J. Semicond. > 2025, Volume 46 > Issue 1 > 011605

REVIEWS

Recent progress on elemental tellurium and its devices

Jiachi Liao1, Zhengxun Lai2, You Meng1, 2, and Johnny C. Ho1, 3, 4,

+ Author Affiliations

 Corresponding author: You Meng, youmeng2@cityu.edu.hk; Johnny C. Ho, johnnyho@cityu.edu.hk

DOI: 10.1088/1674-4926/24090020CSTR: 32376.14.1674-4926.24090020

PDF

Turn off MathJax

Abstract: The rapid advancement of information technology has heightened interest in complementary devices and circuits. Conventional p-type semiconductors often lack sufficient electrical performance, thus prompting the search for new materials with high hole mobility and long-term stability. Elemental tellurium (Te), featuring a one-dimensional chiral atomic structure, has emerged as a promising candidate due to its narrow bandgap, high hole mobility, and versatility in industrial applications, particularly in electronics and renewable energy. This review highlights recent progress in Te nanostructures and related devices, focusing on synthesis methods, including vapor deposition and hydrothermal synthesis, which produce Te nanowires, nanorods, and other nanostructures. Critical applications in photodetectors, gas sensors, and energy harvesting devices are discussed, with a special emphasis on their role within the internet of things (IoT) framework, a rapidly growing field that is reshaping our technological landscape. The prospects and potential applications of Te-based technologies are also highlighted.

Key words: elemental telluriumphotodetectorfield-effect transistorgas sensorenergy harvesting device



