Citation: |
Kai Xiang, Ning Su, Jianhua Chen, Junqiao Ding. Design and application of all-fused-ring electron acceptors[J]. Journal of Semiconductors, 2024, 45(12): 120201. doi: 10.1088/1674-4926/24090036
****
K Xiang, N Su, J H Chen, and J Q Ding, Design and application of all-fused-ring electron acceptors[J]. J. Semicond., 2024, 45(12), 120201 doi: 10.1088/1674-4926/24090036
|
Design and application of all-fused-ring electron acceptors
DOI: 10.1088/1674-4926/24090036
More Information
-
References
[1] Zhang Y Z, Yu Y J, Liu X Y, et al. An n-type all-fused-ring molecule with photoresponse to 1000 nm for highly sensitive near-infrared photodetector. Adv Mater, 2023, 35, 2211714 doi: 10.1002/adma.202211714[2] Zheng Y Q, Chen Y J, Cao Y H, et al. Design of all-fused-ring nonfullerene acceptor for highly sensitive self-powered near-infrared organic photodetectors. ACS Mater Lett, 2022, 4, 882 doi: 10.1021/acsmaterialslett.2c00191[3] Zhang Y D, Ji Y T, Zhang Y Y, et al. Recent progress of Y6-derived asymmetric fused ring electron acceptors. Adv Funct Mater, 2022, 32, 2205115 doi: 10.1002/adfm.202205115[4] Zhang G C, Lin F R, Qi F, et al. Renewed prospects for organic photovoltaics. Chem Rev, 2022, 122, 14180 doi: 10.1021/acs.chemrev.1c00955[5] Jiang Y Y, Sun S M, Xu R J, et al. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells. Nat Energy, 2024, 9, 975 doi: 10.1038/s41560-024-01557-z[6] Luke J, Speller E M, Wadsworth A, et al. Twist and degrade—Impact of molecular structure on the photostability of nonfullerene acceptors and their photovoltaic blends. Adv Energy Mater, 2019, 9, 1803755 doi: 10.1002/aenm.201803755[7] Zhu X Y, Hu L, Wang W, et al. Reversible chemical reactivity of non-fullerene acceptors for organic solar cells under acidic and basic environment. ACS Appl Energy Mater, 2019, 2, 7602 doi: 10.1021/acsaem.9b01591[8] Zhu X Z, Liu S J, Yue Q H, et al. Design of all-fused-ring electron acceptors with high thermal, chemical, and photochemical stability for organic photovoltaics. CCS Chem, 2021, 3, 1070 doi: 10.31635/ccschem.021.202100956[9] Yu Y J, Zhang Y Z, Miao J H, et al. An n-type all-fused-ring molecule with narrow bandgap. CCS Chem, 2023, 5, 486 doi: 10.31635/ccschem.022.202101752[10] Zhu X Y, Zhang Y Q, Xie B M, et al. All-fused-ring small molecule acceptors with near-infrared absorption. J Mater Chem C, 2023, 11, 2144 doi: 10.1039/D2TC04917A[11] Feng J, Liu Y, Yang H, et al. Conjugated backbone optimization of an all-fused-ring acceptor for efficient and stable organic solar cells. Chem Commun, 2024, 60, 6206 doi: 10.1039/D4CC00902A[12] Liu W R, Xu S J, Lai H J, et al. Near-infrared all-fused-ring nonfullerene acceptors achieving an optimal efficiency-cost-stability balance in organic solar cells. CCS Chem, 2023, 5, 654 doi: 10.31635/ccschem.022.202201963[13] Liu W, Xu S, Liu W, et al. Large-scale preparation of low-cost nonfullerene acceptors for stable and efficient organic solar cells. ChemRxiv, 2021[14] Sharma G D, Pradhan R, Khandelwal K, et al. All-small-molecule efficient ternary organic solar cells employing a coumarin donor and two fullerene-free acceptors. J Mater Chem C, 2023, 11, 1919 doi: 10.1039/D2TC05318G[15] Zhu X Y, Zhang Y Q, Li H X, et al. A fully-fluorinated all-fused-ring acceptor for highly sensitive near-infrared organic photodetectors. Sci Bull, 2024, 69, 2679 doi: 10.1016/j.scib.2024.06.030[16] Liao Z X, Miao J H, Liu J, et al. All-fused-ring molecules with high photostability for near-infrared security and anti-counterfeiting applications. Sci China Mater, 2023, 66, 4037 doi: 10.1007/s40843-023-2564-0 -
Proportional views