C5TA06156C
[98]
Ameen S, Akhtar M S, Seo H K, et al. An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: Optoelectronic transient and charge trapping studies. J Phys Chem C, 2015, 119, 10379 doi: 10.1021/acs.jpcc.5b00933
[99]
Liu Z K, You P, Xie C, et al. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 2016, 28, 151 doi: 10.1016/j.nanoen.2016.08.038
[100]
Luo Q, Ma H, Hou Q, et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater, 2018, 28, 1706777 doi: 10.1002/adfm.201706777
[101]
Fu Q X, Tang X L, Huang B, et al. Recent progress on the long-term stability of perovskite solar cells. Adv Sci, 2018, 5, 1700387 doi: 10.1002/advs.201700387
[102]
Matteocci F, Cinà L, Lamanna E, et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 2016, 30, 162 doi: 10.1016/j.nanoen.2016.09.041
[103]
Han G S, Yoo J S, Yu F D, et al. Highly stable perovskite solar cells in humid and hot environment. J Mater Chem A, 2017, 5, 14733 doi: 10.1039/C7TA03881J
[104]
Yoo J S, Han G S, Lee S, et al. Dual function of a high-contrast hydrophobic-hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments. Nano Res, 2017, 10, 3885 doi: 10.1007/s12274-017-1603-6
Fig. 1.  (Color online) The PCE evolution of FPSCs from 2013 to 2021[1726].

Fig. 2.  (Color online) High-efficiency FPSC based on PEN and PET substrates. (a) Schematic diagram of the FPSC structure based on a perovskite layer doped with artemisinin. (b) JV curves on rigid and flexible substrates with and without artemisinin doping[17]. (c) Scanning electron microscope characterization of thin film deposited on glass/fluorine-doped tin oxide (FTO) substrate[26]. (d) The room temperature sheet resistance of conductive PET/ITO, PEN/ITO, glass/ITO, and glass/FTO substrates after heat treatment at different temperatures for 30 min[29].

Fig. 3.  (Color online) (a) Schematic diagram of FPSC structure based on Ti foil. (b) J–V curves of Au/Cu/HTM/CH3NH3PbI3/TiO2/Ti cells under 100 mW/cm2 AM 1.5G solar light with the same oxidized thickness of TiO2 layer (~50 nm) based on the same ambience, air, with different annealing temperatures[35]. (c) FPSC cross-section SEM based on ultra-thin Willow Glass substrate[37]. (d) Static contact angle of deionized water on PDMS layers with different aspect ratios. (e) Photograph of a flexible perovskite module. (f) J–V curve of the champion flexible perovskite modules[38].

Fig. 4.  (Color online) (a) Flexible perovskite device diagram[18]. (b) J–V curve of FPSC based on ZnO prepared at low temperature. (c) Light and dark J–V curves of FPSC[41]. (d) J–V curve under different ALD cycles. (e) Optimized FPSC structure and its J–V curve. (f) Variation of VOC, JSC, FF and PCE with bending times[42].

Fig. 5.  (Color online) (a) The first FPSC based on the TiO2 electron transport layer and (b) its J–V curve as the FPSCs performance of the electron transport layer[49]. (c) Steady-state PL spectra of glass/perovskite, FTO/anatase-TiO2/perovskite and FTO/amorphous-TiO2/perovskite film[50]. (d) FPSC cross-section scanning electron microscope with ALD deposited TiO2 dense layer and UV-irradiated mesoporous TiO2[51]. (e) Impedance diagram (Z"– Z')[57].

Fig. 6.  (Color online) (a) Schematic diagram of the fabrication of nanostructured NiOx thin films[65]. (b) Cu-doped NiOx FPSC device structure[67]. (c) PhNa-1T structure diagram (d) Energy band diagram using different hole transport layers[68].