[1]
Shi Z, Cao R, Khan K, et al. Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett, 2020, 12(1), 99 doi: 10.1007/s40820-020-00427-z
[2]
Tang B, Sun L, Zheng W, et al. Ultrahigh quality upconverted single-mode lasing in cesium lead bromide spherical microcavity. Adv Opt Mater, 2018, 6(20), 1800391 doi: 10.1002/adom.201800391
[3]
Yin Y, Cao R, Guo J, et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm. Laser & Photonics Rev, 2019, 13(6), 1900032 doi: 10.1002/lpor.201900032
[4]
Zhao C, Tan C, Lien D-H, et al. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat Nanotechnol, 2020, 15(1), 53 doi: 10.1038/s41565-019-0585-9
[5]
Zhou G, Addou R, Wang Q, et al. High-mobility helical tellurium field-effect transistors enabled by transfer-free, low-temperature direct growth. Adv Mater, 2018, 30(36), 1803109 doi: 10.1002/adma.201803109
[6]
Ba L A, Döring M, Jamier V, et al. Tellurium: an element with great biological potency and potential. Org & Biomol Chem, 2010, 8(19), 4203 doi: 10.1039/C0OB00086H
[7]
Liu J W, Zhu J H, Zhang C L, et al. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J Am Chem Soc, 2010, 132(26), 8945 doi: 10.1021/ja910871s
[8]
Peng H, Kioussis N, Snyder G J. Elemental tellurium as a chiral p-type thermoelectric material. Phys Rev B, 2014, 89(19), 195206 doi: 10.1103/PhysRevB.89.195206
[9]
Hermann J P, Quentin G, Thuillier J M. Determination of the d14 piezoelectric coefficient of tellurium. Solid State Commun, 1969, 7(1), 161 doi: 10.1016/0038-1098(69)90715-7
[10]
Liu A, Zhu H, Zou T, et al. Evaporated nanometer chalcogenide films for scalable high-performance complementary electronics. Nat Commun, 2022, 13(1), 6372 doi: 10.1038/s41467-022-34119-6
[11]
Zha J, Dong D, Huang H, et al. Electronics and optoelectronics based on tellurium. Adv Mater, 2024, 36 (45), 2408969 doi: 10.1002/adma.202408969
[12]
Furukawa T, Shimokawa Y, Kobayashi K, et al. Observation of current-induced bulk magnetization in elemental tellurium. Nat Commun, 2017, 8(1), 954 doi: 10.1038/s41467-017-01093-3
[13]
Cheng B, Gao Y, Zheng Z, et al. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat Commun, 2024, 15(1), 5513 doi: 10.1038/s41467-024-49706-y
[14]
Zhu Z, Cai X, Yi S, et al. Multivalency-driven formation of te-based monolayer materials: A combined first-principles and experimental study. Phys Rev Lett, 2017, 119(10), 106101 doi: 10.1103/PhysRevLett.119.106101
[15]
Yan C W, Zhou L, Guo P, et al. Two ultra-stable novel allotropes of tellurium few-layers. Chin Phys B, 2020, 29(9), 97103 doi: 10.1088/1674-1056/aba606
[16]
Meng Y, Li X, Kang X, et al. Van der Waals nanomesh electronics on arbitrary surfaces. Nat Commun, 2023, 14(1), 2431 doi: 10.1038/s41467-023-38090-8
[17]
Qiao J, Pan Y, Yang F, et al. Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull, 2018, 63(3), 159 doi: 10.1016/j.scib.2018.01.010
[18]
Sang D K, Wen B, Gao S, et al. Electronic and optical properties of two-dimensional tellurene: from first-principles calculations. Nanomater, 2019, 9(8), 1075 doi: 10.3390/nano9081075
[19]
Qiu G, Charnas A R, Niu C, et al. The resurrection of tellurium as an elemental two-dimensional semiconductor. npj 2D Mater Appl, 2022, 6(1), 17 doi: 10.1038/s41699-022-00293-w
[20]
Xian L, Pérez Paz A, Bianco E, et al. Square selenene and tellurene: novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater, 2017, 4(4), 041003 doi: 10.1088/2053-1583/aa8418
[21]
Peng B, Zhang H, Shao H, et al. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J Mater Chem C, 2016, 4(16), 3592 doi: 10.1039/C6TC00115G
[22]
Kuang Y D, Lindsay L, Shi S Q, et al. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale, 2016, 8(6), 3760 doi: 10.1039/C5NR08231E
[23]
Yang K, Cahangirov S, Cantarero A, et al. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys Rev B, 2014, 89(12), 125403 doi: 10.1103/PhysRevB.89.125403
[24]
Zheng J, Chi F, Guo Y. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon. J Phys Condens Matter, 2015, 27(29), 295302 doi: 10.1088/0953-8984/27/29/295302
[25]
Gao Z, Tao F, Ren J. Unusually low thermal conductivity of atomically thin 2D tellurium. Nanoscale, 2018, 10(27), 12997 doi: 10.1039/C8NR01649F
[26]
Lin S, Li W, Zhang X, et al. Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te. Inorg Chem Front, 2017, 4(6), 1066 doi: 10.1039/C7QI00138J
[27]
An D, Zhang S, Zhai X, et al. Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te. Nat Commun, 2024, 15(1), 3177 doi: 10.1038/s41467-024-47578-w
[28]
Zhang M, Liu Y, Guo F, et al. High-performance flexible broadband photothermoelectric photodetectors based on tellurium films. ACS Appl Mater Interfaces, 2024, 16(5), 6152 doi: 10.1021/acsami.3c17933
[29]
Huang J, You C, Wu B, et al. Enhanced photothermoelectric conversion in self-rolled tellurium photodetector with geometry-induced energy localization. Light: Sci Appl, 2024, 13(1), 153 doi: 10.1038/s41377-024-01496-0
[30]
Dai M, Wang C, Qiang B, et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nat Commun, 2022, 13(1), 4560 doi: 10.1038/s41467-022-32309-w
[31]
Zhang Y, Meng Y, Wang L, et al. Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance. Nat Commun, 2024, 15(1), 728 doi: 10.1038/s41467-024-44970-4
[32]
Budania P, Baine P, Montgomery J, et al. Long-term stability of mechanically exfoliated MoS2 flakes. MRS Commun, 2017, 7(4), 813 doi: 10.1557/mrc.2017.105
[33]
Liu L, Tang J, Wang Q Q, et al. Thermal stability of MoS2 encapsulated by graphene. Acta Phys Sin, 2018, 67(22), 226501 doi: 10.7498/aps.67.20181255
[34]
Liu Y C, Wang V, Xia M G, et al. First-principles study on structural, thermal, mechanical and dynamic stability of T’-MoS2. J Phys: Condens Matter, 2017, 29(9), 095702 doi: 10.1088/1361-648X/aa5213
[35]
Yang H, Zhang Y, Hu F, et al. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett, 2015, 15(11), 7616 doi: 10.1021/acs.nanolett.5b03446
[36]
Zhao C, Hurtado L, Javey A. Thermal stability for Te-based devices. Appl Phys Lett, 2020, 117(19), 192104 doi: 10.1063/5.0018045
[37]
Hong Y, Zhang J, Zeng X C. Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet. Phys Chem Chem Phys, 2016, 18(35), 24164 doi: 10.1039/C6CP03933B
[38]
Lim D, Kannan E S, Lee I, et al. High performance MoS2-based field-effect transistor enabled by hydrazine doping. Nanotechnol, 2016, 27(22), 225201 doi: 10.1088/0957-4484/27/22/225201
[39]
Xu Y, Shi Z, Shi X, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale, 2019, 11(31), 14491 doi: 10.1039/C9NR04348A
[40]
Iqbal M W, Iqbal M Z, Khan M F, et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep, 2015, 5(1), 10699 doi: 10.1038/srep10699
[41]
Khalil H M W, Khan M F, Eom J, et al. Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl Mater Interfaces, 2015, 7(42), 23589 doi: 10.1021/acsami.5b06825
[42]
Huang H H, Fan X, Singh D J, et al. Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale, 2020, 12(3), 1247 doi: 10.1039/C9NR08313H
[43]
Zhang Y, Yao Y, Sendeku M G, et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv Mater, 2019, 31(41), e1901694 doi: 10.1002/adma.201901694
[44]
Hong S, Im H, Hong Y K, et al. N-type doping rffect of CVD-grown multilayer MoSe2 thin film transistors by two-step functionalization. Adv Electro Mater, 2018, 4(12), 1800308 doi: 10.1002/aelm.201800308
[45]
Larentis S, Fallahazad B, Tutuc E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett, 2012, 101, 223104 doi: 10.1063/1.4768218
[46]
Apte A, Bianco E, Krishnamoorthy A, et al. Polytypism in ultrathin tellurium. 2D Mater, 2019, 6(1), 015013 doi: 10.1088/2053-1583/aae7f6
[47]
Métraux C, Grobety B. Tellurium nanotubes and nanorods synthesized by physical vapor deposition. J Mater Res, 2004, 192159 doi: 10.1557/JMR.2004.0277
[48]
Xu M, Xu J, Luo L, et al. Hydrogen-assisted growth of one-dimensional tellurium nanoribbons with unprecedented high mobility. Materials Today, 2023, 6350 doi: 10.1016/j.mattod.2023.02.003
[49]
Wang Q, Safdar M, Xu K, et al. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano, 2014, 8(7), 7497 doi: 10.1021/nn5028104
[50]
Li D, Meng Y, Zhang Y, et al. Selective surface engineering of perovskite microwire arrays. Adv Funct Mater, 2023, 33(33), 2302866 doi: 10.1002/adfm.202302866
[51]
Cheng R, Wen Y, Yin L, et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv Mater, 2017, 29(35), 1703122 doi: 10.1002/adma.201703122
[52]
Xie Z, Xing C, Huang W, et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv Funct Mater, 2018, 28(16), 1705833 doi: 10.1002/adfm.201705833
[53]
Ben-Moshe A, Wolf S G, Sadan M B, et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat Commun, 2014, 5(1), 4302 doi: 10.1038/ncomms5302
[54]
Naqi M, Choi K H, Yoo H, et al. Nanonet: Low-temperature-processed tellurium nanowire network for scalable p-type field-effect transistors and a highly sensitive phototransistor array. NPG Asia Mater, 2021, 13(1), 46 doi: 10.1038/s41427-021-00314-y
[55]
Mo M, Zeng J, Liu X, et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv Mater, 2002, 14(22), 1658 doi: 10.1002/1521-4095(20021118)14:22<1658::AID-ADMA1658>3.0.CO;2-2
[56]
Tsiulyanu D, Marian S, Miron V, et al. High sensitive tellurium based NO2 gas sensor. Sens Actuators B: Chem, 2001, 73(1), 35 doi: 10.1016/S0925-4005(00)00659-6
[57]
Okuyama K, Kumagai Y. Grain growth of evaporated Te films on a heated and cooled substrate. J Appl Phys, 1975, 46(4), 1473 doi: 10.1063/1.321786
[58]
Amani M, Tan C, Zhang G, et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 2018, 12(7), 7253 doi: 10.1021/acsnano.8b03424
[59]
Fang Q, Shang Q, Zhao L, et al. Ultrafast charge transfer in perovskite nanowire/2d transition metal dichalcogenide heterostructures. J Phys Chem Lett, 2018, 9(7), 1655 doi: 10.1021/acs.jpclett.8b00260
[60]
Dutton R W, Muller R S. Electrical properties of tellurium thin films. Proc IEEE, 1971, 59(10), 1511 doi: 10.1109/PROC.1971.8463
