Citation: |
Xiang Li, Guancheng Wu, Caofeng Pan, Rongrong Bao. Recent progress in flexible sensors based on 2D materials[J]. Journal of Semiconductors, 2025, 46(1): 011607. doi: 10.1088/1674-4926/24090044
****
X Li, G C Wu, C F Pan, and R R Bao, Recent progress in flexible sensors based on 2D materials[J]. J. Semicond., 2025, 46(1), 011607 doi: 10.1088/1674-4926/24090044
|
Recent progress in flexible sensors based on 2D materials
DOI: 10.1088/1674-4926/24090044
CSTR: 32376.14.1674-4926.24090044
More Information-
Abstract
With the rapid development of the internet of things (IoT) and wearable electronics, the role of flexible sensors is becoming increasingly irreplaceable, due to their ability to process and convert information acquisition. Two-dimensional (2D) materials have been widely welcomed by researchers as sensitive layers, which broadens the range and application of flexible sensors due to the advantages of their large specific surface area, tunable energy bands, controllable thickness at the atomic level, stable mechanical properties, and excellent optoelectronic properties. This review focuses on five different types of 2D materials for monitoring pressure, humidity, sound, gas, and so on, to realize the recognition and conversion of human body and environmental signals. Meanwhile, the main problems and possible solutions of flexible sensors based on 2D materials as sensitive layers are summarized.-
Keywords:
- 2D materials,
- flexible sensors,
- layered structure,
- solution method
-
References
[1] Li X, Lin Y X, Cui L, et al. Stretchable and lithography-compatible interconnects enabled by self-assembled nanofilms with interlocking interfaces. ACS Appl Mater Interfaces, 2023, 15, 56233 doi: 10.1021/acsami.3c11760[2] Chen K, Zhang L Y, Wu K, et al. Highly robust and strain-resilient thin film conductors featuring brittle materials. Nano Lett, 2023, 23, 6619 doi: 10.1021/acs.nanolett.3c01781[3] Liu Y, Tao J, Mo Y P, et al. Ultrasensitive touch sensor for simultaneous tactile and slip sensing. Adv Mater, 2024, 36, 2313857 doi: 10.1002/adma.202313857[4] Bao R R, Tao J, Zhao J, et al. Integrated intelligent tactile system for a humanoid robot. Sci Bull, 2023, 68, 1027 doi: 10.1016/j.scib.2023.04.019[5] Tao J, Dong M, Li L, et al. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst Nanoeng, 2020, 6, 62 doi: 10.1038/s41378-020-0171-1[6] Tien N T, Jeon S, Kim D I, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater, 2014, 26, 796 doi: 10.1002/adma.201302869[7] Ahmed A, Sharma S, Adak B, et al. Two-dimensional MXenes: New frontier of wearable and flexible electronics. InfoMat, 2022, 4, 12295 doi: 10.1002/inf2.12295[8] Yang H, Qi D P, Liu Z Y, et al. Soft thermal sensor with mechanical adaptability. Adv Mater, 2016, 28, 9175 doi: 10.1002/adma.201602994[9] Lang C H, Fang J, Shao H, et al. High-sensitivity acoustic sensors from nanofibre webs. Nat Commun, 2016, 7, 11108 doi: 10.1038/ncomms11108[10] Wang W Y, Stipp P N, Ouaras K, et al. Broad bandwidth, self-powered acoustic sensor created by dynamic near-field electrospinning of suspended, transparent piezoelectric nanofiber mesh. Small, 2020, 16, 2000581 doi: 10.1002/smll.202000581[11] Lee S, Kim J, Roh H, et al. A high-fidelity skin-attachable acoustic sensor for realizing auditory electronic skin. Adv Mater, 2022, 34, 2109545 doi: 10.1002/adma.202109545[12] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896[13] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007, 6, 652 doi: 10.1038/nmat1967[14] de Lima C R, Vatanabe S L, Choi A, et al. A biomimetic piezoelectric