Fig. 7.  (Color online) (a) Schematic diagram of the device prepared by blade coating method[73]. (b) Blow N2 gas and precursor solution with the addition of NH4Cl[38]. (c) J–V curve under an area of 8 mm2. (d) J–V curve under an area of 42.9 cm2. (e) Double hole transport Energy band diagram. (f, g) Under the layer MAPbI3, PTAA/MAPbI3 and PEDOT:PSS/MAPbI3 diagram of PL and its partial enlargement[74].

Fig. 8.  (Color online) (a) Resistance change of multilayer structure with bending cycle (ΔR/R0 (%)). (b, c) Low-magnification SEM images of PEN/ITO/TiOx/perovskite and PEN/TiOx/perovskite after 300 bending cycles, scale bar: 100 μm[86]. (d) The bionic mechanism of vertebrae and FPSCs. (e) PCE of FPSC after 500 cycles of bending at different bending radii. (f) The average PCE value of FPSC with a bending radius of 3 mm and bending 7000 cycles[25].

Table 1.   Performance parameters of polymer substrate[28].

SubstratePENPETPIPC
Tg (°C)120–15570–110155–270145
Tm (°C)269115–258250–452115–160
Density (g/cm3)1.361.391.35–1.431.20–1.22
Modulus (MPa)(0.1–0.5) × 103(2–4.1) × 1032.5 × 103(2.0–2.6) × 103
Work temp (°C)–50 to 150<400–40 to 130
CTE (ppm/°C)2015–338–2075
Water absorption (%)0.3–0.40.4–0.61.3–3.00.16–0.35
Solvent resistanceGoodGoodGoodPoor
Dimensional stabilityGoodGoodFairFair
Tg: glass transition temperature, Tm: melting temperature, CET: coefficient of thermal expansion.
DownLoad: CSV
[1]
Graetzel M, Janssen R A J, Mitzi D B, et al. Materials interface engineering for solution-processed photovoltaics. Nature, 2012, 488, 304 doi: 10.1038/nature11476
[2]
Chen W, Wu Y, Yue Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350, 944 doi: 10.1126/science.aad1015
[3]
Chen H, Ye F, Tang W T, et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 550, 92 doi: 10.1038/nature23877
[4]
Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722 doi: 10.1126/science.aai9081
[5]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r
[6]
Wang L G, Zhou H P, Hu J N, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 2019, 363, 265 doi: 10.1126/science.aau5701
[7]
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13, 460 doi: 10.1038/s41566-019-0398-2
[8]
Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511 doi: 10.1038/s41586-019-1036-3
[9]
Weber D. CH3NH3SnBr xI3– x (x = 0–3), a Sn(II)-system with cubic perovskite structure. Zeitschrift Fur Naturforschung B, 2014, 33, 862 doi: 10.1515/znb-1978-0809
[10]
D Weber. CH3NH3PBX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift Fur Naturforschung B, 2014, 33, 1443 doi: 10.1515/znb-1978-1214
[11]
Kim M, Kim G H, Lee T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3, 2179 doi: 10.1016/j.joule.2019.06.014
[12]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, 316 doi: 10.1038/nature12340
[13]
Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542 doi: 10.1126/science.1254050
[14]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356, 1376 doi: 10.1126/science.aan2301
[15]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517, 476 doi: 10.1038/nature14133
[16]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, 1234 doi: 10.1126/science.aaa9272
[17]
Yang L K, Xiong Q, Li Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J Mater Chem A, 2021, 9, 1574 doi: 10.1039/D0TA10717D
[18]
Kumar M H, Yantara N, Dharani S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun (Camb), 2013, 49, 11089 doi: 10.1039/c3cc46534a
[19]
Roldán-Carmona C, Malinkiewicz O, Soriano A, et al. Flexible high efficiency perovskite solar cells. Energy Environ Sci, 2014, 7, 994 doi: 10.1039/c3ee43619e
[20]
Shin S S, Yang W S, Noh J H, et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat Commun, 2015, 6, 7410 doi: 10.1038/ncomms8410
[21]
Yang D, Yang R X, Ren X D, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv Mater, 2016, 28, 5206 doi: 10.1002/adma.201600446
[22]
Yoon J, Sung H, Lee G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ Sci, 2017, 10, 337 doi: 10.1039/C6EE02650H
[23]
Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30, 1801418 doi: 10.1002/adma.201801418
[24]
