J. Semicond. > 2012, Volume 33 > Issue 10 > 105004

SEMICONDUCTOR INTEGRATED CIRCUITS

A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation

Wang Xiaoyu, Yang Haigang, Li Fanyang, Yin Tao and Liu Fei

+ Author Affiliations
DOI: 10.1088/1674-4926/33/10/105004

PDF

Abstract: A current-mode front-end circuit with low voltage and low power for analog hearing aids is presented. The circuit consists of a current-mode AGC (automatic gain control) and a current-mode adaptive filter. Compared with its conventional voltage-mode counterparts, the proposed front-end circuit has the identified features of frequency compensation based on the state space theory and continuous gain with an exponential characteristic. The frequency compensation which appears only in the DSP unit of the digital hearing aid can upgrade the performance of the analog hearing aid in the field of low-frequency hearing loss. The continuous gain should meet the requirement of any input amplitude level, while its exponential characteristic leads to a large input dynamic range in accordance with the dB SPL (sound pressure level). Furthermore, the front-end circuit also provides a discrete knee point and discrete compression ratio to allow for high calibration flexibility. These features can accommodate users whose ears have different pain thresholds. Taking advantage of the current-mode technique, the MOS transistors work in the subthreshold region so that the quiescent current is small. Moreover, the input current can be compressed to a low voltage signal for processing according to the compression principle from the current-domain to the voltage-domain. Therefore, the objective of low voltage and low power (48 μW at 1.4 V) can be easily achieved in a high threshold-voltage CMOS process of 0.35 μm (VTON+|VTOP|≈1.35 V). The THD is below -45 dB. The fabricated chip only occupies the area of 1 × 0.5 mm2 and 1 × 1 mm2.

Key words: hearing aidfrequency compensationstate spacecontinuous gaincurrent-mode

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
1

Design of current mirror integration ROIC for snapshot mode operation

Hari Shanker Gupta, A S Kiran Kumar, M. Shojaei Baghini, Subhananda Chakrabarti, Sanjeev Mehta, et al.

Journal of Semiconductors, 2016, 37(10): 105001. doi: 10.1088/1674-4926/37/10/105001

2

Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

Mini Bhartia, Arun Kumar Chatterjee

Journal of Semiconductors, 2015, 36(4): 044003. doi: 10.1088/1674-4926/36/4/044003

3

Process variation robust current-mode on-chip interconnect signaling scheme

Xinsheng Wang, Yizhe Hu, Mingyan Yu

Journal of Semiconductors, 2014, 35(2): 025004. doi: 10.1088/1674-4926/35/2/025004

4

A hearing aid on-chip system based on accuracy optimized front-and back-end blocks

Fanyang Li, Hao Jiang

Journal of Semiconductors, 2014, 35(3): 035006. doi: 10.1088/1674-4926/35/3/035006

5

A fast novel soft-start circuit for peak current-mode DC-DC buck converters

Jie Li, Miao Yang, Weifeng Sun, Xiaoxia Lu, Shen Xu, et al.

Journal of Semiconductors, 2013, 34(2): 025006. doi: 10.1088/1674-4926/34/2/025006

6

Distributed feedback quantum cascade lasers operating in continuous-wave mode at λ ≈ 7.6 μm

Zhang Jinchuan, Wang Lijun, Liu Wanfeng, Liu Fengqi, Zhao Lihua, et al.

Journal of Semiconductors, 2012, 33(2): 024005. doi: 10.1088/1674-4926/33/2/024005

7

Drive current of accumulation-mode p-channel SOI-based wrap-gated Fin-FETs

Zhang Yanbo, Du Yandong, Xiong Ying, Yang Xiang, Han Weihua, et al.

Journal of Semiconductors, 2011, 32(9): 094001. doi: 10.1088/1674-4926/32/9/094001

8

Gate current modeling and optimal design of nanoscale non-overlapped gate to source/drain MOSFET

Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Journal of Semiconductors, 2011, 32(7): 074001. doi: 10.1088/1674-4926/32/7/074001

9

A new low-voltage and high-speed sense amplifier for flash memory

Guo Jiarong, Ran Feng

Journal of Semiconductors, 2011, 32(12): 125003. doi: 10.1088/1674-4926/32/12/125003

10

A current mode feed-forward gain control system for a 0.8 V CMOS hearing aid

Li Fanyang, Yang Haigang, Liu Fei, Yin Tao

Journal of Semiconductors, 2011, 32(6): 065010. doi: 10.1088/1674-4926/32/6/065010

11

A curvature calibrated bandgap reference with base–emitter current compensating in a 0.13 μm CMOS process

Ma Zhuo, Tan Xiaoqiang, Xie Lunguo, Guo Yang

Journal of Semiconductors, 2010, 31(11): 115004. doi: 10.1088/1674-4926/31/11/115004

12

Design and implementation of adaptive slope compensation in current mode DC–DC onverter

Guo Zhongjie, Wu Longsheng, Liu Youbao

Journal of Semiconductors, 2010, 31(12): 125004. doi: 10.1088/1674-4926/31/12/125004

13

A current-mode buck DC–DC controller with adaptive on-time control

Li Yanming, Lai Xinquan, Ye Qiang, Yuan Bing, Jia Xinzhang, et al.

