J. Semicond. > 2025, Volume 46 > Issue 2 > 021405

SPECIAL ISSUE REVIEWS

Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration

Pu Guo, Junyao Zhang and Jia Huang

+ Author Affiliations

 Corresponding author: Jia Huang, huangjia@tongji.edu.cn

DOI: 10.1088/1674-4926/24120017CSTR: 32376.14.1674-4926.24120017

PDF

Turn off MathJax

Abstract: The rapid growth of artificial intelligence has accelerated data generation, which increasingly exposes the limitations faced by traditional computational architectures, particularly in terms of energy consumption and data latency. In contrast, data-centric computing that integrates processing and storage has the potential of reducing latency and energy usage. Organic optoelectronic synaptic transistors have emerged as one type of promising devices to implement the data-centric computing paradigm owing to their superiority of flexibility, low cost, and large-area fabrication. However, sophisticated functions including vector-matrix multiplication that a single device can achieve are limited. Thus, the fabrication and utilization of organic optoelectronic synaptic transistor arrays (OOSTAs) are imperative. Here, we summarize the recent advances in OOSTAs. Various strategies for manufacturing OOSTAs are introduced, including coating and casting, physical vapor deposition, printing, and photolithography. Furthermore, innovative applications of the OOSTA system integration are discussed, including neuromorphic visual systems and neuromorphic computing systems. At last, challenges and future perspectives of utilizing OOSTAs in real-world applications are discussed.

Key words: organic transistor arraysoptoelectronic synaptic transistorsneuromorphic systemssystem integration