[61]
Weimer P K. A p-type tellurium thin-film transistor. Proceedings of the IEEE, 1964, 52(5), 608 doi: 10.1109/PROC.1964.3003
[62]
Ge Y, Chen S, Xu Y, et al. Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. J Mater Chem C, 2017, 5(25), 6129 doi: 10.1039/C7TC01267E
[63]
Guo Z, Zhang H, Lu S, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv Funct Mater, 2015, 25(45), 6996 doi: 10.1002/adfm.201502902
[64]
Huang W, Xing C, Wang Y, et al. Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 2018, 10(5), 2404 doi: 10.1039/C7NR09046C
[65]
Li J, Luo H, Zhai B, et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci Rep, 2016, 6(1), 30361 doi: 10.1038/srep30361
[66]
Wu W, Qiu G, Wang Y, et al. Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem Soc Rev, 2018, 47(19), 7203 doi: 10.1039/C8CS00598B
[67]
Xu Y, Wang Z, Guo Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv Opt Mater, 2016, 4(8), 1223 doi: 10.1002/adom.201600214
[68]
Hu C, Chai R, Wei Z, et al. ZnSb/Ti3C2Tx MXene van der Waals heterojunction for flexible near-infrared photodetector arrays. J Semicond, 2024, 45(5), 052601 doi: 10.1088/1674-4926/45/5/052601
[69]
Long Z, Ding Y, Qiu X, et al. A dual-mode image sensor using an all-inorganic perovskite nanowire array for standard and neuromorphic imaging. J Semicond, 2023, 44(9), 092604 doi: 10.1088/1674-4926/44/9/092604
[70]
Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol, 2014, 9(10), 780 doi: 10.1038/nnano.2014.215
[71]
Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29(19), 1803807 doi: 10.1002/adfm.201803807
[72]
Sun Z, Chang H. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano, 2014, 8(5), 4133 doi: 10.1021/nn500508c
[73]
Tong L, Huang X, Wang P, et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat Commun, 2020, 11(1), 2308 doi: 10.1038/s41467-020-16125-8
[74]
Li X, Meng Y, Li W, et al. Multislip-enabled morphing of all-inorganic perovskites. Nat Mater, 2023, 22(10), 1175 doi: 10.1038/s41563-023-01631-z
[75]
Meng Y, Zhang Y, Lai Z, et al. Au-seeded CsPbI3 nanowire optoelectronics via exothermic nucleation. Nano Lett, 2023, 23(3), 812 doi: 10.1021/acs.nanolett.2c03612
[76]
Guo X, Lu X, Jiang P, et al. Touchless thermosensation enabled by flexible infrared photothermoelectric detector for temperature prewarning function of electronic skin. Adv Mater, 2024, 36(23), e2313911 doi: 10.1002/adma.202313911
[77]
Yan J, Zhang X, Pan Y, et al. Monolayer tellurene–metal contacts. J Mater Chem C, 2018, 6(23), 6153 doi: 10.1039/C8TC01421C
[78]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35
[79]
Du Y, Maassen J, Wu W, et al. Auxetic black phosphorus: A 2D material with negative poisson's ratio. Nano Lett, 2016, 16(10), 6701 doi: 10.1021/acs.nanolett.6b03607
[80]
Liu A, Kim Y S, Kim M G, et al. Selenium-alloyed tellurium oxide for amorphous p-channel transistors. Nature, 2024, 629(8013), 798 doi: 10.1038/s41586-024-07360-w
[81]
Meng Y, Wang W, Fan R, et al. An inorganic-blended p-type semiconductor with robust electrical and mechanical properties. Nat Commun, 2024, 15(1), 4440 doi: 10.1038/s41467-024-48628-z
[82]
Pradhan N R, Rhodes D, Feng S, et al. Field-effect transistors based on few-layered α-MoTe2. ACS Nano, 2014, 8(6), 5911 doi: 10.1021/nn501013c
[83]
Liu X, Qu D, Li H M, et al. Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p-n junction. ACS Nano, 2017, 11(9), 9143 doi: 10.1021/acsnano.7b03994
[84]
Lee J, Mak K F, Shan J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat Nanotechnol, 2016, 11(5), 421 doi: 10.1038/nnano.2015.337
[85]
Wang W, Klots A, Prasai D, et al. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett, 2015, 15(11), 7440 doi: 10.1021/acs.nanolett.5b02866
[86]
Movva H C P, Rai A, Kang S, et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano, 2015, 9(10), 10402 doi: 10.1021/acsnano.5b04611
[87]
Perea-López N, Elías A L, Berkdemir A, et al. Sensors: photosensor device based on few-layered WS2 films. Adv Funct Mater, 2013, 23(44), 5510 doi: 10.1002/adfm.201370228
[88]
Yang T, Zheng B, Wang Z, et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat Commun, 2017, 8(1), 1906 doi: 10.1038/s41467-017-02093-z
[89]
Dey A. Semiconductor metal oxide gas sensors: A review. Mater Sci Eng: B, 2018, 229(1), 206 doi: 10.1016/j.mseb.2017.12.036
[90]
Shendage S S, Patil V L, Vanalakar S A, et al. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens Actuators B-chem, 2017, 240(1), 426 doi: 10.1016/j.snb.2016.08.177
[91]
Sen S, Bhandarkar V, Muthe K, et al. Chapter 7 Tellurium thin films based gas sensor, science and technology of chemiresistor gas sensors. New York: Nova Science Publishers Inc., 2007
[92]
Bhandarkar V, Sen S, Muthe K P, et al. Effect of deposition conditions on the microstructure and gas-sensing characteristics of Te thin films. Mater Sci Eng: B, 2006, 131(1), 156 doi: 10.1016/j.mseb.2006.04.017
[93]
Capers M, White M L. The electrical properties of vacuum deposited tellurium films. Thin Solid Films, 1973, 15(1), 5 doi: 10.1016/0040-6090(73)90199-5
[94]
Wang D, Yang A, Lan T, et al. Tellurene based chemical sensor. J Mater Chem A, 2019, 7(46), 26326 doi: 10.1039/C9TA09429F
[95]
Cui H, Zheng K, Xie Z, et al. Tellurene nanoflake-based NO2 sensors with superior sensitivity and a sub-parts-per-billion detection limit. ACS Appl Mater Interfaces, 2020, 12(42), 47704 doi: 10.1021/acsami.0c15964
[96]
Meng Y, Li F, Lan C, et al. Artificial visual systems enabled by quasi-two-dimensional electron gases in oxide superlattice nanowires. Sci Adv, 2020, 6(46), eabc6389 doi: 10.1126/sciadv.abc6389
[97]
Wang Z, Wu H, Burr G W, et al. Resistive switching materials for information processing. Nat Rev Mater, 2020, 5(3), 173 doi: 10.1038/s41578-019-0159-3
[98]
Yang Y, Xu M, Jia S, et al. A new opportunity for the emerging tellurium semiconductor: making resistive switching devices. Nat Commun, 2021, 12(1), 6081 doi: 10.1038/s41467-021-26399-1
[99]
Sahu D P, Jammalamadaka S N. Remote control of resistive switching in TiO2 based resistive random access memory device. Sci Rep, 2017, 7(1), 17224 doi: 10.1038/s41598-017-17607-4
[100]
Chen G, Song C, Chen C, et al. Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv Mater, 2012, 24(26), 3515 doi: 10.1002/adma.201201595
[101]
Krzysteczko P, Reiss G, Thomas A. Memristive switching of MgO based magnetic tunnel junctions. Appl Phys Lett, 2009, 95(11), 112508 doi: 10.1063/1.3224193
[102]
Chen C H, Pan F, Wang Z S, et al. Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J Appl Phys, 2012, 111(1), 013702 doi: 10.1063/1.3672811
[103]
Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol, 2010, 5(2), 148 doi: 10.1038/nnano.2009.456
[104]
Seo S, Lee M J, Kim D C, et al. Electrode dependence of resistance switching in polycrystalline NiO films. Appl Phys Lett, 2005, 87(26), 263507 doi: 10.1063/1.2150580
[105]
Du X, Zhang X, Yang Z, et al. Water oxidation catalysis beginning with CuCo2SO4: Investigation of the true electrochemically driven catalyst. Chem Asian J, 2018, 13(3), 266 doi: 10.1002/asia.201701684
[106]
Peter S C. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett, 2018, 3(7), 1557 doi: 10.1021/acsenergylett.8b00878
[107]
Poudyal R, Loskot P, Nepal R, et al. Mitigating the current energy crisis in Nepal with renewable energy sources. Renewable Sustainable Energy Rev, 2019, 116109388 doi: 10.1016/j.rser.2019.109388
[108]
Ren Y, Sun R, Yu X, et al. A systematic study on synthesis parameters and thermoelectric properties of tellurium nanowire bundles. Mater Adv, 2023, 4(19), 4455 doi: 10.1039/D3MA00336A
[109]
Wu K, Ma H, Gao Y, et al. Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. J Mater Chem A, 2019, 7(13), 7430 doi: 10.1039/C9TA00280D
[110]
Lin Y, Norman C, Srivastava D, et al. Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl Mater Interfaces, 2015, 7(29), 15898 doi: 10.1021/acsami.5b03522
[111]
Qin G, Yan Q B, Qin Z, et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci Rep, 2014, 4(1), 6946 doi: 10.1038/srep06946
[112]
Mettan X, Pisoni R, Matus P, et al. Tuning of the thermoelectric figure of merit of CH3NH3MI3 (M = Pb, Sn) photovoltaic perovskites. J Phys Chem C, 2015, 119(21), 11506 doi: 10.1021/acs.jpcc.5b03939
[113]
Meng Y, Wang W, Ho J C. One-dimensional atomic chains for ultimate-scaled electronics. ACS Nano, 2022, 16(9), 13314 doi: 10.1021/acsnano.2c06359
[114]
Meng Y, Wang W, Wang W, et al. Anti-ambipolar heterojunctions: materials, devices, and circuits. Adv Mater, 2024, 36(17), 2306290 doi: 10.1002/adma.202306290
[115]
Wang W, Meng Y, Wang W, et al. Highly efficient full van der Waals 1D p-Te/2D n-Bi2O2Se heterodiodes with nanoscale ultra-photosensitive channels. Adv Funct Mater, 2022, 32(30), 2203003 doi: 10.1002/adfm.202203003
[116]
Liu Q, Wei Q, Ren H, et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat Commun, 2023, 14(1), 7179 doi: 10.1038/s41467-023-43034-3
Fig. 1.  (Color online) The atomic and electronic structure of elemental Te. (a) The schematic picture of the Te structure consists of helical Te chains arranged in hexagonal arrays along the c direction. (b) Te atoms bound together by faint van der Waals force. Adapted with permission from Ref. [16]. Copyright 2023, Nature Publishing Group. (c) For the enantiomeric structures, the helical chains are arranged in different ways related to other properties. Adapted with permission from Ref. [12]. Copyright 2017, Nature Publishing Group. (d) The three-dimensional image of the spiral structure of elemental Te. Adapted with permission from Ref. [13]. Copyright 2024, Nature Publishing Group. (e)−(g) The atomic and electronic structures of α-, β-, and γ-phases of elemental Te. Adapted with permission from Ref. [14]. Copyright 2017, American Physical Society.