Journal of Semiconductors, 2009, 30(2): 025007. doi: 10.1088/1674-4926/30/2/025007

14

The Bipolar Field-Effect Transistor: VII. The Unipolar Current Mode for Analog-RF Operation (Two-MOS-Gates on Pure-Base)

Jie Binbin, Sah Chih-Tang

Journal of Semiconductors, 2009, 30(3): 031001. doi: 10.1088/1674-4926/30/3/031001

15

A fast-settling frequency-presetting PLL frequency synthesizer with process variation compensation and spur reduction

Yan Xiaozhou, Kuang Xiaofei, Wu Nanjian

Journal of Semiconductors, 2009, 30(4): 045007. doi: 10.1088/1674-4926/30/4/045007

16

A capacitor-free CMOS LDO regulator with AC-boosting and active-feedback frequency compensation

Zhou Qianneng, Wang Yongsheng, Lai Fengchang

Journal of Semiconductors, 2009, 30(4): 045006. doi: 10.1088/1674-4926/30/4/045006

17

Nested Miller Active-Capacitor Frequency Compensation for Low-Power Three-Stage Amplifiers

Ma Haifeng, Zhou Feng, Niu Qi, Lü Changhui

Journal of Semiconductors, 2008, 29(9): 1698-1702.

18

A Three-Stage Operational Amplifier for a Wide Range of Capacitive Loads

Hu Jingjing, Huijsing J H, Ren Junyan

Chinese Journal of Semiconductors , 2007, 28(11): 1685-1689.

19

Bias Current Compensation Method with 41.4% Standard Deviation Reduction to MOSFET Transconductance in CMOS Circuits

Mao Xiaojian, Yang Huazhong, Wang Hui

Chinese Journal of Semiconductors , 2006, 27(5): 783-786.

20

A Current-Mode DC-DC Buck Converter with High Stability and Fast Dynamic Response

Chen Dongpo, He Lenian, Yan Xiaolang

Chinese Journal of Semiconductors , 2006, 27(10): 1742-1749.

  • Search

    Advanced Search >>

    GET CITATION

    Wang Xiaoyu, Yang Haigang, Li Fanyang, Yin Tao, Liu Fei. A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation[J]. Journal of Semiconductors, 2012, 33(10): 105004. doi: 10.1088/1674-4926/33/10/105004
    Wang X Y, Yang H G, Li F Y, Yin T, Liu F. A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation[J]. J. Semicond., 2012, 33(10): 105004. doi: 10.1088/1674-4926/33/10/105004.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3321 Times PDF downloads: 1517 Times Cited by: 0 Times

    History

    Received: 20 August 2015 Revised: 13 April 2012 Online: Published: 01 October 2012

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wang Xiaoyu, Yang Haigang, Li Fanyang, Yin Tao, Liu Fei. A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation[J]. Journal of Semiconductors, 2012, 33(10): 105004. doi: 10.1088/1674-4926/33/10/105004 ****Wang X Y, Yang H G, Li F Y, Yin T, Liu F. A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation[J]. J. Semicond., 2012, 33(10): 105004. doi: 10.1088/1674-4926/33/10/105004.
      Citation:
      Wang Xiaoyu, Yang Haigang, Li Fanyang, Yin Tao, Liu Fei. A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation[J]. Journal of Semiconductors, 2012, 33(10): 105004. doi: 10.1088/1674-4926/33/10/105004 ****
      Wang X Y, Yang H G, Li F Y, Yin T, Liu F. A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation[J]. J. Semicond., 2012, 33(10): 105004. doi: 10.1088/1674-4926/33/10/105004.

      A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation

      DOI: 10.1088/1674-4926/33/10/105004
      Funds:

      The National High Technology Research and Development Program of China (863 Program)

      • Received Date: 2015-08-20
      • Accepted Date: 2012-03-29
      • Revised Date: 2012-04-13
      • Published Date: 2012-09-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return