[1]
Sun Z, Kvatinsky S, Si X, et al. A full spectrum of computing-in-memory technologies. Nat Electron, 2023, 6, 823 doi: 10.1038/s41928-023-01053-4
[2]
van de Burgt Y, Melianas A, Keene S T, et al. Organic electronics for neuromorphic computing. Nat Electron, 2018, 1, 386 doi: 10.1038/s41928-018-0103-3
[3]
Krestinskaya O, Fouda M E, Benmeziane H, et al. Neural architecture search for in-memory computing-based deep learning accelerators. Nat Rev Electr Eng, 2024, 1, 374 doi: 10.1038/s44287-024-00052-7
[4]
Aguirre F, Sebastian A, Le Gallo M, et al. Hardware implementation of memristor-based artificial neural networks. Nat Commun, 2024, 15(1), 1974 doi: 10.1038/s41467-024-45670-9
[5]
Zidan M A, Strachan J P, Lu W D. The future of electronics based on memristive systems. Nat Electron, 2018, 1, 22 doi: 10.1038/s41928-017-0006-8
[6]
Chen J W, Zhou Z, Kim B J, et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat Nanotechnol, 2023, 18, 882 doi: 10.1038/s41565-023-01379-2
[7]
Zhang W Q, Gao B, Tang J S, et al. Neuro-inspired computing chips. Nat Electron, 2020, 3, 371 doi: 10.1038/s41928-020-0435-7
[8]
Zhou F C, Chai Y. Near-sensor and in-sensor computing. Nat Electron, 2020, 3, 664 doi: 10.1038/s41928-020-00501-9
[9]
Ren Q Q, Zhu C Y, Ma S J, et al. Optoelectronic devices for in-sensor computing. Adv Mater, 2024, e2407476 doi: 10.1002/adma.202407476
[10]
Wang Z Q, Wan T Q, Ma S J, et al. Multidimensional vision sensors for information processing. Nat Nanotechnol, 2024, 19, 919 doi: 10.1038/s41565-024-01665-7
[11]
Wang Y, Yin L, Huang W, et al. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst, 2021, 3, 2000099 doi: 10.1002/aisy.202000099
[12]
Schuman C D, Kulkarni S R, Parsa M, et al. Opportunities for neuromorphic computing algorithms and applications. Nat Comput Sci, 2022, 2, 10 doi: 10.1038/s43588-021-00184-y
[13]
Cho S W, Kwon S M, Kim Y H, et al. Recent progress in transistor-based optoelectronic synapses: From neuromorphic computing to artificial sensory system. Adv Intell Syst, 2021, 3, 2000162 doi: 10.1002/aisy.202000162
[14]
Wan Q Z, Sharbati M T, Erickson J R, et al. Emerging artificial synaptic devices for neuromorphic computing. Adv Mater Technol, 2019, 4, 1900037 doi: 10.1002/admt.201900037
[15]
Wang X, Ran Y X, Li X Q, et al. Bio-inspired artificial synaptic transistors: Evolution from innovative basic units to system integration. Mater Horiz, 2023, 10, 3269 doi: 10.1039/D3MH00216K
[16]
He Z H, Shen H G, Ye D K, et al. An organic transistor with light intensity-dependent active photoadaptation. Nat Electron, 2021, 4, 522 doi: 10.1038/s41928-021-00615-8
[17]
Choi Y, Oh S, Qian C, et al. Vertical organic synapse expandable to 3D crossbar array. Nat Commun, 2020, 11, 4595 doi: 10.1038/s41467-020-17850-w
[18]
Bu X B, Xu H, Shang D S, et al. Ion-gated transistor: An enabler for sensing and computing integration. Adv Intell Syst, 2020, 2, 2000156 doi: 10.1002/aisy.202000156
[19]
Li H L, Jiang X T, Ye W B, et al. Fully photon modulated heterostructure for neuromorphic computing. Nano Energy, 2019, 65, 104000 doi: 10.1016/j.nanoen.2019.104000
[20]
Xiao X Y, Hu J, Tang S, et al. Recent advances in halide perovskite memristors: Materials, structures, mechanisms, and applications. Adv Mater Technol, 2020, 5, 1900914 doi: 10.1002/admt.201900914
[21]
Duan X G, Cao Z L, Gao K K, et al. Memristor-based neuromorphic chips. Adv Mater, 2024, 36, 2310704 doi: 10.1002/adma.202310704
[22]
Sarwat S G, Kersting B, Moraitis T, et al. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat Nanotechnol, 2022, 17, 507 doi: 10.1038/s41565-022-01095-3
[23]
Jeong B H, Park J, Kim D, et al. Visible light-sensitive artificial photonic synapse. Adv Opt Mater, 2024, 12, 2301652 doi: 10.1002/adom.202301652
[24]
Wang J, Ilyas N, Ren Y, et al. Technology and integration roadmap for optoelectronic memristor. Adv Mater, 2024, 36, e2307393 doi: 10.1002/adma.202307393
[25]
Bronstein H, Nielsen C B, Schroeder B C, et al. The role of chemical design in the performance of organic semiconductors. Nat Rev Chem, 2020, 4, 66 doi: 10.1038/s41570-019-0152-9
[26]
Fuller E J, Keene S T, Melianas A, et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 2019, 364, 570 doi: 10.1126/science.aaw5581
[27]
Zhang X J, Deng W, Jia R F, et al. Precise patterning of organic semiconductor crystals for integrated device applications. Small, 2019, 15, 1900332 doi: 10.1002/smll.201900332
[28]
Wang W C, Chi L F. Patterned growth of organic semiconductors for ultra-high resolution microelectronics and optoelectronics. Wearable Electron, 2024, 1, 91 doi: 10.1016/j.wees.2024.05.005
[29]
Emslie A G, Bonner F T, Peck L G. Flow of a viscous liquid on a rotating disk. J Appl Phys, 1958, 29, 858 doi: 10.1063/1.1723300
[30]
Sahu N, Parija B, Panigrahi S. Fundamental understanding and modeling of spin coating process: A review. Indian J Phys, 2009, 83, 493 doi: 10.1007/s12648-009-0009-z
[31]
Hao D D, Zhang J Y, Dai S L, et al. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interfaces, 2020, 12, 39487 doi: 10.1021/acsami.0c10851
[32]
Liu D, Zhang J, Shi Q, et al. Humidity/oxygen-insensitive organic synaptic transistors based on optical radical effect. Adv Mater, 2024, 36, e2305370 doi: 10.1002/adma.202305370
[33]
Jiang L L, Huang H, Zhang C, et al. One-step preparation of semiconductor/dielectric bilayer structures for the simulation of flexible bionic photonic synapses. ACS Appl Mater Interfaces, 2023, 15, 7227 doi: 10.1021/acsami.2c22223
[34]
Xu F, Zhang C, Zhao X L, et al. Intrinsically stretchable photonic synaptic transistors for retina-like visual image systems. J Mater Chem C, 2022, 10, 10586 doi: 10.1039/D2TC01775J
[35]
Wang S Y, Zhao X L, Tong Y H, et al. Directly spin coating a low-viscosity organic semiconductor solution onto hydrophobic surfaces: Toward high-performance solution-processable organic transistors. Adv Materials Inter, 2020, 7, 1901950 doi: 10.1002/admi.201901950
[36]
Wang C Q, Lu Z J, Deng W, et al. Precise patterning of single crystal arrays of organic semiconductors by a patterned microchannel dip-coating method for organic field-effect transistors. J Mater Chem C, 2021, 9, 5174 doi: 10.1039/D1TC00035G
[37]
Wang H, Deng W, Huang L M, et al. Precisely patterned growth of ultra-long single-crystalline organic microwire arrays for near-infrared photodetectors. ACS Appl Mater Interfaces, 2016, 8, 7912 doi: 10.1021/acsami.5b12190
[38]
Deng W, Zhang X J, Dong H L, et al. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Mater Today, 2019, 24, 17 doi: 10.1016/j.mattod.2018.07.018
[39]
Deng W, Lv Y, Zhang X L, et al. High-resolution patterning of organic semiconductor single crystal arrays for high-integration organic field-effect transistors. Mater Today, 2020, 40, 82 doi: 10.1016/j.mattod.2020.06.004
[40]
Xu X Z, Deng W, Zhang X J, et al. Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano, 2019, 13, 5910 doi: 10.1021/acsnano.9b01734
[41]
Zhang X, Zhang H, Li S L, et al. Development and application of blade-coating technique in organic solar cells. Nano Res, 2023, 16, 11571 doi: 10.1007/s12274-023-5425-9
[42]
Zhang X L, Deng W, Lu B, et al. Fast deposition of an ultrathin, highly crystalline organic semiconductor film for high-performance transistors. Nanoscale Horiz, 2020, 5, 1096 doi: 10.1039/D0NH00096E
[43]
Kim K, Nam K, Li X L, et al. Programmed design of highly crystalline organic semiconductor patterns with uniaxial alignment via blade coating for high-performance organic field-effect transistors. ACS Appl Mater Interfaces, 2019, 11, 42403 doi: 10.1021/acsami.9b12765
