Citation: |
Hong Zhou, Jincheng Zhang, Chunfu Zhang, Qian Feng, Shenglei Zhao, Peijun Ma, Yue Hao. A review of the most recent progresses of state-of-art gallium oxide power devices[J]. Journal of Semiconductors, 2019, 40(1): 011803. doi: 10.1088/1674-4926/40/1/011803
****
H Zhou, J C Zhang, C F Zhang, Q Feng, S L Zhao, P J Ma, Y Hao, A review of the most recent progresses of state-of-art gallium oxide power devices[J]. J. Semicond., 2019, 40(1): 011803. doi: 10.1088/1674-4926/40/1/011803.
|
A review of the most recent progresses of state-of-art gallium oxide power devices
DOI: 10.1088/1674-4926/40/1/011803
More Information
-
Abstract
Until very recently, gallium oxide (Ga2O3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic electron mobility limit of 250 cm2/(V·s), yielding a high Baliga’s figures-of-merit (FOM) of more than 3000, which is several times higher than GaN and SiC. In addition to its excellent material properties, potential low-cost and large size substrate through melt-grown methodology also endows β-Ga2O3 more potential for future low-cost power devices. This article focuses on reviewing the most recent advances of β-Ga2O3 based power devices. It will be starting with a brief introduction to the material properties of β-Ga2O3 and then the growth techniques of its native substrate, followed by the thin film epitaxial growth. The performance of state-of-art β-Ga2O3 devices, including diodes and FETs are fully discussed and compared. Finally, potential solutions to the challenges of β-Ga2O3 are also discussed and explored.-
Keywords:
- gallium oxide,
- power electronics,
- power devices
-
References
[1] Zhang Y, Joishi C, Xia Z et al. Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. Appl Phys Lett 2018, 112: 233503 doi: 10.1063/1.5037095[2] Lv Y, Zhou X, Long S et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2. IEEE Electron Device Lett 2019, 39 doi: 10.1109/LED.2018.2881274[3] Green A J, Chabak K, Heller E R, et al. 3.8 MV/cm Breakdown strength of MOVPE-grown Sn-doped Ga2O3 MOSFETs. IEEE Electron Device Lett, 2016, 37 (7): 902. doi: 10.1109/LED.2016.2568139[4] Chabak K D, Moser N, Green A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett, 2016, 109: 213501. doi: 10.1063/1.4967931[5] Tadjer M, Mahadik N, Wheeler V D, et al. Communications-A (001) β-Ga2O3 MOSFETs with +2.9 V threshold voltage and HfO2 gate dielectric. ECS J Solid State Sci Tech, 2016, 5: 468. doi: 10.1149/2.0061609jss[6] Zeng K, Wallace J S, Heimburger C, et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 2017, 38 (4): 513. doi: 10.1109/LED.2017.2675544[7] Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11 (1): 22. doi: 10.1016/S1369-7021(07)70349-8[8] Fu H, Baranowski I, Huang X, et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV. IEEE Electron Device Lett, 2017, 38 (9): 1286. doi: 10.1109/LED.2017.2723603[9] Baliga B J. Power semiconductor-device figure of merit for high-frequency applications. IEEE Electron Device Lett, 1989, 10(10): 455. doi: 10.1109/55.43098[10] Wenckstern H V. Group‐III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 2017, 3(9): 1600350. doi: 10.1002/aelm.v3.9[11] Yoshioka S, Hayashi H, Kuwabara A, et al. Structures and energetics of Ga2O3 polymorphs. J Phys: Condens Matter, 2007, 19: 346211. doi: 10.1088/0953-8984/19/34/346211[12] He H, Orlando R, Blanco M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74 (19): 195123. doi: 10.1103/PhysRevB.74.195123[13] He H, Blanco M A, Pandey R. Electronic and thermodynamic properties of Ga2O3. Appl Phys Lett, 2006, 88: 261904. doi: 10.1063/1.2218046[14] Kroll P, Dronskowski R, Martin M. Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga–O–N. J Mater Chem, 2005, 15: 3296. doi: 10.1039/b506687e[15] Playford H Y, Hannon A C, Barney E R, et al. Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction. Eur J, 2013, 19 (8): 2803. doi: 10.1002/chem.201203359[16] Peelaers H, Van de Walle C G. Brillouin zone and band structure of β‐Ga2O3. Phys Status Solidi B, 2015, 252 (4): 828. doi: 10.1002/pssb.201451551[17] Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97: 142106. doi: 10.1063/1.3499306[18] Vasyltsiv V I, Rym Y I, Zakharo Y M. Optical absorption and photoconductivity at the band edge of β‐Ga2−xInxO3. Phys Status Solidi B, 1996, 195, 653. doi: 10.1002/(ISSN)1521-3951[19] Galazka Z, Irmscher K, Uecker R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 2014, 404 (15): 184. doi: 10.1016/j.jcrysgro.2014.07.021[20] Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β‐Ga2O3 single crystals. Cryst Res Technol, 2010, 45 (12), 1229. doi: 10.1002/crat.v45.12[21] Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J App Phys Part 1, 2016, 55, 1202A2. doi: 10.7567/JJAP.55.1202A2[22] Vıllora E G, Morioka Y, Atou T. Infrared reflectance and electrical conductivity of β-Ga2O3. Phys. Status Solidi A, 2002, 193: 187. doi: 10.1002/(ISSN)1521-396X[23] Zhang J, Li B, Xia C, Growth and spectral characterization of β-Ga2O3 single crystals. J Phys Chem Solids, 2006, 67: 2448. doi: 10.1016/j.jpcs.2006.06.025[24] Suzuki N, Ohira S, Tanaka M. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys Status Solidi C, 2007, 4 (7): 2310. doi: 10.1002/(ISSN)1610-1642[25] Mohamed M, Irmscher K, Janowitz C, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 2012, 101: 132106. doi: 10.1063/1.4755770[26] Suzuki K, Okamoto T, Takata M. Crystal growth of β-Ga2O3 by electric current heating method. Ceram Int, 2004, 30(7): 1679. doi: 10.1016/j.ceramint.2003.12.154[27] Zhang J, Xia C, Deng Q, et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn. J Phys Chem Solids, 2006, 67: 1656. doi: 10.1016/j.jpcs.2006.02.018[28] Tomm Y, Reiche P, Klimm D, et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 2000, 220 (4): 510. doi: 10.1016/S0022-0248(00)00851-4[29] Galazka Z, Uecker R, Klimm D et al.Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS J Solid State Sci Technol 2017, 6: Q3007 doi: 10.1016/j.jcrysgro.2014.07.021[30] Higashiwaki M, Kuramata A, Murakami H, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D, 2017, 50: 333002. doi: 10.1088/1361-6463/aa7aff[31] Hoshikawa K, Ohba E, Kobayashi E, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447 (1): 36. doi: 10.1016/j.jcrysgro.2016.04.022[32] Alema F, Hertog B, Osinsky A, et al. Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 2017, 475: 77. doi: 10.1016/j.jcrysgro.2017.06.001[33] Gogova D, Wagner G, Baldini M, et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth, 2014, 401: 665. doi: 10.1016/j.jcrysgro.2013.11.056[34] Baldini M, Albrecht M, Fiedler A, et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J Mater Sci, 2016, 51(7): 3650. doi: 10.1007/s10853-015-9693-6[35] Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J Cryst Growth, 2014, 392: 30. doi: 10.1016/j.jcrysgro.2014.02.002[36] Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46: 7217. doi: 10.1143/JJAP.46.7217[37] Okumura H, Kita M, Sasaki K, et al. Systematic investigation of the growth rate of β-Ga2O3(010) by plasma-assisted molecular beam epitaxy. Appl Phys Express, 2014, 7: 095501. doi: 10.7567/APEX.7.095501[38] Oshima T, Arai N, Suzuki N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 2008, 516: 5768. doi: 10.1016/j.tsf.2007.10.045[39] Y Oshima, E G Vıllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 2015, 8: 055501. doi: 10.7567/APEX.8.055501[40] Watahiki T, Yuda Y, Furukawa A, et al. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl Phys Lett, 2017, 111: 222104. doi: 10.1063/1.4998311[41] Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2015, 8: 015503. doi: 10.7567/APEX.8.015503[42] K Nomura, K Goto, R Togashi, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405: 19. doi: 10.1016/j.jcrysgro.2014.06.051[43] Hebert C, Petitmangin A, Perrie're J, et al. Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition. Mater Chem Phys, 2012, 133 (1): 135. doi: 10.1016/j.matchemphys.2011.12.078[44] Chen Z, Wang X, Noda S, et al. Effects of dopant contents on structural, morphological and optical properties of Er doped Ga2O3 films. Superlattices Microstruct, 2016, 90: 207. doi: 10.1016/j.spmi.2015.12.025[45] Kawaharamura T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 2014, 53: 05FF08. doi: 10.7567/JJAP.53.05FF08[46] Lee S D, Kaneko K, Fujita S. Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Jpn J Appl Phys, 2016, 55: 1202B8. doi: 10.7567/JJAP.55.1202B8[47] Dang G T, Kawaharamura T, Furuta M, et al. Metal–semiconductor field-effect transistors with In–Ga–Zn–O channel grown by nonvacuum-processed mist chemical vapor deposition. IEEE Electron Device Lett, 2015, 36 (5): 463. doi: 10.1109/LED.2015.2412124[48] Fujita S, Kaneko K. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 2014, 401: 588. doi: 10.1016/j.jcrysgro.2014.02.032[49] Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51: 070203. doi: 10.1143/JJAP.51.070203[50] Baldini M, Albrecht M, Gogova D, et al. Effect of indium as a surfactant in (Ga1−xInx)2O3 epitaxial growth on β-Ga2O3 by metal organic vapour phase epitaxy. Semicond Sci Technol, 2015, 30: 024013. doi: 10.1088/0268-1242/30/2/024013[51] Hu Z, Zhou H, Feng Q. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 2018, 39(10): 1564. doi: 10.1109/LED.2018.2868444[52] Sasaki K, Kuramata A, Masui T, et al. Device-quality beta-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Exp, 2012, 5: 035502. doi: 10.1143/APEX.5.035502[53] Konishi K, Goto K, Murakami H, et al. 1-kV vertical β-Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110 (10): 103506. doi: 10.1063/1.4977857[54] Yang J, Ahn S, Ren F, et al. High reverse breakdown voltage Schottky rectifiers without edge termination on β-Ga2O3. Appl Phys Lett, 2017, 110 (19): 192101. doi: 10.1063/1.4983203[55] Yang J, Ahn S, Ren F, et al. High breakdown voltage (−201) β-Ga2O3 Schottky rectifiers. IEEE Electron Device Lett, 2017, 38 (7): 906. doi: 10.1109/LED.2017.2703609[56] Yang J, Ren F, Pearton S J, et al. Vertical geometry 2-A forward current Ga2O3 Schottky rectifiers on bulk Ga2O3 substrates. IEEE Trans Electron Devices, 2018, 65(7): 2790. doi: 10.1109/TED.2018.2838439[57] Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal−semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett 2012, 100: 013504. doi: 10.1063/1.3674287[58] Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2016, 37: 212. doi: 10.1109/LED.2015.2512279[59] Zeng K, Vaidya A, Singisetti U, et al. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39(9): 1385. doi: 10.1109/LED.2018.2859049[60] Zeng K, Sasaki K, Kuramata A, et al. Depletion and enhancement mode β-Ga2O3 MOSFETs with ALD SiO2 gate and near 400 V breakdown voltage. Proc 74th Annu DRC, 2016: 1[61] Hu Z, Nomoto K, Li W, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett, 2018, 39(6): 869. doi: 10.1109/LED.2018.2830184[62] Green A J, Chabak K D, Baldini M, et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017.38 (6): 790. doi: 10.1109/LED.2017.2694805[63] Singh M, Casbon M A, Uren M J, et al. Pulsed large signal rf performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018.39 (10): 1572. doi: 10.1109/led.2018.2865832[64] Chabak K D, Walker D E, Green A J, et al. sub-micron gallium oxide radio frequency field-effect transistors. IEEE MTT-S IMWS-AMP, 2018: 1[65] Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect transistors with wide-bandgap beta-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104: 203111. doi: 10.1063/1.4879800[66] Hu Z, Zhou H, Dang K, et al. lateral-ga2o3 schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV. IEEE J Electron Device Soc, 2018, 6: 815. doi: 10.1109/JEDS.2018.2853615[67] Zhou H, Maize K, Qiu G, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111: 092102. doi: 10.1063/1.5000735[68] : Zhou H, Si M, Alghamdi S, et al. High performance depletion/ enhancement mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 2017, 38: 103. doi: 10.1109/LED.2016.2635579[69] Moser N A, Mccandless J P, Crespo A, et al. High pulsed density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 2017, 110: 143505. doi: 10.1063/1.4979789[70] Shin S H, Wahab M A, Masuduzzaman A, et al. Direct observation of self-heating in III–V gate-all-around nanowire MOSFETs. IEEE Trans Electron Devices, 2014, 62: 3516. doi: 10.1109/IEDM.2014.7047088[71] Zhou H, Maize K, Noh J, et al. Thermo-dynamic studies of β-Ga2O3 nano-membrane field-effect transistors on sapphire substrate. ACS Omega, 2017, 2: 7723. doi: 10.1021/acsomega.7b01313[72] Noh J, Si M, Zhou H, et al. The impact of substrates on the performance of top-gate β-Ga2O3 field-effect transistors: record high drain current of 980 mA/mm on diamond. IEEE Device Research Conference, 2018: 1.[73] Maize K, Zibari A, French W D, et al. Thermoreflectance ccd imaging of self-heating in power MOSFET arrays. IEEE Trans Electron Devices 2014, 61: 3047. doi: 10.1109/TED.2014.2332466[74] Si M, Yang L, Zhou H, et al. β-Ga2O3 Nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega, 2017, 2: 7136. doi: 10.1021/acsomega.7b01289 -
Proportional views