pump: Computational and experimental characterization. Sens Actuat A Phys, 2009, 152, 110 doi: 10.1016/j.sna.2009.02.038[15] Huang Y, Liang J J, Chen Y S. The application of graphene based materials for actuators. J Mater Chem, 2012, 22, 3671 doi: 10.1039/c2jm15536b[16] Kabiri Ameri S, Ho R, Jang H, et al. Graphene electronic tattoo sensors. ACS Nano, 2017, 11, 7634 doi: 10.1021/acsnano.7b02182[17] Callicó G M. Image sensors go broadband. Nat Photonics, 2017, 11, 332 doi: 10.1038/nphoton.2017.83[18] Lau K Y, Qiu J R. Broad applications of sensors based on laser-scribed graphene. Light Sci Appl, 2023, 12, 168 doi: 10.1038/s41377-023-01210-6[19] Liu Z F, Sun Y L, Cao H Q, et al. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat Commun, 2020, 11, 3917 doi: 10.1038/s41467-020-17622-6[20] Wang Y X, Yue Y, Cheng F, et al. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano, 2022, 16, 1734 doi: 10.1021/acsnano.1c09925[21] Ma C, Ma M G, Si C L, et al. Flexible MXene-based composites for wearable devices. Adv Funct Mater, 2021, 31, 2009524 doi: 10.1002/adfm.202009524[22] Orts Mercadillo V, Chan K C, Caironi M, et al. Electrically conductive 2D material coatings for flexible and stretchable electronics: A comparative review of graphenes and MXenes. Adv Funct Mater, 2022, 32, 2204772 doi: 10.1002/adfm.202204772[23] Lei D D, Liu N S, Su T Y, et al. Roles of MXene in pressure sensing: Preparation, composite structure design, and mechanism. Adv Mater, 2022, 34, 2110608 doi: 10.1002/adma.202110608[24] Backes C, Higgins T M, Kelly A, et al. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem Mater, 2017, 29, 243 doi: 10.1021/acs.chemmater.6b03335[25] Wang S F, Tao B H, Yu S Y, et al. Insight into the liquid-phase exfoliation to prepare BN nanosheets. Mater Lett, 2020, 269, 127644 doi: 10.1016/j.matlet.2020.127644[26] Li B J, Yang G Y, Huang L J, et al. Effects of BN layer on photoelectric properties and stability of flexible Al/Cu/ZnO multilayer thin film. Ceram Int, 2020, 46, 14686 doi: 10.1016/j.ceramint.2020.02.272[27] Jo S H, Kang D H, Shim J, et al. A High-Performance WSe2/h-BN Photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv Mater, 2016, 28, 4824 doi: 10.1002/adma.201600032[28] Zhu D D, Li F X, Sun J Q, et al. Graphyne-like BN sheet as a selective gas sensor for NO2 gas: A quantum mechanical analysis. Mater Sci Semicond Process, 2020, 119, 105225 doi: 10.1016/j.mssp.2020.105225[29] Alaa Hussein T, Shiltagh N M, Kream Alaarage W, et al. Electronic and optical properties of the BN bilayer as gas sensor for CO2, SO2, and NO2 molecules: A DFT study. Results Chem, 2023, 5, 100978 doi: 10.1016/j.rechem.2023.100978[30] Liu Z F, Qiao Z R, Li C Y, et al. Recent progress in multifunctional gas sensors based on 2D materials. Chemosensors, 2023, 11, 483 doi: 10.3390/chemosensors11090483[31] Guo S S, Ma M Y, Wang Y Q, et al. Spatially confined microcells: A path toward TMD catalyst design. Chem Rev, 2024, 124, 6952 doi: 10.1021/acs.chemrev.3c00711[32] O’Brien K P, Naylor C H, Dorow C, et al. Process integration and future outlook of 2D transistors. Nat Commun, 2023, 14, 6400 doi: 10.1038/s41467-023-41779-5[33] Liu T, Liu S, Tu K H, et al. Crested two-dimensional transistors. Nat Nanotechnol, 2019, 14, 223 doi: 10.1038/s41565-019-0361-x[34] Wang Y, Chhowalla M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat Rev Phys, 2022, 4, 101[35] Wu W Q, Wang C F, Han S T, et al. Recent advances in imaging devices: Image sensors and neuromorphic vision sensors. Rare Met, 2024, 43, 5487 doi: 10.1007/s12598-024-02811-9[36] Manzoor S, Talib M, Novikov