[44]
Shi J L, Jie J S, Deng W, et al. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv Mater, 2022, 34, 2200380 doi: 10.1002/adma.202200380
[45]
Li X X, Sabir A, Zhang X Y, et al. Highly stretchable and oriented wafer-scale semiconductor films for organic phototransistor arrays. ACS Appl Mater Interfaces, 2024, 16, 36678 doi: 10.1021/acsami.4c04349
[46]
Hong H Y, Yang Z X, Ye Y L, et al. Highly uniform organic nanowire synaptic arrays with excellent performance for associative memory. Chem Eng J, 2024, 492, 152244 doi: 10.1016/j.cej.2024.152244
[47]
Shen Z H, Yang Z X, Zhou Y Q, et al. Ultralow-power consumption photonic synapse transistors based on organic array films fabricated using a particular prepatterned-guided crystallizing strategy. J Mater Chem C, 2023, 11, 3213 doi: 10.1039/D2TC05125G
[48]
Guo P, Zhang J Y, Pu H Q, et al. Wafer-scale photolithographic fabrication of organic synaptic transistor arrays. Device, 2024, 2, 100409 doi: 10.1016/j.device.2024.100409
[49]
Dai S L, Wu X H, Liu D P, et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces, 2018, 10, 21472 doi: 10.1021/acsami.8b05036
[50]
Zhang C, Xu F, Zhao X L, et al. Natural polyelectrolyte-based ultraflexible photoelectric synaptic transistors for hemispherical high-sensitive neuromorphic imaging system. Nano Energy, 2022, 95, 107001 doi: 10.1016/j.nanoen.2022.107001
[51]
Liu X E, Lee E K, Kim D Y, et al. Flexible organic phototransistor array with enhanced responsivity via metal-ligand charge transfer. ACS Appl Mater Interfaces, 2016, 8, 7291 doi: 10.1021/acsami.5b11523
[52]
Guo H T, Guo J, Wang Y J, et al. An organic optoelectronic synapse with multilevel memory enabled by gate modulation. ACS Appl Mater Interfaces, 2024, 16, 66948 doi: 10.1021/acsami.3c19624
[53]
Jang S, Jang S, Lee E H, et al. Ultrathin conformable organic artificial synapse for wearable intelligent device applications. ACS Appl Mater Interfaces, 2019, 11, 1071 doi: 10.1021/acsami.8b12092
[54]
Jiang T, Wang Y R, Zheng Y S, et al. Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection. Nat Commun, 2023, 14, 2281 doi: 10.1038/s41467-023-37973-0
[55]
Kim Y, Zhu C X, Lee W Y, et al. A hemispherical image sensor array fabricated with organic photomemory transistors. Adv Mater, 2023, 35, e2203541 doi: 10.1002/adma.202203541
[56]
Sakorikar T, Mihaliak N, Krisnadi F, et al. A guide to printed stretchable conductors. Chem Rev, 2024, 124, 860 doi: 10.1021/acs.chemrev.3c00569
[57]
Liang K, Wang R, Ren H, et al. Printable coffee-ring structures for highly uniform all-oxide optoelectronic synaptic transistors. Adv Opt Mater, 2022, 10, 2201754. doi: 10.1002/adom.202201754
[58]
Sui N Z, Ji Y X, Li M, et al. Photoprogrammed multifunctional optoelectronic synaptic transistor arrays based on photosensitive polymer-sorted semiconducting single-walled carbon nanotubes for image recognition. Adv Sci, 2024, 11, e2401794 doi: 10.1002/advs.202401794
[59]
Shi Q Q, Liu D P, Hao D D, et al. Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy, 2021, 87, 106197 doi: 10.1016/j.nanoen.2021.106197
[60]
Duan S M, Gao X, Wang Y, et al. Scalable fabrication of highly crystalline organic semiconductor thin film by channel-restricted screen printing toward the low-cost fabrication of high-performance transistor arrays. Adv Mater, 2019, 31, e1807975 doi: 10.1002/adma.201807975
[61]
Liu Q Z, Liu Y H, Li J, et al. Fully printed all-solid-state organic flexible artificial synapse for neuromorphic computing. ACS Appl Mater Interfaces, 2019, 11, 16749 doi: 10.1021/acsami.9b00226
[62]
Kwon J, Takeda Y, Fukuda K, et al. Three-dimensional, inkjet-printed organic transistors and integrated circuits with 100% yield, high uniformity, and long-term stability. ACS Nano, 2016, 10, 10324 doi: 10.1021/acsnano.6b06041
[63]
Fang Y, Wu X M, Lan S Q, et al. Inkjet-printed vertical organic field-effect transistor arrays and their image sensors. ACS Appl Mater Interfaces, 2018, 10, 30587 doi: 10.1021/acsami.8b06625
[64]
Wang H L, Zhao Q, Ni Z J, et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater, 2018, 30, e1803961 doi: 10.1002/adma.201803961
[65]
Zhao X L, Wang S Y, Ni Y P, et al. High-performance full-photolithographic top-contact conformable organic transistors for soft electronics. Adv Sci, 2021, 8, 2004050 doi: 10.1002/advs.202004050
[66]
Kim M J, Lee M, Min H, et al. Universal three-dimensional crosslinker for all-photopatterned electronics. Nat Commun, 2020, 11, 1520 doi: 10.1038/s41467-020-15181-4
[67]
Kahle F, Saller C, Köhler A, et al. Crosslinked semiconductor polymers for photovoltaic applications. Adv Energy Mater, 2017, 7, 1700306 doi: 10.1002/aenm.201700306
[68]
Kim M J, Ryu H S, Choi Y Y, et al. Completely foldable electronics based on homojunction polymer transistors and logics. Sci Adv, 2021, 7, eabg8169 doi: 10.1126/sciadv.abg8169
[69]
Wu Y, Dai S, Liu X, et al. Optical microlithography of perovskite quantum dots/organic semiconductor heterojunctions for neuromorphic photosensors. Adv Funct Mater, 2024, 34, 175 doi: 10.1002/adfm.202315175
[70]
Zheng Y Q, Liu Y X, Zhong D L, et al. Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373, 88 doi: 10.1126/science.abh3551
[71]
Wang B H, Huang W, Lee S, et al. Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Nat Commun, 2021, 12, 4937 doi: 10.1038/s41467-021-25059-8
[72]
Park H W, Choi K Y, Shin J, et al. Universal route to impart orthogonality to polymer semiconductors for sub-micrometer tandem electronics. Adv Mater, 2019, 31, 1901400 doi: 10.1002/adma.201901400
[73]
Freudenberg J, Jänsch D, Hinkel F, et al. Immobilization strategies for organic semiconducting conjugated polymers. Chem Rev, 2018, 118, 5598 doi: 10.1021/acs.chemrev.8b00063
[74]
Chen R Z, Wang X J, Li X, et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Sci Adv, 2021, 7, eabg0659 doi: 10.1126/sciadv.abg0659
[75]
Chen R Z, Yan Y K, Wang X J, et al. Patterning an erosion-free polymeric semiconductor channel for reliable all-photolithography organic electronics. J Phys Chem Lett, 2022, 13, 7673 doi: 10.1021/acs.jpclett.2c01982
[76]
Zhang S, Chen R Z, Kong D R, et al. Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors. Nat Nanotechnol, 2024, 19, 1323 doi: 10.1038/s41565-024-01707-0
[77]
Wang C Y, Bian Y S, Liu K, et al. Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat Commun, 2024, 15, 3123 doi: 10.1038/s41467-024-47532-w
[78]
Chen K, Hu H, Song I, et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat Photonics, 2023, 17, 629 doi: 10.1038/s41566-023-01232-x
[79]
Dai S L, Dai Y H, Zhao Z X, et al. Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter, 2022, 5(10), 3375 doi: 10.1016/j.matt.2022.07.016
[80]
Guo P, Zhang J Y, Liu D P, et al. Optoelectronic synaptic transistors based on solution-processable organic semiconductors and CsPbCl3 quantum dots for visual nociceptor simulation and neuromorphic computing. ACS Appl Mater Interfaces, 2023, 15, 51483 doi: 10.1021/acsami.3c09355
[81]
Wang R Z, Chen P Y, Hao D D, et al. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl Mater Interfaces, 2021, 13, 43144 doi: 10.1021/acsami.1c08424
[82]
Lee Y, Park H L, Kim Y, et al. Organic electronic synapses with low energy consumption. Joule, 2021, 5, 794 doi: 10.1016/j.joule.2021.01.005
Fig. 1.  (Color online) Schematic diagrams of fabrication strategies of OOSTAs.