Huang K Q, Peng Y Y, Gao Y X, et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater, 2019, 9, 1901419 doi: 10.1002/aenm.201901419
[25]
Meng X C, Cai Z R, Zhang Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat Commun, 2020, 11, 3016 doi: 10.1038/s41467-020-16831-3
[26]
Dong Q S, Chen M, Liu Y H, et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5, 1587 doi: 10.1016/j.joule.2021.04.014
[27]
Li M, Yang Y G, Wang Z K, et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv Mater, 2019, 31, 1901519 doi: 10.1002/adma.201901519
[28]
Zardetto V, Brown T M, Reale A, et al. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci B, 2011, 49, 638 doi: 10.1002/polb.22227
[29]
Lee M, Jo Y, Kim D S, et al. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate. J Mater Chem A, 2015, 3, 4129 doi: 10.1039/C4TA06011C
[30]
Lee M, Ko Y, Jun Y. Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. J Mater Chem A, 2015, 3, 19310 doi: 10.1039/C5TA02779A
[31]
Lee M, Ko Y, Min B K, et al. Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate. ChemSusChem, 2016, 9, 31 doi: 10.1002/cssc.201501332
[32]
Troughton J, Bryant D, Wojciechowski K, et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J Mater Chem A, 2015, 3, 9141 doi: 10.1039/C5TA01755F
[33]
Han G S, Lee S, Duff M L, et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates. ACS Appl Mater Interfaces, 2018, 10, 4697 doi: 10.1021/acsami.7b16499
[34]
Xiao Y M, Han G Y, Zhou H H, et al. An efficient titanium foil based perovskite solar cell: Using a titanium dioxide nanowire array anode and transparent poly(3, 4-ethylenedioxythiophene) electrode. RSC Adv, 2016, 6, 2778 doi: 10.1039/C5RA23430A
[35]
Abdollahi Nejand B, Nazari P, Gharibzadeh S, et al. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem Commun Camb Engl, 2017, 53, 747 doi: 10.1039/C6CC07573H
[36]
Tavakoli M M, Tsui K H, Zhang Q, et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 2015, 9, 10287 doi: 10.1021/acsnano.5b04284
[37]
Dai X Z, Deng Y H, van Brackle C H, et al. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv Energy Mater, 2020, 10, 1903108 doi: 10.1002/aenm.201903108
[38]
Dou B, Miller E M, Christians J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: Implications of the TCO. J Phys Chem Lett, 2017, 8, 4960 doi: 10.1021/acs.jpclett.7b02128
[39]
Mahmood K, Sarwar S, Mehran M T. Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv, 2017, 7, 17044 doi: 10.1039/C7RA00002B
[40]
Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 2014, 8, 133 doi: 10.1038/nphoton.2013.342
[41]
Jin T Y, Li W, Li Y Q, et al. High-performance flexible perovskite solar cells enabled by low-temperature ALD-assisted surface passivation. Adv Opt Mater, 2018, 6, 1801153 doi: 10.1002/adom.201801153
[42]
Zuo L J, Gu Z W, Ye T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J Am Chem Soc, 2015, 137, 2674 doi: 10.1021/ja512518r
[43]
Azmi R, Lee C L, Jung I H, et al. Simultaneous improvement in efficiency and stability of low-temperature-processed perovskite solar cells by interfacial control. Adv Energy Mater, 2018, 8, 1702934 doi: 10.1002/aenm.201702934
[44]
Azmi R, Hadmojo W T, Sinaga S, et al. High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Adv Energy Mater, 2018, 8, 1701683 doi: 10.1002/aenm.201701683
[45]
Song J X, Liu L J, Wang X F, et al. Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. J Mater Chem A, 2017, 5, 13439 doi: 10.1039/C7TA03331A
[46]
Huang X K, Yang J, Mao S, et al. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv Mater, 2014, 26, 4326 doi: 10.1002/adma.201400578
[47]
Yang J L, Siempelkamp B D, Mosconi E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater, 2015, 27, 4229 doi: 10.1021/acs.chemmater.5b01598
[48]
Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013, 4, 2761 doi: 10.1038/ncomms3761
[49]
Yang D, Yang R X, Zhang J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci, 2015, 8, 3208 doi: 10.1039/C5EE02155C
[50]
Di Giacomo F, Zardetto V, D'Epifanio A, et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv Energy Mater, 2015, 5, 1401808 doi: 10.1002/aenm.201401808
[51]