Fig. 2.  (Color online) The electrical and optical properties of elemental Te. (a) Band structures of Te based on the spin−orbit (SOC) coupling and the corresponding partial density of states. (b) First Brillouin zone (BZ) of elemental Te. (c) Amplify the band characteristics near the edge of the direct band at the H point. (d) Magnify the image of the area near the VBM. Adapted the permission from Ref. [19]. Copyright 2021, Nature Publishing Group.

Fig. 3.  (Color online) The thermoelectric properties of elemental Te and Te-based devices. (a), (b) The thermoelectric performance and Hall concentration based on different doped Te devices. Adapted with permission from Ref. [27]. Copyright 2024, Nature Publishing Group. (c) Temperature dependence of Te lattice thermal conductivity. Adapted with permission from Ref. [25]. Copyright 2018, Royal Society of Chemistry. (d)−(h) The performance and schematic images of a self-rolled tubular Te device. Adapted with permission of Ref. [29]. Copyright 2024, Nature Publishing Group.

Fig. 4.  (Color online) PVD and CVD process of Te nanostructures. (a) Schematic illustration of the CVD synthesis process of Te nanostructure. (b) The AFM image of elemental Te nanoflake. Adapted with permission from Ref. [46]. Copyright 2019, IOP Publishing. (c) The morphological changes of Te nanomesh with different growth times. Adapted with permission from Ref. [16]. Copyright 2023, Nature Publishing Group.

Fig. 5.  (Color online) The morphology of different elemental Te nanostructures. (a), (b) The TEM images of 2D Te nanoflakes. Adapted with permission of Ref. [52]. Copyright 2018, WILEY-VCH. (c) The TEM image of Te nanorods. The scale bar is 100 nm. Adapted with permission of Ref. [53]. Copyright 2014, Nature Publishing Group. (d) The SEM image of Te nanonet. Adapted permission with of Ref. [54]. Copyright 2021, Nature Publishing Group.

Fig. 6.  (Color online) The photodetector based on elemental Te. (a) The schematic picture of the photodetecting device. (b), (c) The photocurrent response, including rise and fall time, based on quasi-2D Te under different light wavelengths. Adapted permission with Ref. [73]. Copyright 2020, Nature Publishing Group.

Fig. 7.  (Color online) The schematic image and device performance of Te-based FET. (a) Schematic diagram of FETs device based on 2D Te. Adapted permission with Ref. [77], Copyright 2018, Royal Society of Chemistry. (b) The electrical performance of TeSeO FET with different compositions. (c) Comparing the device stability and hole mobility with other traditional materials. Adapted permission with Ref. [81]. Copyright 2024, Nature Publishing Group.

Fig. 8.  (Color online) The testing results of gas sensors enabled by elemental Te. (a) The I−V curve of 42 nm Te devices. Inset top: The schematic diagram of Te-based device. Inset bottom: The AFM characterization image of Te nanoflake. (b) Current response of NO2. Adapted permission with Ref. [94]. Copyright 2019, The Royal Society of Chemistry. (c) NO2 selectivity of a Te gas sensor. Inset: The schematic diagrams of detection. (d) The environmental stability of Te-based devices. Adapted permission with Ref. [95]. Copyright 2020, The American Chemical Society.