Fig. 2.  (Color online) Spin coating for the fabrication of OOSTAs. (a) The photograph and the transfer characteristic curves of the 10 × 10 OOSTAs on a 2-inch wafer reproduced with permission[32]. Copyright 2023, Wiley-VCH. (b) The schematic diagram of the flexible OOSTAs and the images of OOSTAs transferred to multiple substrates reproduced with permission[33]. Copyright 2023, American Chemical Society. (c) The schematic diagram and the optical image of the intrinsic stretchable OOSTAs reproduced with permission[34]. Copyright 2022, Royal Society of Chemistry. (d) The schematic diagram of 9 × 8 transistor array and the optical image. Revised illustration reproduced with permission[35]. Copyright 2020, Wiley-VCH.

Fig. 3.  (Color online) Dip coating for the fabrication of OOSTAs. (a) Schematic illustration of the wafer-scale growth of DPA crystal arrays and (b) the microstructure of the crystal array with reproduced permission[38]. Copyright 2019, Elsevier. (c) Schematic illustration of the dip coating process for patterning C8-BTBT crystal arrays. (d) Colored SEM images of a typical C8-BTBT single crystal arrays-based organic field transistor reproduced with permission[39]. Copyright 2020, Elsevier. (e) Polarized optical microscope images of perovskite nanoparticles on the surfaces of the C8-BTBT single-crystal array and (f) the schematic diagram of the transistor arrays reproduced with permission[40]. Copyright 2019, American Chemical Society.

Fig. 4.  (Color online) Blade coating and drop casting for the fabrication of OOSTAs. (a) The schematic diagram of blade coating of wafer-scale ultrathin OSC crystalline film and the optical image of the wafer-scale ultrathin Dif-TES-ADT crystalline film reproduced with permission[42]. Copyright 2020, Royal Society of Chemistry. (b) The schematic diagram of blade-coating technique with a programmed blade coating speed to prepare for TIPS-PEN crystal patterns and the optical image of the transistor arrays with TIPS-PEN crystal patterns reproduced with permission[43]. Copyright 2019, American Chemical Society. (c) The process diagram of the fully printed process and (d) the optical image of the 8 × 8 OOSTAs array reproduced with permission[44]. Copyright 2022, Wiley-VCH. (e) Schematic illustration of three deposition regimes during the blade coating stretchable film and (f) the diagram and the optical image of the stretchable transistor arrays reproduced with permission[45]. Copyright 2024, American Chemical Society. The drop casting for the OOSTAs based on small molecules including (g) the schematic diagram of the OOSTAs based on the prepared semiconductor arrays prepared by drop coating reproduced with permission[47]. Copyright 2023, Royal Society of Chemistry. (h) The schematic diagram of the CsPbBr3/TIPS-pentacene composite synaptic array. (i) The AFM image and the SEM image of the CsPbBr3/TIPS-pentacene crystal array reproduced with permission[46]. Copyright 2024, Elsevier.

Fig. 5.  (Color online) Physical vapor deposition for the fabrication of OOSTAs. (a) The schematic diagram of 10 × 10 Ru-complex 1/BPE-PTCDI/SU-8 OOSTAs fabricated on a flexible, transparent reproduced with permission[51]. Copyright 2016, American Chemical Society. (b) The flexible OOSTAs based on the unseparated functional film reproduced with permission[49]. Copyright 2018, American Chemical Society. (c) Schematic diagram of transistor arrays and molecular structures of PVDF-TrFE and pentacene reproduced with permission[53]. Copyright 2019, American Chemical Society. (d) The image of TIPS-pentacene transistor array reproduced with permission[52]. Copyright 2024, American Chemical Society. (e) The 6 × 8 patterned device OOSTAs reproduced with permission[54]. Copyright 2023, Springer Nature. (f) The Schematic of layers in a unit of OOSTA and the optical image of the OOSTAs reproduced with permission[55]. Copyright 2023, Wiley-VCH.

Fig. 6.  (Color online) Printing for the fabrication of OOSTAs. (a) A schematic illustration of the method of screen printing and optical image of the 8 × 8 transistor array on 3 × 3 cm2 Si/SiO2 substrate using C8-BTBT: PMMA. (b) The consistency of saturation mobility of 64 transistors from 8 × 8 array reproduced with permission[60]. Copyright 2019, Wiley-VCH. (c) Schematic illustration of the key fabrication procedures for OOSTAs with screen printing technology reproduced with permission[61]. Copyright 2019, American Chemical Society. (d) Top view of 56 pairs of 3D-transistor inverters fabricated by inkjet printing on a substrate and the optical images of a single 3D-transistor inverter reproduced with permission[62]. Copyright 2016, American Chemical Society. (e) The schematic diagram of vertical OOSTAs and the optical image of the vertical OOSTAs reproduced with permission[63]. Copyright 2018, American Chemical Society. (f) optical image of a 5 × 6 ferroelectric OOSTAs reproduced with permission[64]. Copyright 2018, Wiley-VCH.