Jeong I, Jung H, Park M, et al. A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. Nano Energy, 2016, 28, 380 doi: 10.1016/j.nanoen.2016.09.004
[52]
Dkhissi Y, Huang F Z, Rubanov S, et al. Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J Power Sources, 2015, 278, 325 doi: 10.1016/j.jpowsour.2014.12.104
[53]
Ahn N, Kwak K, Jang M S, et al. Trapped charge-driven degradation of perovskite solar cells. Nat Commun, 2016, 7, 1 doi: 10.1038/ncomms13422
[54]
Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun, 2014, 5, 3834 doi: 10.1038/ncomms4834
[55]
Wu B, Fu K W, Yantara N, et al. Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis. Adv Energy Mater, 2015, 5, 1500829 doi: 10.1002/aenm.201500829
[56]
Kim B J, Kim M C, Lee D G, et al. Interface design of hybrid electron extraction layer for relieving hysteresis and retarding charge recombination in perovskite solar cells. Adv Mater Interfaces, 2018, 5, 1800993 doi: 10.1002/admi.201800993
[57]
Wang C L, Zhao D W, Grice C R, et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J Mater Chem A, 2016, 4, 12080 doi: 10.1039/C6TA04503K
[58]
Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2017, 2, 16177 doi: 10.1038/nenergy.2016.177
[59]
Park M, Kim J Y, Son H J, et al. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy, 2016, 26, 208 doi: 10.1016/j.nanoen.2016.04.060
[60]
Wang C L, Guan L, Zhao D W, et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells. ACS Energy Lett, 2017, 2, 2118 doi: 10.1021/acsenergylett.7b00644
[61]
Shin S S, Yang W S, Yeom E J, et al. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells. J Phys Chem Lett, 2016, 7, 1845 doi: 10.1021/acs.jpclett.6b00295
[62]
Ha J, Kim H, Lee H, et al. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Sol Energy Mater Sol Cells, 2017, 161, 338 doi: 10.1016/j.solmat.2016.11.031
[63]
Chung J, Shin S S, Hwang K, et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy Environ Sci, 2020, 13, 4854 doi: 10.1039/D0EE02164D
[64]
Yin X, Chen P, Que M, et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano, 2016, 10, 3630 doi: 10.1021/acsnano.5b08135
[65]
Zhang H, Cheng J Q, Lin F, et al. Pinhole-free and surface-nanostructured NiO x film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 2016, 10, 1503 doi: 10.1021/acsnano.5b07043
[66]
Jo J W, Seo M S, Park M, et al. Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material. Adv Funct Mater, 2016, 26, 4464 doi: 10.1002/adfm.201600746
[67]
Qiu W M, Paetzold U W, Gehlhaar R, et al. An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. J Mater Chem A, 2015, 3, 22824 doi: 10.1039/C5TA07515G
[68]
Bi C, Chen B, Wei H T, et al. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv Mater, 2017, 29, 1605900 doi: 10.1002/adma.201605900
[69]
Xiao M D, Huang F Z, Huang W C, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem, 2014, 126, 10056 doi: 10.1002/ange.201405334
[70]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[71]
Yang Z B, Chueh C C, Zuo F, et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv Energy Mater, 2015, 5, 1500328 doi: 10.1002/aenm.201500328
[72]
Wang Z, Zeng L X, Zhang C L, et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv Funct Mater, 2020, 30, 2001240 doi: 10.1002/adfm.202001240
[73]
Chen C, Wu C, Ding X D, et al. Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI2Br solar cells. Nano Energy, 2020, 71, 104604 doi: 10.1016/j.nanoen.2020.104604
[74]
Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442 doi: 10.1126/science.aap9282
[75]
Xi J, Xi K, Sadhanala A, et al. Chemical sintering reduced grain boundary defects for stable planar perovskite solar cells. Nano Energy, 2019, 56, 741 doi: 10.1016/j.nanoen.2018.11.021
[76]
Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501, 395 doi: 10.1038/nature12509
[77]
Lei T, Li F H, Zhu X Y, et al. Flexible perovskite solar modules with functional layers fully vacuum deposited. Sol RRL, 2020, 4, 2000292 doi: 10.1002/solr.202000292
[78]
Kim Y Y, Yang T Y, Suhonen R, et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat Commun, 2020, 11, 5146 doi: 10.1038/s41467-020-18940-5
[79]