Fig. 9.  (Color online) The resistive switching device based on elemental Te. (a), (b) Nonlinear I−V relationship of Te device in NV-RS and V-RS modes. (c) The device schematic diagram and device resistance as a function of the active area. Adapted permission with Ref. [98]. Copyright 2021, Nature Publishing Group.

Table 1.   The material property and environmental stability of different material devices.

Materials Mobility (cm2/(V∙s)) Stability
Te[2] (Direct bandgap, 0.35−1.265 eV) ~103 2 months
MoS2[37, 38] (Indirect bandgap, 0.75−1.89 eV) 480 3 months
Black phosphorus[39] (Direct bandgap, 0.3−1.5 eV) ~103 50 hours
WS2[40, 41] (Indirect bandgap, 0.75−1.91 eV) 970 2 weeks
Bi2Se3[31] (Direct bandgap, 0.2−0.3 eV) 1000−4000 6 months
WSe2[42, 43] (Indirect bandgap, 0.90−1.54 eV) ~500 1 month
MoSe2[44, 45] (Indirect bandgap, 0.80−1.58 eV) ~50 21 days
DownLoad: CSV

Table 2.   Te nanostructures fabricated by different methods and the main advantages.

MethodsMain nanostructuresMain advantages
Physical vapor deposition[46]Nanowires and nanoflakesWell controllability
Chemical vapor deposition[16]Nanowires and nanoflakesControlled reaction conditions
Van der Waals epitaxy[49]2D layered structuresHeterogeneous integration
Hydrothermal[58, 59, 54]Nanowires and nanonetHigh throughput
Thermal evaporation[60, 57, 61]Thin filmUniform deposition
Liquid phase exfoliation[6267]2D layered structuresHigh efficiency
DownLoad: CSV

Table 3.   Comparison of different nanomaterials used in FET.