Fig. 7.  (Color online) Photolithography for the fabrication of OOSTAs. (a) Schematic representation of a semiconducting polymer in its cross-linked state formed by 4Bx and (b) the schematic diagram of all-photopatterned transistor arrays reproduced with permission[66]. Copyright 2020, Springer Nature. (c) The schematic diagram and optical image of the CsPbBr3 QDs/DPPDTT OOSTAs reproduced with permission[69]. Copyright 2024, Wiley-VCH. (d) The schematic diagram showing the photocrosslinking of the semiconductor photoresist and the corresponding transistor arrays reproduced with permission[74]. Copyright 2021, the American Association for the Advancement of Science. (e) The photographs of ultralarge-scale integration level imaging chip on a SiO2/Si wafer reproduced with permission[76]. Copyright 2024, Springer Nature.

Fig. 8.  (Color online) Neuromorphic visual systems (a) learning and forgetting process of the OOSTAs reproduced with permission[49]. Copyright 2018, American Chemical Society. (b) Image recognition and reinforcement learning reproduced with permission[44]. Copyright 2022, Wiley-VCH. (c) A schematic diagram showing the image of the letter "N" of the stretchable OOSTAs. reproduced with permission[34]. Copyright 2022, Royal Society of Chemistry. (d) A schematic diagram showing the focused image of the letter "X" onto the stretchable OOSTAs reproduced with permission[55]. Copyright 2022, Wiley-VCH. (e) The color filtering process based on the OOSTAs reproduced with permission[48]. Copyright 2024, Elsevier. (f) The motion detection based on the OOSTAs reproduced with permission[69]. Copyright 2024, Wiley-VCH.

Fig. 9.  (Color online) Neuromorphic computing based on OOSTAs. (a) LTP−LTD cycles of the synaptic transistors reproduced with permission[79]. Copyright 2022, Elsevier. (b) Schematic diagram of the single-layer perceptron network reproduced with permission[80]. Copyright 2023, American Chemical Society. (c) LTP/LTD curves of the flexible OOSTAs and (d) the schematic diagram of the constructed single-hidden-layer ANN with the image preprocessing reproduced with permission[48]. Copyright 2024, Elsevier.

Table 1.   Summary of the currently reported OOSTAs.