S M, et al. Physisorption-mediated charge transfer in TiS2 nanodiscs: A room temperature sensor for highly sensitive and reversible carbon dioxide detection. ACS Sens, 2023, 8, 3435 doi: 10.1021/acssensors.3c00931[37] Dong J S, Cai B, Ouyang G. Controllable photoelectric properties in double-wall MoS2 nanotubes by the flexoelectric effect. J Phys Chem C, 2021, 125, 11318 doi: 10.1021/acs.jpcc.1c02008[38] Li W, Huang J Q, Han B, et al. Molten-salt-assisted chemical vapor deposition process for substitutional doping of monolayer MoS2 and effectively altering the electronic structure and phononic properties. Adv Sci, 2020, 7, 2001080 doi: 10.1002/advs.202001080[39] Wang X, Yao C B, Wang L Y, et al. Hydrothermal synthesis and controlled growth of group-VIB W metal compound nanostructures from tungsten oxide to tungsten disulphide. Nanoscale, 2022, 14, 14670 doi: 10.1039/D2NR03786F[40] Xu M Z, Gao J W, Song J C, et al. Programmable patterned MoS2 film by direct laser writing for health-related signals monitoring. iScience, 2021, 24, 103313 doi: 10.1016/j.isci.2021.103313[41] Yu F F, Liu Q W, Gan X, et al. Ultrasensitive pressure detection of few-layer MoS2. Adv Mater, 2017, 29, 1603266 doi: 10.1002/adma.201603266[42] Wu G C, Li X, Bao R R, et al. Innovations in tactile sensing: Microstructural designs for superior flexible sensor performance. Adv Funct Mater, 2024, 2405722 doi: 10.1002/adfm.202405722[43] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438, 197 doi: 10.1038/nature04233[44] Girit C O, Meyer J C, Erni R, et al. Graphene at the edge: Stability and dynamics. Science, 2009, 323, 1705 doi: 10.1126/science.1166999[45] Zhao L Y, He R, Rim K T, et al. Visualizing individual nitrogen dopants in monolayer graphene. Science, 2011, 333, 999 doi: 10.1126/science.1208759[46] Yocham K M, Scott C, Fujimoto K, et al. Mechanical properties of graphene foam and graphene foam—Tissue composites. Adv Eng Mater, 2018, 20, 1800166 doi: 10.1002/adem.201800166[47] Agius Anastasi A, Ritos K, Cassar G, et al. Mechanical properties of pristine and nanoporous graphene. Mol Simul, 2016, 42, 1502 doi: 10.1080/08927022.2016.1209753[48] Tang H Y, Menabde S G, Anwar T, et al. Photo-modulated optical and electrical properties of graphene. Nanophotonics, 2022, 11, 917 doi: 10.1515/nanoph-2021-0582[49] Martini L, Chen Z P, Mishra N, et al. Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon, 2019, 146, 36 doi: 10.1016/j.carbon.2019.01.071[50] Kim T Y, Park C H, Marzari N. The electronic thermal conductivity of graphene. Nano Lett, 2016, 16, 2439 doi: 10.1021/acs.nanolett.5b05288[51] Weerasinghe A, Ramasubramaniam A, Maroudas D. Thermal conductivity of electron-irradiated graphene. Appl Phys Lett, 2017, 111, 163101 doi: 10.1063/1.4997772[52] Alaghemandi M, Salehi L, Samolis P, et al. Atomic understanding of structural deformations upon ablation of graphene. Nano Sel, 2021, 2, 2215 doi: 10.1002/nano.202000248[53] Dong Y, Li J, Yang X Y. Reactions between graphene oxide sheets cause irreversible agglomeration. Sci Bull, 2022, 67, 1943 doi: 10.1016/j.scib.2022.09.006[54] Liao L, Peng H L, Liu Z F. Chemistry makes graphene beyond graphene. J Am Chem Soc, 2014, 136, 12194 doi: 10.1021/ja5048297[55] Huang H B, Shi H D, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials. Adv Funct Mater, 2020, 30, 1909035 doi: 10.1002/adfm.201909035[56] Tao L Q, Zhang K N, Tian H, et al. Graphene-paper pressure sensor for detecting human motions. ACS Nano, 2017, 11, 8790 doi: 10.1021/acsnano.7b02826[57] Sun H L, Bu Y B, Liu H, et al. Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor. Sci Bull, 2022, 67, 1669 doi: 10.1016/j.scib.2022.07.020[58] Wei Y H, Li X S, Wang Y F, et al. Graphene-based multifunctional textile for sensing and actuating. ACS Nano, 2021, 15, 17738 doi: 10.1021/acsnano.1c05701[59] Qiao Y C, Li X S, Wang J B, et al. Intelligent and multifunctional graphene nanomesh electronic skin with high comfort. Small, 2022, 18, 2104810 doi: 10.1002/smll.202104810[60] Yang Q S, Jin W Q, Zhang Q H, et al. Mixed-modality speech recognition and interaction using a wearable artificial throat. Nat Mach Intell, 2023, 5, 169 doi: 10.1038/s42256-023-00616-6[61] Sharma S, Pradhan G B, Jeong S, et al. Stretchable and all-directional strain-insensitive electronic glove for robotic skins and human-machine interfacing. ACS Nano, 2023, 17, 8355 doi: 10.1021/acsnano.2c12784[62] Lorestani F, Zhang X Z, Abdullah A M, et al. A highly sensitive and long-term stable wearable patch for continuous analysis of biomarkers in sweat. Adv Funct Mater, 2023, 33, 2306117 doi: 10.1002/adfm.202306117[63] Wang D X, Jiang M S, Niu F L, et al. Speech enhancement control design algorithm for dual-microphone systems using β-NMF in a complex environment. Complexity, 2018, 2018, 6153451 doi: 10.1155/2018/6153451[64] Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). New York: Jenny Stanford Publishing, 2023, 29, 415 doi: 10.1021/acs.chemmater.7b02847[65] Mathis T S, Maleski K, Goad A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano, 2021, 15, 6420 doi: 10.1021/acsnano.0c08357[66] Bashir T, Ismail S A, Wang J Q, et al. MXene terminating groups O, −F or−OH, −F or O, −OH, −F, or O, −OH, −Cl? J Energy Chem, 2023, 76, 90 doi: 10.1016/j.jechem.2022.08.032[67] Ma Y N, Cheng Y F, Wang J, et al. Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. InfoMat, 2022, 4, 12328 doi: 10.1002/inf2.12328[68] Gao Y Y, Yan C, Huang H C, et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv Funct Mater, 2020, 30, 1909603 doi: 10.1002/adfm.201909603[69] Chen W, Liu L X, Zhang H B, et al. Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2T x MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano, 2021, 15, 7668 doi: 10.1021/acsnano.1c01277[70] Bai J, Gu W, Bai Y Y, et al. Multifunctional flexible sensor based on PU-TA@MXene Janus architecture for selective direction recognition. Adv Mater, 2023, 35, 2302847 doi: 10.1002/adma.202302847[71] Zhang M Y, Yang W K, Wang Z Q, et al. Highly compressible and thermal insulative conductive MXene/PEDOT: PSS@melamine foam for promising wearable piezoresistive sensor. Appl Phys Lett, 2023, 122, 043507 doi: 10.1063/5.0137571[72] Liu Y, Xu H Y, Dong M, et al. Highly sensitive wearable pressure sensor over a wide sensing range enabled by the skin surface-like 3D patterned interwoven structure. Adv Mater Technol, 2022, 7, 2200504 doi: 10.1002/admt.202200504[73] Zhang J L, Yang T, Tian G, et al. Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv Fiber Mater, 2024, 6, 133 doi: 10.1007/s42765-023-00337-w[74] Wu H, Xie Y M, Ma Y N, et al. Aqueous MXene/Xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor. Small, 2022, 18, 2107087 doi: 10.1002/smll.202107087[75] Shi Y Y, Xiang Z, Cai L, et al. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano, 2022, 16, 7816 doi: 10.1021/acsnano.2c00448[76] Zheng X H, Zhang S L, Zhou M J, et al. MXene functionalized, highly breathable and sensitive pressure sensors with multi-layered porous structure. Adv Funct Mater, 2023, 33, 2214880 doi: 10.1002/adfm.202214880[77] Su T Y, Liu N S, Lei D D, et al. Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano, 2022, 16, 8461 doi: 10.1021/acsnano.2c03155[78] Shao Y Z, Wei L S, Wu X Y, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat Commun, 2022, 13, 3223 doi: 10.1038/s41467-022-30648-2[79] Roy S, Zhang X, Puthirath A B, et al. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv Mater, 2021, 33, 2101589 doi: 10.1002/adma.202101589[80] Goel N, Kumar M. Recent advances in ultrathin 2D hexagonal boron nitride based gas sensors. J Mater Chem C, 2021, 9, 1537 doi: 10.1039/D0TC05855F[81] Watanabe K, Taniguchi T, Niiyama T, et al. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat Photonics, 2009, 3, 591 doi: 10.1038/nphoton.2009.167[82] Pakdel A, Zhi C Y, Bando Y, et al. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano, 2011, 5, 6507 doi: 10.1021/nn201838w[83] Li P N, Dolado I, Alfaro-Mozaz F J, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science, 2018, 359, 892 doi: 10.1126/science.aaq1704[84] Anichini C, Czepa W, Pakulski D, et al. Chemical sensing with 2D materials. Chem Soc Rev, 2018, 47, 4860 doi: 10.1039/C8CS00417J[85] Furlan de Oliveira R, Montes-García V, Ciesielski A, et al. Harnessing selectivity in chemical sensing via supramolecular interactions: From functionalization of nanomaterials to device applications. Mater Horiz, 2021, 8, 2685 doi: 10.1039/D1MH01117K[86] Yu X W, Cheng H H, Zhang M, et al. Graphene-based smart materials. Nat Rev Mater, 2017, 2, 17046 doi: 10.1038/natrevmats.2017.46[87] Lin Y, Williams T V, Xu T B, et al. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: Critical role of water. J Phys Chem C, 2011, 115, 2679 doi: 10.1021/jp110985w[88] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008, 3, 563 doi: 10.1038/nnano.2008.215[89] Chen L M, Hu K, Lu M Y, et al. Wearable sensors for breath monitoring based on water-based hexagonal boron nitride inks made with supramolecular functionalization. Adv Mater, 2024, 36, 2312621 doi: 10.1002/adma.202312621[90] Harley-Trochimczyk A, Pham T, Chang J, et al. Platinum nanoparticle loading of boron nitride aerogel and its use as a novel material for low-power catalytic gas sensing. Adv Funct Mater, 2016, 26, 433 doi: 10.1002/adfm.201503605[91] Di P J, Yuan Y, Xiao M Y, et al. A flexible skin bionic thermally comfortable wearable for machine learning-facilitated ultrasensitive sensing. Adv Sci, 2024, 11, 2401800 doi: 10.1002/advs.202401800[92] Tian G, Deng W L, Yang T, et al. Hierarchical piezoelectric composites for noninvasive continuous cardiovascular monitoring. Adv Mater, 2024, 36, 2313612 doi: 10.1002/adma.202313612[93] Wang Z J, Li J C, Ye N, et al. Breadcrumb-inspired construction of liquid metal@BN core-shell microparticles for highly thermal conductive elastomeric composites with excellent flexibility and stability. Compos Sci Technol, 2023, 233, 109903 doi: 10.1016/j.compscitech.2022.109903[94] Antonova I V, Ivanov A I, Shavelkina M B, et al. Engineering of graphene-based composites with hexagonal boron nitride and PEDOT: PSS for sensing applications. Phys Chem Chem Phys, 2024, 26, 7844 doi: 10.1039/D3CP05953G[95] Mun J, Park H, Park J, et al. High-mobility MoS2 directly grown on polymer substrate with kinetics-controlled metal−organic chemical vapor deposition. ACS Appl Electron Mater, 2019, 1, 608 doi: 10.1021/acsaelm.9b00078[96] Yan Z C, Xu D, Lin Z Y, et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science, 2022, 375, 852 doi: 10.1126/science.abl8941[97] Park Y J, Sharma B K, Shinde S M, et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano, 2019, 13, 3023 doi: 10.1021/acsnano.8b07995[98] Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113, 