Materials On/off current ratio Responsibility Mobility (cm2/(V∙s))
Te nanoflakes[52] 105 13 A/W 700
Te thin film[19] 104 35
MoTe2[82] 106 27
Black phosphorus[78, 83] 105 4.8 mA/W 1000
MoS2[84, 85] 5.2 A/W 120
WS2[86, 87] 21.2 μA/W 140
WSe2[88] 0.92 A/W 142
DownLoad: CSV
[1]
Shi Z, Cao R, Khan K, et al. Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett, 2020, 12(1), 99 doi: 10.1007/s40820-020-00427-z
[2]
Tang B, Sun L, Zheng W, et al. Ultrahigh quality upconverted single-mode lasing in cesium lead bromide spherical microcavity. Adv Opt Mater, 2018, 6(20), 1800391 doi: 10.1002/adom.201800391
[3]
Yin Y, Cao R, Guo J, et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm. Laser & Photonics Rev, 2019, 13(6), 1900032 doi: 10.1002/lpor.201900032
[4]
Zhao C, Tan C, Lien D-H, et al. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat Nanotechnol, 2020, 15(1), 53 doi: 10.1038/s41565-019-0585-9
[5]
Zhou G, Addou R, Wang Q, et al. High-mobility helical tellurium field-effect transistors enabled by transfer-free, low-temperature direct growth. Adv Mater, 2018, 30(36), 1803109 doi: 10.1002/adma.201803109
[6]
Ba L A, Döring M, Jamier V, et al. Tellurium: an element with great biological potency and potential. Org & Biomol Chem, 2010, 8(19), 4203 doi: 10.1039/C0OB00086H
[7]
Liu J W, Zhu J H, Zhang C L, et al. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J Am Chem Soc, 2010, 132(26), 8945 doi: 10.1021/ja910871s
[8]
Peng H, Kioussis N, Snyder G J. Elemental tellurium as a chiral p-type thermoelectric material. Phys Rev B, 2014, 89(19), 195206 doi: 10.1103/PhysRevB.89.195206
[9]
Hermann J P, Quentin G, Thuillier J M. Determination of the d14 piezoelectric coefficient of tellurium. Solid State Commun, 1969, 7(1), 161 doi: 10.1016/0038-1098(69)90715-7
[10]
Liu A, Zhu H, Zou T, et al. Evaporated nanometer chalcogenide films for scalable high-performance complementary electronics. Nat Commun, 2022, 13(1), 6372 doi: 10.1038/s41467-022-34119-6
[11]
Zha J, Dong D, Huang H, et al. Electronics and optoelectronics based on tellurium. Adv Mater, 2024, 36 (45), 2408969 doi: 10.1002/adma.202408969
[12]
Furukawa T, Shimokawa Y, Kobayashi K, et al. Observation of current-induced bulk magnetization in elemental tellurium. Nat Commun, 2017, 8(1), 954 doi: 10.1038/s41467-017-01093-3
[13]
Cheng B, Gao Y, Zheng Z, et al. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat Commun, 2024, 15(1), 5513 doi: 10.1038/s41467-024-49706-y
[14]
Zhu Z, Cai X, Yi S, et al. Multivalency-driven formation of te-based monolayer materials: A combined first-principles and experimental study. Phys Rev Lett, 2017, 119(10), 106101 doi: 10.1103/PhysRevLett.119.106101
[15]
Yan C W, Zhou L, Guo P, et al. Two ultra-stable novel allotropes of tellurium few-layers. Chin Phys B, 2020, 29(9), 97103 doi: 10.1088/1674-1056/aba606
[16]
Meng Y, Li X, Kang X, et al. Van der Waals nanomesh electronics on arbitrary surfaces. Nat Commun, 2023, 14(1), 2431 doi: 10.1038/s41467-023-38090-8
[17]
Qiao J, Pan Y, Yang F, et al. Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull, 2018, 63(3), 159 doi: 10.1016/j.scib.2018.01.010
[18]
Sang D K, Wen B, Gao S, et al. Electronic and optical properties of two-dimensional tellurene: from first-principles calculations. Nanomater, 2019, 9(8), 1075 doi: 10.3390/nano9081075
[19]
Qiu G, Charnas A R, Niu C, et al. The resurrection of tellurium as an elemental two-dimensional semiconductor. npj 2D Mater Appl, 2022, 6(1), 17 doi: 10.1038/s41699-022-00293-w
[20]
Xian L, Pérez Paz A, Bianco E, et al. Square selenene and tellurene: novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater, 2017, 4(4), 041003 doi: 10.1088/2053-1583/aa8418
[21]
Peng B, Zhang H, Shao H, et al. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J Mater Chem C, 2016, 4(16), 3592 doi: 10.1039/C6TC00115G
[22]
Kuang Y D, Lindsay L, Shi S Q, et al. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale, 2016, 8(6), 3760 doi: 10.1039/C5NR08231E
[23]
Yang K, Cahangirov S, Cantarero A, et al. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys Rev B, 2014, 89(12), 125403 doi: 10.1103/PhysRevB.89.125403
[24]
Zheng J, Chi F, Guo Y. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon. J Phys Condens Matter, 2015, 27(29), 295302 doi: 10.1088/0953-8984/27/29/295302
[25]
Gao Z, Tao F, Ren J. Unusually low thermal conductivity of atomically thin 2D tellurium. Nanoscale, 2018, 10(27), 12997 doi: 10.1039/C8NR01649F
[26]
Lin S, Li W, Zhang X, et al. Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te. Inorg Chem Front, 2017, 4(6), 1066 doi: 10.1039/C7QI00138J
[27]
An D, Zhang S, Zhai X, et al. Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te. Nat Commun, 2024, 15(1), 3177 doi: 10.1038/s41467-024-47578-w
[28]
Zhang M, Liu Y, Guo F, et al. High-performance flexible broadband photothermoelectric photodetectors based on tellurium films. ACS Appl Mater Interfaces, 2024, 16(5), 6152 doi: 10.1021/acsami.3c17933
[29]
Huang J, You C, Wu B, et al. Enhanced photothermoelectric conversion in self-rolled tellurium photodetector with geometry-induced energy localization. Light: Sci Appl, 2024, 13(1), 153 doi: 10.1038/s41377-024-01496-0
[30]
Dai M, Wang C, Qiang B, et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nat Commun, 2022, 13(1), 4560 doi: 10.1038/s41467-022-32309-w
[31]
Zhang Y, Meng Y, Wang L, et al. Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance. Nat Commun, 2024, 15(1), 728 doi: 10.1038/s41467-024-44970-4
[32]
Budania P, Baine P, Montgomery J, et al. Long-term stability of mechanically exfoliated MoS2 flakes. MRS Commun, 2017, 7(4), 813 doi: 10.1557/mrc.2017.105
[33]
Liu L, Tang J, Wang Q Q, et al. Thermal stability of MoS2 encapsulated by graphene. Acta Phys Sin, 2018, 67(22), 226501 doi: 10.7498/aps.67.20181255
[34]
Liu Y C, Wang V, Xia M G, et al. First-principles study on structural, thermal, mechanical and dynamic stability of T’-MoS2. J Phys: Condens Matter, 2017, 29(9), 095702 doi: 10.1088/1361-648X/aa5213
[35]
Yang H, Zhang Y, Hu F, et al. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett, 2015, 15(11), 7616 doi: 10.1021/acs.nanolett.5b03446
[36]
Zhao C, Hurtado L, Javey A. Thermal stability for Te-based devices. Appl Phys Lett, 2020, 117(19), 192104 doi: 10.1063/5.0018045
[37]
Hong Y, Zhang J, Zeng X C. Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet. Phys Chem Chem Phys, 2016, 18(35), 24164 doi: 10.1039/C6CP03933B
[38]
Lim D, Kannan E S, Lee I, et al. High performance MoS2-based field-effect transistor enabled by hydrazine doping. Nanotechnol, 2016, 27(22), 225201 doi: 10.1088/0957-4484/27/22/225201
[39]
Xu Y, Shi Z, Shi X, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale, 2019, 11(31), 14491 doi: 10.1039/C9NR04348A
[40]
Iqbal M W, Iqbal M Z, Khan M F, et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep, 2015, 5(1), 10699 doi: 10.1038/srep10699
[41]
Khalil H M W, Khan M F, Eom J, et al. Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl Mater Interfaces, 2015, 7(42), 23589 doi: 10.1021/acsami.5b06825
[42]
Huang H H, Fan X, Singh D J, et al. Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale, 2020, 12(3), 1247 doi: 10.1039/C9NR08313H
[43]
Zhang Y, Yao Y, Sendeku M G, et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv Mater, 2019, 31(41), e1901694 doi: 10.1002/adma.201901694
[44]
Hong S, Im H, Hong Y K, et al. N-type doping rffect of CVD-grown multilayer MoSe2 thin film transistors by two-step functionalization. Adv Electro Mater, 2018, 4(12), 1800308 doi: 10.1002/aelm.201800308
[45]
Larentis S, Fallahazad B, Tutuc E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett, 2012, 101, 223104 doi: 10.1063/1.4768218
[46]
Apte A, Bianco E, Krishnamoorthy A, et al. Polytypism in ultrathin tellurium. 2D Mater, 2019, 6(1), 015013 doi: 10.1088/2053-1583/aae7f6
[47]
Métraux C, Grobety B. Tellurium nanotubes and nanorods synthesized by physical vapor deposition. J Mater Res, 2004, 192159 doi: 10.1557/JMR.2004.0277
[48]
Xu M, Xu J, Luo L, et al. Hydrogen-assisted growth of one-dimensional tellurium nanoribbons with unprecedented high mobility. Materials Today, 2023, 6350 doi: 10.1016/j.mattod.2023.02.003
[49]
Wang Q, Safdar M, Xu K, et al. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano, 2014, 8(7), 7497 doi: 10.1021/nn5028104
[50]
Li D, Meng Y, Zhang Y, et al. Selective surface engineering of perovskite microwire arrays. Adv Funct Mater, 2023, 33(33), 2302866 doi: 10.1002/adfm.202302866
[51]
Cheng R, Wen Y, Yin L, et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv Mater, 2017, 29(35), 1703122 doi: 10.1002/adma.201703122
[52]
Xie Z, Xing C, Huang W, et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv Funct Mater, 2018, 28(16), 1705833 doi: 10.1002/adfm.201705833
[53]
Ben-Moshe A, Wolf S G, Sadan M B, et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat Commun, 2014, 5(1), 4302 doi: 10.1038/ncomms5302
[54]
Naqi M, Choi K H, Yoo H, et al. Nanonet: Low-temperature-processed tellurium nanowire network for scalable p-type field-effect transistors and a highly sensitive phototransistor array. NPG Asia Mater, 2021, 13(1), 46 doi: 10.1038/s41427-021-00314-y
[55]
Mo M, Zeng J, Liu X, et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv Mater, 2002, 14(22), 1658 doi: 10.1002/1521-4095(20021118)14:22<1658::AID-ADMA1658>3.0.CO;2-2
[56]
Tsiulyanu D, Marian S, Miron V, et al. High sensitive tellurium based NO2 gas sensor. Sens Actuators B: Chem, 2001, 73(1), 35 doi: 10.1016/S0925-4005(00)00659-6
[57]