Functional materials Fabrication strategies of OOSTAs Configuration of OOSTAs Reference
DPPDTT/CsPbBr3 quantum dots Spin coating 6 × 6 31
DPPDTT/Cl-HABI Spin coating 10 × 10 32
P3HT-b-PPI(5F) Spin coating 4 × 4 33
IDTBT Spin coating 4 × 4 34
TIPS-pentacene Spin coating 9 × 8 35
2,6-diphenylanthracene (DPA) Dip coating 7 × 9 38
C8-BTBT Dip coating 13 × 13 39
CH3NH3PbI/C8-BTBT Dip coating 10 × 10 40
Dif-TES-ADT Blade coating 5 × 8 42
TES-ADT/PS Blade coating 8 × 8 44
PDBT-co-TT/SEBS Blade coating 10 × 10 45
TIPS-PEN/CsPbBr3/PVP Drop casting 4 × 4 46
TIPS-PEN Drop casting 8 × 8 47
TIPS-PEN PVD 4 × 4 52
Pentacene PVD NA 53
2-hexylthieno[4,5-b][1] benzothieno[3,2-b][1] benzothiophene PVD 8 × 6 54
Pentacene PVD 12 × 12 55
C8-BTBT/PMMA Screen printing 8 × 8 60
PDVT-8 Inkjet printing NA 63
PVDT-10 Inkjet printing 5 × 6 64
CsPbBr3 quantum dots/DPPDTT Photolithography up to 6500 units cm−2 69
Poly(tetrathienoacene–diketopyrrolopyrrole)/CsPbBr3 Photolithography up to 3.1 × 106 units cm−2 76
CsPbBr3 quantum dots/DPPDTT Photolithography up to 6500 units cm−2 48
DownLoad: CSV
[1]
Sun Z, Kvatinsky S, Si X, et al. A full spectrum of computing-in-memory technologies. Nat Electron, 2023, 6, 823 doi: 10.1038/s41928-023-01053-4
[2]
van de Burgt Y, Melianas A, Keene S T, et al. Organic electronics for neuromorphic computing. Nat Electron, 2018, 1, 386 doi: 10.1038/s41928-018-0103-3
[3]
Krestinskaya O, Fouda M E, Benmeziane H, et al. Neural architecture search for in-memory computing-based deep learning accelerators. Nat Rev Electr Eng, 2024, 1, 374 doi: 10.1038/s44287-024-00052-7
[4]
Aguirre F, Sebastian A, Le Gallo M, et al. Hardware implementation of memristor-based artificial neural networks. Nat Commun, 2024, 15(1), 1974 doi: 10.1038/s41467-024-45670-9
[5]
Zidan M A, Strachan J P, Lu W D. The future of electronics based on memristive systems. Nat Electron, 2018, 1, 22 doi: 10.1038/s41928-017-0006-8
[6]
Chen J W, Zhou Z, Kim B J, et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat Nanotechnol, 2023, 18, 882 doi: 10.1038/s41565-023-01379-2
[7]
Zhang W Q, Gao B, Tang J S, et al. Neuro-inspired computing chips. Nat Electron, 2020, 3, 371 doi: 10.1038/s41928-020-0435-7
[8]
Zhou F C, Chai Y. Near-sensor and in-sensor computing. Nat Electron, 2020, 3, 664 doi: 10.1038/s41928-020-00501-9
[9]
Ren Q Q, Zhu C Y, Ma S J, et al. Optoelectronic devices for in-sensor computing. Adv Mater, 2024, e2407476 doi: 10.1002/adma.202407476
[10]
Wang Z Q, Wan T Q, Ma S J, et al. Multidimensional vision sensors for information processing. Nat Nanotechnol, 2024, 19, 919 doi: 10.1038/s41565-024-01665-7
[11]
Wang Y, Yin L, Huang W, et al. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst, 2021, 3, 2000099 doi: 10.1002/aisy.202000099
[12]
Schuman C D, Kulkarni S R, Parsa M, et al. Opportunities for neuromorphic computing algorithms and applications. Nat Comput Sci, 2022, 2, 10 doi: 10.1038/s43588-021-00184-y
[13]
Cho S W, Kwon S M, Kim Y H, et al. Recent progress in transistor-based optoelectronic synapses: From neuromorphic computing to artificial sensory system. Adv Intell Syst, 2021, 3, 2000162 doi: 10.1002/aisy.202000162
[14]
Wan Q Z, Sharbati M T, Erickson J R, et al. Emerging artificial synaptic devices for neuromorphic computing. Adv Mater Technol, 2019, 4, 1900037 doi: 10.1002/admt.201900037
[15]
Wang X, Ran Y X, Li X Q, et al. Bio-inspired artificial synaptic transistors: Evolution from innovative basic units to system integration. Mater Horiz, 2023, 10, 3269 doi: 10.1039/D3MH00216K
[16]
He Z H, Shen H G, Ye D K, et al. An organic transistor with light intensity-dependent active photoadaptation. Nat Electron, 2021, 4, 522 doi: 10.1038/s41928-021-00615-8
[17]
Choi Y, Oh S, Qian C, et al. Vertical organic synapse expandable to 3D crossbar array. Nat Commun, 2020, 11, 4595 doi: 10.1038/s41467-020-17850-w
[18]
Bu X B, Xu H, Shang D S, et al. Ion-gated transistor: An enabler for sensing and computing integration. Adv Intell Syst, 2020, 2, 2000156 doi: 10.1002/aisy.202000156
[19]
Li H L, Jiang X T, Ye W B, et al. Fully photon modulated heterostructure for neuromorphic computing. Nano Energy, 2019, 65, 104000 doi: 10.1016/j.nanoen.2019.104000
[20]
Xiao X Y, Hu J, Tang S, et al. Recent advances in halide perovskite memristors: Materials, structures, mechanisms, and applications. Adv Mater Technol, 2020, 5, 1900914 doi: 10.1002/admt.201900914
[21]
Duan X G, Cao Z L, Gao K K, et al. Memristor-based neuromorphic chips. Adv Mater, 2024, 36, 2310704 doi: 10.1002/adma.202310704
[22]
Sarwat S G, Kersting B, Moraitis T, et al. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat Nanotechnol, 2022, 17, 507 doi: 10.1038/s41565-022-01095-3
[23]
Jeong B H, Park J, Kim D, et al. Visible light-sensitive artificial photonic synapse. Adv Opt Mater, 2024, 12, 2301652 doi: 10.1002/adom.202301652
[24]
Wang J, Ilyas N, Ren Y, et al. Technology and integration roadmap for optoelectronic memristor. Adv Mater, 2024, 36, e2307393 doi: 10.1002/adma.202307393
[25]
Bronstein H, Nielsen C B, Schroeder B C, et al. The role of chemical design in the performance of organic semiconductors. Nat Rev Chem, 2020, 4, 66 doi: 10.1038/s41570-019-0152-9
[26]
Fuller E J, Keene S T, Melianas A, et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 2019, 364, 570 doi: 10.1126/science.aaw5581
[27]
Zhang X J, Deng W, Jia R F, et al. Precise patterning of organic semiconductor crystals for integrated device applications. Small, 2019, 15, 1900332 doi: 10.1002/smll.201900332
[28]
Wang W C, Chi L F. Patterned growth of organic semiconductors for ultra-high resolution microelectronics and optoelectronics. Wearable Electron, 2024, 1, 91 doi: 10.1016/j.wees.2024.05.005
[29]
Emslie A G, Bonner F T, Peck L G. Flow of a viscous liquid on a rotating disk. J Appl Phys, 1958, 29, 858 doi: 10.1063/1.1723300
[30]
Sahu N, Parija B, Panigrahi S. Fundamental understanding and modeling of spin coating process: A review. Indian J Phys, 2009, 83, 493 doi: 10.1007/s12648-009-0009-z
[31]
Hao D D, Zhang J Y, Dai S L, et al. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interfaces, 2020, 12, 39487 doi: 10.1021/acsami.0c10851
[32]
Liu D, Zhang J, Shi Q, et al. Humidity/oxygen-insensitive organic synaptic transistors based on optical radical effect. Adv Mater, 2024, 36, e2305370 doi: 10.1002/adma.202305370
[33]
Jiang L L, Huang H, Zhang C, et al. One-step preparation of semiconductor/dielectric bilayer structures for the simulation of flexible bionic photonic synapses. ACS Appl Mater Interfaces, 2023, 15, 7227 doi: 10.1021/acsami.2c22223
[34]
Xu F, Zhang C, Zhao X L, et al. Intrinsically stretchable photonic synaptic transistors for retina-like visual image systems. J Mater Chem C, 2022, 10, 10586 doi: 10.1039/D2TC01775J
[35]
Wang S Y, Zhao X L, Tong Y H, et al. Directly spin coating a low-viscosity organic semiconductor solution onto hydrophobic surfaces: Toward high-performance solution-processable organic transistors. Adv Materials Inter, 2020, 7, 1901950 doi: 10.1002/admi.201901950
[36]
Wang C Q, Lu Z J, Deng W, et al. Precise patterning of single crystal arrays of organic semiconductors by a patterned microchannel dip-coating method for organic field-effect transistors. J Mater Chem C, 2021, 9, 5174 doi: 10.1039/D1TC00035G
[37]
Wang H, Deng W, Huang L M, et al. Precisely patterned growth of ultra-long single-crystalline organic microwire arrays for near-infrared photodetectors. ACS Appl Mater Interfaces, 2016, 8, 7912 doi: 10.1021/acsami.5b12190
[38]
Deng W, Zhang X J, Dong H L, et al. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Mater Today, 2019, 24, 17 doi: 10.1016/j.mattod.2018.07.018
[39]
Deng W, Lv Y, Zhang X L, et al. High-resolution patterning of organic semiconductor single crystal arrays for high-integration organic field-effect transistors. Mater Today, 2020, 40, 82 doi: 10.1016/j.mattod.2020.06.004
[40]
Xu X Z, Deng W, Zhang X J, et al. Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano, 2019, 13, 5910 doi: 10.1021/acsnano.9b01734
[41]