Yang Z C, Zhang W J, Wu S H, et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci Adv, 2021, 7, eabg3749 doi: 10.1126/sciadv.abg3749
[80]
Razza S, Castro-Hermosa S, Di Carlo A, et al. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater, 2016, 4, 091508 doi: 10.1063/1.4962478
[81]
Zuo C T, Vak D, Angmo D C, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46, 185 doi: 10.1016/j.nanoen.2018.01.037
[82]
Tai Q D, Guo X Y, Tang G Q, et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew Chem Int Ed, 2019, 58, 806 doi: 10.1002/anie.201811539
[83]
Meng X C, Xing Z, Hu X T, et al. Stretchable perovskite solar cells with recoverable performance. Angew Chem Int Ed, 2020, 59, 16602 doi: 10.1002/anie.202003813
[84]
Kim B J, Kim D H, Lee Y Y, et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ Sci, 2015, 8, 916 doi: 10.1039/C4EE02441A
[85]
Louwet F, Groenendaal L, Dhaen J, et al. PEDOT/PSS: Synthesis, characterization, properties and applications. Synth Met, 2003, 135/136, 115 doi: 10.1016/S0379-6779(02)00518-0
[86]
Huang J, Miller P F, de Mello J C, et al. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synth Met, 2003, 139, 569 doi: 10.1016/S0379-6779(03)00280-7
[87]
Kaltenbrunner M, Adam G, Głowacki E D, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat Mater, 2015, 14, 1032 doi: 10.1038/nmat4388
[88]
Han J, Yuan S, Liu L N, et al. Fully indium-free flexible Ag nanowires/ZnO:F composite transparent conductive electrodes with high haze. J Mater Chem A, 2015, 3, 5375 doi: 10.1039/C4TA05728G
[89]
Lu H, Sun J, Zhang H, et al. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale, 2016, 8, 5946 doi: 10.1039/C6NR00011H
[90]
Sears K K, Fievez M, Gao M, et al. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-Die coated silver nanowire electrodes. Sol RRL, 2017, 1, 1700059 doi: 10.1002/solr.201700059
[91]
Li Y W, Meng L, Yang Y, et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun, 2016, 7, 10214 doi: 10.1038/ncomms10214
[92]
Bian H, Bai D L, Jin Z W, et al. Graded bandgap CsPbI2+ xBr1− x perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2018, 2, 1500 doi: 10.1016/j.joule.2018.04.012
[93]
Li Z, Kulkarni S A, Boix P P, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano, 2014, 8, 6797 doi: 10.1021/nn501096h
[94]
Wang X Y, Li Z, Xu W J, et al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy, 2015, 11, 728 doi: 10.1016/j.nanoen.2014.11.042
[95]
Jeon I, Chiba T, Delacou C, et al. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: Investigation of electron-blocking layers and dopants. Nano Lett, 2015, 15, 6665 doi: 10.1021/acs.nanolett.5b02490
[96]
Luo Q, Ma H, Hao F, et al. Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv Funct Mater, 2017, 27, 1703068 doi: 10.1002/adfm.201703068
[97]
Deng J, Qiu L B, Lu X, et al. Elastic perovskite solar cells. J Mater Chem A, 2015, 3, 21070 doi: 10.1039/C5TA06156C
[98]
Ameen S, Akhtar M S, Seo H K, et al. An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: Optoelectronic transient and charge trapping studies. J Phys Chem C, 2015, 119, 10379 doi: 10.1021/acs.jpcc.5b00933
[99]
Liu Z K, You P, Xie C, et al. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 2016, 28, 151 doi: 10.1016/j.nanoen.2016.08.038
[100]
Luo Q, Ma H, Hou Q, et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater, 2018, 28, 1706777 doi: 10.1002/adfm.201706777
[101]
Fu Q X, Tang X L, Huang B, et al. Recent progress on the long-term stability of perovskite solar cells. Adv Sci, 2018, 5, 1700387 doi: 10.1002/advs.201700387
[102]
Matteocci F, Cinà L, Lamanna E, et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 2016, 30, 162 doi: 10.1016/j.nanoen.2016.09.041
[103]
Han G S, Yoo J S, Yu F D, et al. Highly stable perovskite solar cells in humid and hot environment. J Mater Chem A, 2017, 5, 14733 doi: 10.1039/C7TA03881J
[104]
Yoo J S, Han G S, Lee S, et al. Dual function of a high-contrast hydrophobic-hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments. Nano Res, 2017, 10, 3885 doi: 10.1007/s12274-017-1603-6
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3884 Times PDF downloads: 254 Times Cited by: 0 Times