Okuyama K, Kumagai Y. Grain growth of evaporated Te films on a heated and cooled substrate. J Appl Phys, 1975, 46(4), 1473 doi: 10.1063/1.321786
[58]
Amani M, Tan C, Zhang G, et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 2018, 12(7), 7253 doi: 10.1021/acsnano.8b03424
[59]
Fang Q, Shang Q, Zhao L, et al. Ultrafast charge transfer in perovskite nanowire/2d transition metal dichalcogenide heterostructures. J Phys Chem Lett, 2018, 9(7), 1655 doi: 10.1021/acs.jpclett.8b00260
[60]
Dutton R W, Muller R S. Electrical properties of tellurium thin films. Proc IEEE, 1971, 59(10), 1511 doi: 10.1109/PROC.1971.8463
[61]
Weimer P K. A p-type tellurium thin-film transistor. Proceedings of the IEEE, 1964, 52(5), 608 doi: 10.1109/PROC.1964.3003
[62]
Ge Y, Chen S, Xu Y, et al. Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. J Mater Chem C, 2017, 5(25), 6129 doi: 10.1039/C7TC01267E
[63]
Guo Z, Zhang H, Lu S, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv Funct Mater, 2015, 25(45), 6996 doi: 10.1002/adfm.201502902
[64]
Huang W, Xing C, Wang Y, et al. Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 2018, 10(5), 2404 doi: 10.1039/C7NR09046C
[65]
Li J, Luo H, Zhai B, et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci Rep, 2016, 6(1), 30361 doi: 10.1038/srep30361
[66]
Wu W, Qiu G, Wang Y, et al. Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem Soc Rev, 2018, 47(19), 7203 doi: 10.1039/C8CS00598B
[67]
Xu Y, Wang Z, Guo Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv Opt Mater, 2016, 4(8), 1223 doi: 10.1002/adom.201600214
[68]
Hu C, Chai R, Wei Z, et al. ZnSb/Ti3C2Tx MXene van der Waals heterojunction for flexible near-infrared photodetector arrays. J Semicond, 2024, 45(5), 052601 doi: 10.1088/1674-4926/45/5/052601
[69]
Long Z, Ding Y, Qiu X, et al. A dual-mode image sensor using an all-inorganic perovskite nanowire array for standard and neuromorphic imaging. J Semicond, 2023, 44(9), 092604 doi: 10.1088/1674-4926/44/9/092604
[70]
Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol, 2014, 9(10), 780 doi: 10.1038/nnano.2014.215
[71]
Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29(19), 1803807 doi: 10.1002/adfm.201803807
[72]
Sun Z, Chang H. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano, 2014, 8(5), 4133 doi: 10.1021/nn500508c
[73]
Tong L, Huang X, Wang P, et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat Commun, 2020, 11(1), 2308 doi: 10.1038/s41467-020-16125-8
[74]
Li X, Meng Y, Li W, et al. Multislip-enabled morphing of all-inorganic perovskites. Nat Mater, 2023, 22(10), 1175 doi: 10.1038/s41563-023-01631-z
[75]
Meng Y, Zhang Y, Lai Z, et al. Au-seeded CsPbI3 nanowire optoelectronics via exothermic nucleation. Nano Lett, 2023, 23(3), 812 doi: 10.1021/acs.nanolett.2c03612
[76]
Guo X, Lu X, Jiang P, et al. Touchless thermosensation enabled by flexible infrared photothermoelectric detector for temperature prewarning function of electronic skin. Adv Mater, 2024, 36(23), e2313911 doi: 10.1002/adma.202313911
[77]
Yan J, Zhang X, Pan Y, et al. Monolayer tellurene–metal contacts. J Mater Chem C, 2018, 6(23), 6153 doi: 10.1039/C8TC01421C
[78]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35
[79]
Du Y, Maassen J, Wu W, et al. Auxetic black phosphorus: A 2D material with negative poisson's ratio. Nano Lett, 2016, 16(10), 6701 doi: 10.1021/acs.nanolett.6b03607
[80]
Liu A, Kim Y S, Kim M G, et al. Selenium-alloyed tellurium oxide for amorphous p-channel transistors. Nature, 2024, 629(8013), 798 doi: 10.1038/s41586-024-07360-w
[81]
Meng Y, Wang W, Fan R, et al. An inorganic-blended p-type semiconductor with robust electrical and mechanical properties. Nat Commun, 2024, 15(1), 4440 doi: 10.1038/s41467-024-48628-z
[82]
Pradhan N R, Rhodes D, Feng S, et al. Field-effect transistors based on few-layered α-MoTe2. ACS Nano, 2014, 8(6), 5911 doi: 10.1021/nn501013c
[83]
Liu X, Qu D, Li H M, et al. Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p-n junction. ACS Nano, 2017, 11(9), 9143 doi: 10.1021/acsnano.7b03994
[84]
Lee J, Mak K F, Shan J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat Nanotechnol, 2016, 11(5), 421 doi: 10.1038/nnano.2015.337
[85]
Wang W, Klots A, Prasai D, et al. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett, 2015, 15(11), 7440 doi: 10.1021/acs.nanolett.5b02866
[86]
Movva H C P, Rai A, Kang S, et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano, 2015, 9(10), 10402 doi: 10.1021/acsnano.5b04611
[87]
Perea-López N, Elías A L, Berkdemir A, et al. Sensors: photosensor device based on few-layered WS2 films. Adv Funct Mater, 2013, 23(44), 5510 doi: 10.1002/adfm.201370228
[88]
Yang T, Zheng B, Wang Z, et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat Commun, 2017, 8(1), 1906 doi: 10.1038/s41467-017-02093-z
[89]
Dey A. Semiconductor metal oxide gas sensors: A review. Mater Sci Eng: B, 2018, 229(1), 206 doi: 10.1016/j.mseb.2017.12.036
[90]
Shendage S S, Patil V L, Vanalakar S A, et al. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens Actuators B-chem, 2017, 240(1), 426 doi: 10.1016/j.snb.2016.08.177
[91]
Sen S, Bhandarkar V, Muthe K, et al. Chapter 7 Tellurium thin films based gas sensor, science and technology of chemiresistor gas sensors. New York: Nova Science Publishers Inc., 2007
[92]
Bhandarkar V, Sen S, Muthe K P, et al. Effect of deposition conditions on the microstructure and gas-sensing characteristics of Te thin films. Mater Sci Eng: B, 2006, 131(1), 156 doi: 10.1016/j.mseb.2006.04.017
[93]
Capers M, White M L. The electrical properties of vacuum deposited tellurium films. Thin Solid Films, 1973, 15(1), 5 doi: 10.1016/0040-6090(73)90199-5
[94]
Wang D, Yang A, Lan T, et al. Tellurene based chemical sensor. J Mater Chem A, 2019, 7(46), 26326 doi: 10.1039/C9TA09429F
[95]
Cui H, Zheng K, Xie Z, et al. Tellurene nanoflake-based NO2 sensors with superior sensitivity and a sub-parts-per-billion detection limit. ACS Appl Mater Interfaces, 2020, 12(42), 47704 doi: 10.1021/acsami.0c15964
[96]
Meng Y, Li F, Lan C, et al. Artificial visual systems enabled by quasi-two-dimensional electron gases in oxide superlattice nanowires. Sci Adv, 2020, 6(46), eabc6389 doi: 10.1126/sciadv.abc6389
[97]
Wang Z, Wu H, Burr G W, et al. Resistive switching materials for information processing. Nat Rev Mater, 2020, 5(3), 173 doi: 10.1038/s41578-019-0159-3
[98]
Yang Y, Xu M, Jia S, et al. A new opportunity for the emerging tellurium semiconductor: making resistive switching devices. Nat Commun, 2021, 12(1), 6081 doi: 10.1038/s41467-021-26399-1
[99]
Sahu D P, Jammalamadaka S N. Remote control of resistive switching in TiO2 based resistive random access memory device. Sci Rep, 2017, 7(1), 17224 doi: 10.1038/s41598-017-17607-4
[100]
Chen G, Song C, Chen C, et al. Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv Mater, 2012, 24(26), 3515 doi: 10.1002/adma.201201595
[101]
Krzysteczko P, Reiss G, Thomas A. Memristive switching of MgO based magnetic tunnel junctions. Appl Phys Lett, 2009, 95(11), 112508 doi: 10.1063/1.3224193
[102]
Chen C H, Pan F, Wang Z S, et al. Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J Appl Phys, 2012, 111(1), 013702 doi: 10.1063/1.3672811
[103]
Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol, 2010, 5(2), 148 doi: 10.1038/nnano.2009.456
[104]
Seo S, Lee M J, Kim D C, et al. Electrode dependence of resistance switching in polycrystalline NiO films. Appl Phys Lett, 2005, 87(26), 263507 doi: 10.1063/1.2150580
[105]
Du X, Zhang X, Yang Z, et al. Water oxidation catalysis beginning with CuCo2SO4: Investigation of the true electrochemically driven catalyst. Chem Asian J, 2018, 13(3), 266 doi: 10.1002/asia.201701684
[106]
Peter S C. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett, 2018, 3(7), 1557 doi: 10.1021/acsenergylett.8b00878
[107]
Poudyal R, Loskot P, Nepal R, et al. Mitigating the current energy crisis in Nepal with renewable energy sources. Renewable Sustainable Energy Rev, 2019, 116109388 doi: 10.1016/j.rser.2019.109388
[108]
Ren Y, Sun R, Yu X, et al. A systematic study on synthesis parameters and thermoelectric properties of tellurium nanowire bundles. Mater Adv, 2023, 4(19), 4455 doi: 10.1039/D3MA00336A
[109]
Wu K, Ma H, Gao Y, et al. Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. J Mater Chem A, 2019, 7(13), 7430 doi: 10.1039/C9TA00280D
[110]
Lin Y, Norman C, Srivastava D, et al. Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl Mater Interfaces, 2015, 7(29), 15898 doi: 10.1021/acsami.5b03522
[111]
Qin G, Yan Q B, Qin Z, et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci Rep, 2014, 4(1), 6946 doi: 10.1038/srep06946
[112]
Mettan X, Pisoni R, Matus P, et al. Tuning of the thermoelectric figure of merit of CH3NH3MI3 (M = Pb, Sn) photovoltaic perovskites. J Phys Chem C, 2015, 119(21), 11506 doi: 10.1021/acs.jpcc.5b03939
[113]
Meng Y, Wang W, Ho J C. One-dimensional atomic chains for ultimate-scaled electronics. ACS Nano, 2022, 16(9), 13314 doi: 10.1021/acsnano.2c06359
[114]
Meng Y, Wang W, Wang W, et al. Anti-ambipolar heterojunctions: materials, devices, and circuits. Adv Mater, 2024, 36(17), 2306290 doi: 10.1002/adma.202306290
[115]
Wang W, Meng Y, Wang W, et al. Highly efficient full van der Waals 1D p-Te/2D n-Bi2O2Se heterodiodes with nanoscale ultra-photosensitive channels. Adv Funct Mater, 2022, 32(30), 2203003 doi: 10.1002/adfm.202203003
[116]
Liu Q, Wei Q, Ren H, et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat Commun, 2023, 14(1), 7179 doi: 10.1038/s41467-023-43034-3
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 877 Times PDF downloads: 142 Times Cited by: 0 Times