Zhang X, Zhang H, Li S L, et al. Development and application of blade-coating technique in organic solar cells. Nano Res, 2023, 16, 11571 doi: 10.1007/s12274-023-5425-9
[42]
Zhang X L, Deng W, Lu B, et al. Fast deposition of an ultrathin, highly crystalline organic semiconductor film for high-performance transistors. Nanoscale Horiz, 2020, 5, 1096 doi: 10.1039/D0NH00096E
[43]
Kim K, Nam K, Li X L, et al. Programmed design of highly crystalline organic semiconductor patterns with uniaxial alignment via blade coating for high-performance organic field-effect transistors. ACS Appl Mater Interfaces, 2019, 11, 42403 doi: 10.1021/acsami.9b12765
[44]
Shi J L, Jie J S, Deng W, et al. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv Mater, 2022, 34, 2200380 doi: 10.1002/adma.202200380
[45]
Li X X, Sabir A, Zhang X Y, et al. Highly stretchable and oriented wafer-scale semiconductor films for organic phototransistor arrays. ACS Appl Mater Interfaces, 2024, 16, 36678 doi: 10.1021/acsami.4c04349
[46]
Hong H Y, Yang Z X, Ye Y L, et al. Highly uniform organic nanowire synaptic arrays with excellent performance for associative memory. Chem Eng J, 2024, 492, 152244 doi: 10.1016/j.cej.2024.152244
[47]
Shen Z H, Yang Z X, Zhou Y Q, et al. Ultralow-power consumption photonic synapse transistors based on organic array films fabricated using a particular prepatterned-guided crystallizing strategy. J Mater Chem C, 2023, 11, 3213 doi: 10.1039/D2TC05125G
[48]
Guo P, Zhang J Y, Pu H Q, et al. Wafer-scale photolithographic fabrication of organic synaptic transistor arrays. Device, 2024, 2, 100409 doi: 10.1016/j.device.2024.100409
[49]
Dai S L, Wu X H, Liu D P, et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces, 2018, 10, 21472 doi: 10.1021/acsami.8b05036
[50]
Zhang C, Xu F, Zhao X L, et al. Natural polyelectrolyte-based ultraflexible photoelectric synaptic transistors for hemispherical high-sensitive neuromorphic imaging system. Nano Energy, 2022, 95, 107001 doi: 10.1016/j.nanoen.2022.107001
[51]
Liu X E, Lee E K, Kim D Y, et al. Flexible organic phototransistor array with enhanced responsivity via metal-ligand charge transfer. ACS Appl Mater Interfaces, 2016, 8, 7291 doi: 10.1021/acsami.5b11523
[52]
Guo H T, Guo J, Wang Y J, et al. An organic optoelectronic synapse with multilevel memory enabled by gate modulation. ACS Appl Mater Interfaces, 2024, 16, 66948 doi: 10.1021/acsami.3c19624
[53]
Jang S, Jang S, Lee E H, et al. Ultrathin conformable organic artificial synapse for wearable intelligent device applications. ACS Appl Mater Interfaces, 2019, 11, 1071 doi: 10.1021/acsami.8b12092
[54]
Jiang T, Wang Y R, Zheng Y S, et al. Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection. Nat Commun, 2023, 14, 2281 doi: 10.1038/s41467-023-37973-0
[55]
Kim Y, Zhu C X, Lee W Y, et al. A hemispherical image sensor array fabricated with organic photomemory transistors. Adv Mater, 2023, 35, e2203541 doi: 10.1002/adma.202203541
[56]
Sakorikar T, Mihaliak N, Krisnadi F, et al. A guide to printed stretchable conductors. Chem Rev, 2024, 124, 860 doi: 10.1021/acs.chemrev.3c00569
[57]
Liang K, Wang R, Ren H, et al. Printable coffee-ring structures for highly uniform all-oxide optoelectronic synaptic transistors. Adv Opt Mater, 2022, 10, 2201754. doi: 10.1002/adom.202201754
[58]
Sui N Z, Ji Y X, Li M, et al. Photoprogrammed multifunctional optoelectronic synaptic transistor arrays based on photosensitive polymer-sorted semiconducting single-walled carbon nanotubes for image recognition. Adv Sci, 2024, 11, e2401794 doi: 10.1002/advs.202401794
[59]
Shi Q Q, Liu D P, Hao D D, et al. Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy, 2021, 87, 106197 doi: 10.1016/j.nanoen.2021.106197
[60]
Duan S M, Gao X, Wang Y, et al. Scalable fabrication of highly crystalline organic semiconductor thin film by channel-restricted screen printing toward the low-cost fabrication of high-performance transistor arrays. Adv Mater, 2019, 31, e1807975 doi: 10.1002/adma.201807975
[61]
Liu Q Z, Liu Y H, Li J, et al. Fully printed all-solid-state organic flexible artificial synapse for neuromorphic computing. ACS Appl Mater Interfaces, 2019, 11, 16749 doi: 10.1021/acsami.9b00226
[62]
Kwon J, Takeda Y, Fukuda K, et al. Three-dimensional, inkjet-printed organic transistors and integrated circuits with 100% yield, high uniformity, and long-term stability. ACS Nano, 2016, 10, 10324 doi: 10.1021/acsnano.6b06041
[63]
Fang Y, Wu X M, Lan S Q, et al. Inkjet-printed vertical organic field-effect transistor arrays and their image sensors. ACS Appl Mater Interfaces, 2018, 10, 30587 doi: 10.1021/acsami.8b06625
[64]
Wang H L, Zhao Q, Ni Z J, et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater, 2018, 30, e1803961 doi: 10.1002/adma.201803961
[65]
Zhao X L, Wang S Y, Ni Y P, et al. High-performance full-photolithographic top-contact conformable organic transistors for soft electronics. Adv Sci, 2021, 8, 2004050 doi: 10.1002/advs.202004050
[66]
Kim M J, Lee M, Min H, et al. Universal three-dimensional crosslinker for all-photopatterned electronics. Nat Commun, 2020, 11, 1520 doi: 10.1038/s41467-020-15181-4
[67]
Kahle F, Saller C, Köhler A, et al. Crosslinked semiconductor polymers for photovoltaic applications. Adv Energy Mater, 2017, 7, 1700306 doi: 10.1002/aenm.201700306
[68]
Kim M J, Ryu H S, Choi Y Y, et al. Completely foldable electronics based on homojunction polymer transistors and logics. Sci Adv, 2021, 7, eabg8169 doi: 10.1126/sciadv.abg8169
[69]
Wu Y, Dai S, Liu X, et al. Optical microlithography of perovskite quantum dots/organic semiconductor heterojunctions for neuromorphic photosensors. Adv Funct Mater, 2024, 34, 175 doi: 10.1002/adfm.202315175
[70]
Zheng Y Q, Liu Y X, Zhong D L, et al. Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373, 88 doi: 10.1126/science.abh3551
[71]
Wang B H, Huang W, Lee S, et al. Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Nat Commun, 2021, 12, 4937 doi: 10.1038/s41467-021-25059-8
[72]
Park H W, Choi K Y, Shin J, et al. Universal route to impart orthogonality to polymer semiconductors for sub-micrometer tandem electronics. Adv Mater, 2019, 31, 1901400 doi: 10.1002/adma.201901400
[73]
Freudenberg J, Jänsch D, Hinkel F, et al. Immobilization strategies for organic semiconducting conjugated polymers. Chem Rev, 2018, 118, 5598 doi: 10.1021/acs.chemrev.8b00063
[74]
Chen R Z, Wang X J, Li X, et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Sci Adv, 2021, 7, eabg0659 doi: 10.1126/sciadv.abg0659
[75]
Chen R Z, Yan Y K, Wang X J, et al. Patterning an erosion-free polymeric semiconductor channel for reliable all-photolithography organic electronics. J Phys Chem Lett, 2022, 13, 7673 doi: 10.1021/acs.jpclett.2c01982
[76]
Zhang S, Chen R Z, Kong D R, et al. Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors. Nat Nanotechnol, 2024, 19, 1323 doi: 10.1038/s41565-024-01707-0
[77]
Wang C Y, Bian Y S, Liu K, et al. Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat Commun, 2024, 15, 3123 doi: 10.1038/s41467-024-47532-w
[78]
Chen K, Hu H, Song I, et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat Photonics, 2023, 17, 629 doi: 10.1038/s41566-023-01232-x
[79]
Dai S L, Dai Y H, Zhao Z X, et al. Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter, 2022, 5(10), 3375 doi: 10.1016/j.matt.2022.07.016
[80]
Guo P, Zhang J Y, Liu D P, et al. Optoelectronic synaptic transistors based on solution-processable organic semiconductors and CsPbCl3 quantum dots for visual nociceptor simulation and neuromorphic computing. ACS Appl Mater Interfaces, 2023, 15, 51483 doi: 10.1021/acsami.3c09355
[81]
Wang R Z, Chen P Y, Hao D D, et al. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl Mater Interfaces, 2021, 13, 43144 doi: 10.1021/acsami.1c08424
[82]
Lee Y, Park H L, Kim Y, et al. Organic electronic synapses with low energy consumption. Joule, 2021, 5, 794 doi: 10.1016/j.joule.2021.01.005
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 584 Times PDF downloads: 81 Times Cited by: 0 Times