    History

    Received: 27 July 2021 Revised: 12 September 2021 Online: Accepted Manuscript: 16 September 2021Uncorrected proof: 23 September 2021Published: 15 October 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hua Kong, Wentao Sun, Huanping Zhou. Progress in flexible perovskite solar cells with improved efficiency[J]. Journal of Semiconductors, 2021, 42(10): 101605. doi: 10.1088/1674-4926/42/10/101605 ****H Kong, W T Sun, H P Zhou, Progress in flexible perovskite solar cells with improved efficiency[J]. J. Semicond., 2021, 42(10): 101605. doi: 10.1088/1674-4926/42/10/101605.
      Citation:
      Hua Kong, Wentao Sun, Huanping Zhou. Progress in flexible perovskite solar cells with improved efficiency[J]. Journal of Semiconductors, 2021, 42(10): 101605. doi: 10.1088/1674-4926/42/10/101605 ****
      H Kong, W T Sun, H P Zhou, Progress in flexible perovskite solar cells with improved efficiency[J]. J. Semicond., 2021, 42(10): 101605. doi: 10.1088/1674-4926/42/10/101605.

      Progress in flexible perovskite solar cells with improved efficiency

      DOI: 10.1088/1674-4926/42/10/101605
      More Information
      • Hua Kong:received her Bachelor Degree in 2017 from College of Electronic Science and Engineering, Jilin University. Now she is a PhD student at Peking University. Her research interests include the application of perovskite in lithium-ion batteries and new flexible perovskite solar cells
      • Wentao Sun:got her BS degree in 1999 from Central South University and PhD degree in 2005 from Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. Then she joined Lianmao Peng’s group at Peking University. In June 2008, she joined Peking University as an assistant Professor. Her research interests include the nano-photoelectric devices and functional nano-materials
      • Huanping Zhou:got her BS degree in 2005 from China University of Geosciences and PhD degree in 2010 from College of Chemistry and Molecular Engineering, Peking University. Then she joined University of California, Los Angeles as a Postdoctoral research. In June 2015, she joined Peking University as an assistant Professor. Her research interests include the development of functional inorganic materials and organic-inorganic hybrid materials, and explore the application in energy, catalysis and so on
      • Corresponding author: wtaosun@pku.edu.cnhappy_zhou@pku.edu.cn
      • Received Date: 2021-07-27
      • Revised Date: 2021-09-12
      • Published Date: 2021-10-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return