3766 doi: 10.1021/cr300263a[99] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nature Reviews Materials, 2017, 2, 17033 doi: 10.1038/natrevmats.2017.33[100] Smith A D, Niklaus F, Paussa A, et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett, 2013, 13, 3237 doi: 10.1021/nl401352k[101] Huang M Y, Pascal T A, Kim H, et al. Electronic−mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett, 2011, 11, 1241 doi: 10.1021/nl104227t[102] Solomon P M, Bryce B A, Kuroda M A, et al. Pathway to the piezoelectronic transduction logic device. Nano Lett, 2015, 15, 2391 doi: 10.1021/nl5046796[103] Newns D, Elmegreen B, Liu X H, et al. A low-voltage high-speed electronic switch based on piezoelectric transduction. J Appl Phys, 2012, 111, 084509 doi: 10.1063/1.4704391[104] Park S, Lee A, Choi K H, et al. Layer-selective synthesis of MoS2 and WS2 structures under ambient conditions for customized electronics. ACS Nano, 2020, 14, 8485 doi: 10.1021/acsnano.0c02745[105] Song M, Tan H, Li X L, et al. Atomic-layer-deposited amorphous MoS2 for durable and flexible Li−O2 batteries. Small Meth, 2020, 4, 1900274 doi: 10.1002/smtd.201900274[106] Nandi D K, Sahoo S, Sinha S, et al. Highly uniform atomic layer-deposited MoS2@3D-Ni-foam: A novel approach to prepare an electrode for supercapacitors. ACS Appl Mater Interfaces, 2017, 9, 40252 doi: 10.1021/acsami.7b12248[107] Li H, Cheng M, Wang P, et al. Reducing contact resistance and boosting device performance of monolayer MoS2 by in situ Fe doping. Adv Mater, 2022, 34, 2200885 doi: 10.1002/adma.202200885[108] Zhao Y X, Song J G, Ryu G H, et al. Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor. Nanoscale, 2018, 10, 9338 doi: 10.1039/C8NR00108A[109] Yang W F, Kawai H, Bosman M, et al. Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale, 2018, 10, 22927 doi: 10.1039/C8NR07498D[110] Lin Z Y, Liu Y, Halim U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562, 254 doi: 10.1038/s41586-018-0574-4[111] Pang X, Zhang Q, Zhao Y L, et al. Regulation of sulfur vacancies in vertical nanolamellar MoS2 for ultrathin flexible piezoresistive strain sensors. J Mater Sci Technol, 2023, 141, 56 doi: 10.1016/j.jmst.2022.08.042[112] Manzeli S, Allain A, Ghadimi A, et al. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett, 2015, 15, 5330 doi: 10.1021/acs.nanolett.5b01689[113] Park M, Park Y J, Chen X, et al. MoS2-based tactile sensor for electronic skin applications. Adv Mater, 2016, 28, 2556 doi: 10.1002/adma.201505124[114] Daus A, Jaikissoon M, Khan A I, et al. Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett, 2022, 22, 6135 doi: 10.1021/acs.nanolett.2c01344[115] Li W W, Xu M Z, Gao J W, et al. Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv Mater, 2023, 35, 2207447 doi: 10.1002/adma.202207447[116] Wang D Y, Zhang D Z, Li P, et al. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nanomicro Lett, 2021, 13, 57 doi: 10.1007/s40820-020-00580-5[117] Jung M W, Kang S M, Nam K H, et al. Highly transparent and flexible NO2 gas sensor film based on MoS2/rGO composites using soft lithographic patterning. Appl Surf Sci, 2018, 456, 7 doi: 10.1016/j.apsusc.2018.06.086[118] Liu A, Lv S Y, Jiang L, et al. The gas sensor utilizing polyaniline/MoS2 nanosheets/SnO2 nanotubes for the room temperature detection of ammonia. Sens Actuat B Chem, 2021, 332, 129444 doi: 10.1016/j.snb.2021.129444[119] Kim S, Han J, Kang M A, et al. Flexible chemical sensors based on hybrid layer consisting of molybdenum disulphide nanosheets and carbon nanotubes. Carbon, 2018, 129, 607 doi: 10.1016/j.carbon.2017.12.065[120] Niknam S, Dehdast A, Pourdakan O, et al. Tungsten disulfide nanomaterials (WS2 NM) application in biosensors and nanomedicine, a review. Nanomed Res J, 2018, 7, 214 doi: 10.22034/nmrj.2022.03.001[121] Ghosh R, Singh M, Chang L W, et al. Enhancing the photoelectrochemical hydrogen evolution reaction through nanoscrolling of two-dimensional material heterojunctions. ACS Nano, 2022, 16, 5743 doi: 10.1021/acsnano.1c10772[122] Xie L B, Wang L L, Zhao W W, et al. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat Commun, 2021, 12, 5070 doi: 10.1038/s41467-021-25381-1[123] Li J, Yang X D, Liu Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579, 368 doi: 10.1038/s41586-020-2098-y[124] Bentley C L, Kang M, Maddar F M, et al. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): Basal vs. edge plane activity. Chem Sci, 2017, 8, 6583 doi: 10.1039/C7SC02545A[125] Güell A G, Cuharuc A S, Kim Y R, et al. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano, 2015, 9, 3558 doi: 10.1021/acsnano.5b00550[126] Ramakrishna Matte H, Gomathi A, Manna A, et al. MoS2 and WS2 analogues of graphene. Angew Chem Int Ed, 2010, 49, 4059 doi: 10.1002/anie.201000009[127] Cheng Z F, He S D, Zhang S M, et al. Regulating the conductance of tungsten diselenide by oxygen plasma and improving its electrical stability by encapsulation. Nano Res, 2024, 17, 3253 doi: 10.1007/s12274-023-6235-8[128] Guo H Y, Lan C Y, Zhou Z F, et al. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale, 2017, 9, 6246 doi: 10.1039/C7NR01016H[129] Pei S F, Cheng H M. The reduction of graphene oxide. Carbon, 2012, 50, 3210 doi: 10.1016/j.carbon.2011.11.010[130] Park S Y, Kim Y H, Lee S Y, et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J Mater Chem A, 2018, 6, 5016 doi: 10.1039/C7TA11375G[131] Zhang L, Tan Q L, Wang Y, et al. Wirelessly powered multi-functional wearable humidity sensor based on RGO-WS2 heterojunctions. Sens Actuat B Chem, 2021, 329, 129077 doi: 10.1016/j.snb.2020.129077[132] Yang C, Xie J Y, Lou C M, et al. Flexible NO2 sensors based on WSe2 nanosheets with bifunctional selectivity and superior sensitivity under UV activation. Sens Actuat B Chem, 2021, 333, 129571 doi: 10.1016/j.snb.2021.129571[133] Chen W Y, Jiang X F, Lai S N, et al. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun, 2020, 11, 1302 doi: 10.1038/s41467-020-15092-4[134] Wang P, Tang C L, Song H J, et al. 1D/2D heterostructured WS2@PANi composite for highly sensitive, flexible, and room temperature ammonia gas sensor. ACS Appl Mater Interfaces, 2024, 16, 14082 doi: 10.1021/acsami.4c01136[135] Qin Z Y, Song X X, Wang J Y, et al. Development of flexible paper substrate sensor based on 2D WS2 with S defects for room-temperature NH3 gas sensing. Appl Surf Sci, 2022, 573, 151535 doi: 10.1016/j.apsusc.2021.151535[136] Su Y J, Xie G Z, Tai H L, et al. Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy, 2018, 47, 316 doi: 10.1016/j.nanoen.2018.02.031[137] Han Y T, Huang D, Ma Y J, et al. Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl Mater Interfaces, 2018, 10, 22640 doi: 10.1021/acsami.8b05811[138] Liu W, Gu D, Zhang J W, et al. ZnSe/NiO heterostructure-based chemiresistive-type sensors for low-concentration NO2 detection. Rare Met, 2021, 40, 1632 doi: 10.1007/s12598-020-01564-5[139] Yuan W J, Huang L, Zhou Q Q, et al. Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers. ACS Appl Mater Interfaces, 2014, 6, 17003 doi: 10.1021/am504616c[140] Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut, 2008, 151, 362 doi: 10.1016/j.envpol.2007.06.012 -
Proportional views