    History

    Received: 14 December 2024 Revised: 04 January 2025 Online: Accepted Manuscript: 15 January 2025Uncorrected proof: 17 January 2025Published: 15 February 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Pu Guo, Junyao Zhang, Jia Huang. Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration[J]. Journal of Semiconductors, 2025, 46(2): 021405. doi: 10.1088/1674-4926/24120017 ****P Guo, J Y Zhang, and J Huang, Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration[J]. J. Semicond., 2025, 46(2), 021405 doi: 10.1088/1674-4926/24120017
      Citation:
      Pu Guo, Junyao Zhang, Jia Huang. Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration[J]. Journal of Semiconductors, 2025, 46(2): 021405. doi: 10.1088/1674-4926/24120017 ****
      P Guo, J Y Zhang, and J Huang, Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration[J]. J. Semicond., 2025, 46(2), 021405 doi: 10.1088/1674-4926/24120017

      Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration

      DOI: 10.1088/1674-4926/24120017
      CSTR: 32376.14.1674-4926.24120017
      More Information
      • Pu Guo got his B.Sc. in materials science and engineering at Northeast Forestry University in 2020. Now he is a PhD student at Tongji University under the supervision of Prof. Jia Huang. His research focuses on organic neuromorphic device arrays
      • Jia Huang is a professor of materials science and engineering at Tongji University in Shanghai, China. He received his B.Sc. in materials science and engineering at the University of Science and Technology of China, his M.Sc. in applied science at the College of William & Mary, USA, and his Ph.D. in materials science and engineering at Johns Hopkins University, USA. Currently, Prof. Jia Huang’s research focuses on organic semiconductors, neuromorphic devices, flexible electronics, chemical and biological sensors, and thin-film transistors
      • Corresponding author: huangjia@tongji.edu.cn
      • Received Date: 2024-12-14
      • Revised Date: 2025-01-04
      • Available Online: 2025-01-15

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return