    History

    Received: 10 September 2024 Revised: 08 October 2024 Online: Accepted Manuscript: 01 November 2024Uncorrected proof: 23 December 2024Published: 15 January 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiachi Liao, Zhengxun Lai, You Meng, Johnny C. Ho. Recent progress on elemental tellurium and its devices[J]. Journal of Semiconductors, 2025, 46(1): 011605. doi: 10.1088/1674-4926/24090020 ****J C Liao, Z X Lai, Y Meng, and J C. Ho, Recent progress on elemental tellurium and its devices[J]. J. Semicond., 2025, 46(1), 011605 doi: 10.1088/1674-4926/24090020
      Citation:
      Jiachi Liao, Zhengxun Lai, You Meng, Johnny C. Ho. Recent progress on elemental tellurium and its devices[J]. Journal of Semiconductors, 2025, 46(1): 011605. doi: 10.1088/1674-4926/24090020 ****
      J C Liao, Z X Lai, Y Meng, and J C. Ho, Recent progress on elemental tellurium and its devices[J]. J. Semicond., 2025, 46(1), 011605 doi: 10.1088/1674-4926/24090020

      Recent progress on elemental tellurium and its devices

      DOI: 10.1088/1674-4926/24090020
      CSTR: 32376.14.1674-4926.24090020
      More Information
      • Jiachi Liao got his bachelor's degree in 2023 from the Northwestern Polytechnical University and his master's degree in 2024 from the City University of Hong Kong. Currently, he is a Research Assistant at the City University of Hong Kong under the supervision of Prof. Johnny C. Ho. His research focuses on elemental tellurium nanomesh growth and characterization of related devices
      • Zhengxun Lai is an Associate Professor in the College of Semiconductors at Hunan University. He received his B.S. degree in Applied Physics and M.S. degree in Materials Physics and Chemistry from Tianjin University in 2016 and 2019, respectively, and a Ph.D. degree in Materials Science and Engineering from the City University of Hong Kong in 2023. His research interests are focused on the halide perovskites electronic and photoelectric devices
      • You Meng is a Postdoctoral Researcher in the Department of Materials Science and Engineering at the City University of Hong Kong. He received his B.S. degree in Applied Physics and M.S. degree in Physics from Qingdao University in 2015 and 2018, respectively, and a Ph.D. degree in Materials Science and Engineering from the City University of Hong Kong in 2021. His research interests mainly focus on nanomaterials-based electronics and optoelectronics
      • Johnny C. Ho is a Professor of Materials Science and Engineering at the City University of Hong Kong. He received his B.S. degree in Chemical Engineering and his M.S. and Ph.D. degrees in Materials Science and Engineering from the University of California, Berkeley, in 2002, 2005, and 2009, respectively. From 2009-2010, he was a Postdoctoral Research Fellow in the Nanoscale Synthesis and Characterization Group at Lawrence Livermore National Laboratory. His research interests focus on the synthesis, characterization, integration, and device applications of nanoscale materials for various technological applications, including nanoelectronics, sensors, and energy harvesting
      • Corresponding author: youmeng2@cityu.edu.hkjohnnyho@cityu.edu.hk
      • Received Date: 2024-09-10
      • Revised Date: 2024-10-08
      • Available Online: 2024-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return