J. Semicond. > 2012, Volume 33 > Issue 8 > 084002

SEMICONDUCTOR DEVICES

A novel antifuse structure based on amorphous bismuth zinc niobate thin films

Wang Gang, Li Wei, Li Ping, Li Zuxiong, Fan Xue and Jiang Jing

+ Author Affiliations
DOI: 10.1088/1674-4926/33/8/084002

PDF

Abstract: A novel antifuse structure with amorphous bismuth zinc niobate (a-BZN) dielectrics was proposed. The characteristics of the a-BZN antifuse were investigated. Programming direction of up to down was chosen to rupture the a-BZN antifuse. The breakdown voltage of the a-BZN antifuse was obtained at a magnitude of 6.56 V. A large off-state resistance of more than 1 GΩ for the a-BZN antifuse was demonstrated. The surface micrograph of the ruptured a-BZN antifuses was illustrated. Programming characteristics with the programming time of 0.46 ms and on-state properties with the average resistance value of 26.1 Ω of the a-BZN antifuse were exhibited. The difference of characteristics of the a-BZN antifuse from that of a cubic pyrochlore bismuth zinc niobate (cp-BZN) antifuse and gate oxide antifuse was compared and analyzed.

Key words: amorphous bismuth zinc niobatethin filmantifusecomparison

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
1

Nanoflower ZnO thin-film grown by hydrothermal technique based Schottky diode

Ghusoon M. Ali, Ahmed K. Khalid, Salah M. Swadi

Journal of Semiconductors, 2020, 41(10): 102103. doi: 10.1088/1674-4926/41/10/102103

2

Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis

M. R. Fadavieslam

Journal of Semiconductors, 2018, 39(12): 123005. doi: 10.1088/1674-4926/39/12/123005

3

Investigation of post-thermal annealing on material properties of Cu–In–Zn–Se thin films

H. H. Güllü, M. Parlak

Journal of Semiconductors, 2017, 38(12): 123001. doi: 10.1088/1674-4926/38/12/123001

4

A simple chemical route to synthesize the umangite phase of copper selenide (Cu3Se2) thin film at room temperature

Balasaheb M. Palve, Sandesh R. Jadkar, Habib M. Pathan

Journal of Semiconductors, 2017, 38(6): 063003. doi: 10.1088/1674-4926/38/6/063003

5

Metal-to-metal antifuse with low programming voltage and low on-state resistance

Yang Jiang, Min Tian, Huang Long, Jie Zhao, Shuai Chen, et al.

Journal of Semiconductors, 2016, 37(7): 074008. doi: 10.1088/1674-4926/37/7/074008

6

A comparison between different ohmic contacts for ZnO thin films

Shadia J. Ikhmayies, Naseem M. Abu El-Haija, Riyad N. Ahmad-Bitar

Journal of Semiconductors, 2015, 36(3): 033005. doi: 10.1088/1674-4926/36/3/033005

7

Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells

Xinliang Chen, Congbo Yan, Xinhua Geng, Dekun Zhang, Changchun Wei, et al.

Journal of Semiconductors, 2014, 35(4): 043002. doi: 10.1088/1674-4926/35/4/043002

8

Significant improvement of ZnS film electrical and optical performance by indium incorporation

Jinhuo Chen, Wenjian Li

Journal of Semiconductors, 2014, 35(9): 093003. doi: 10.1088/1674-4926/35/9/093003

9

Spray pyrolysis of tin selenide thin-film semiconductors:the effect of selenium concentration on the properties of the thin films

M. R. Fadavieslam, M. M. Bagheri-Mohagheghi

Journal of Semiconductors, 2013, 34(8): 082001. doi: 10.1088/1674-4926/34/8/082001

10

Preparation of n-type semiconductor SnO2 thin films

Achour Rahal, Said Benramache, Boubaker Benhaoua

Journal of Semiconductors, 2013, 34(8): 083002. doi: 10.1088/1674-4926/34/8/083002

11

Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films

Said Benramache, Foued Chabane, Boubaker Benhaoua, Fatima Z. Lemmadi

Journal of Semiconductors, 2013, 34(2): 023001. doi: 10.1088/1674-4926/34/2/023001

12

The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method

Achour Rahal, Said Benramache, Boubaker Benhaoua

Journal of Semiconductors, 2013, 34(9): 093003. doi: 10.1088/1674-4926/34/9/093003

13

Effect of substrate temperature on the stability of transparent conducting cobalt doped ZnO thin films

Said Benramache, Boubaker Benhaoua, Foued Chabane

Journal of Semiconductors, 2012, 33(9): 093001. doi: 10.1088/1674-4926/33/9/093001

14

Property comparison of polarons in zinc-blende and wurtzite GaN/AlN quantum wells

Zhu Jun, Ban Shiliang, Ha Sihua

Journal of Semiconductors, 2011, 32(11): 112002. doi: 10.1088/1674-4926/32/11/112002

15

Effect of deposition conditions on the physical properties of SnxSy thin films prepared by the spray pyrolysis technique

M. R. Fadavieslam, N. Shahtahmasebi, M. Rezaee-Roknabadi, M. M. Bagheri-Mohagheghi

Journal of Semiconductors, 2011, 32(11): 113002. doi: 10.1088/1674-4926/32/11/113002

16

Ag/PEPC/NiPc/ZnO/Ag thin film capacitive and resistive humidity sensors

Kh. S. Karimov, Kuan Yew Cheong, M. Saleem, Imran Murtaza, M. Farooq, et al.

Journal of Semiconductors, 2010, 31(5): 054002. doi: 10.1088/1674-4926/31/5/054002

17

Influence of the distance between target and substrate on the properties of transparent conducting Al–Zr co-doped zinc oxide thin films

Zhang Huafu, Liu Hanfa, Zhou Aiping, Yuan Changkun

Journal of Semiconductors, 2009, 30(11): 113002. doi: 10.1088/1674-4926/30/11/113002

18

Preparation and Optical Properties of 8-Hydroxylquinline Cadmium Thin Film

Lu Feiping, Peng Yingquan, Song Chang'an, Xing Hongwei, Li Xunshuan, et al.

Chinese Journal of Semiconductors , 2007, 28(7): 1063-1068.

19

Influence of Substrate Temperature and Nitrogen Gas on Zinc Nitride Thin Films Prepared by RF Reactive Sputtering

Zhang Jun, Xie Erqing, Fu Yujun, Li Hui, Shao Lexi, et al.

Chinese Journal of Semiconductors , 2007, 28(8): 1173-1178.

20

Preparation of Si/SiO2 Optical Thin Film by Double Source Electron Beam Evaporation Technology

Zhao Miao, Zhou Daibing, Tan Manqing, Wang Xiaodong, Wu Xuming, et al.

Chinese Journal of Semiconductors , 2006, 27(9): 1586-1589.

  • Search

    Advanced Search >>

    GET CITATION

    Wang Gang, Li Wei, Li Ping, Li Zuxiong, Fan Xue, Jiang Jing. A novel antifuse structure based on amorphous bismuth zinc niobate thin films[J]. Journal of Semiconductors, 2012, 33(8): 084002. doi: 10.1088/1674-4926/33/8/084002
    Wang G, Li W, Li P, Li Z X, Fan X, Jiang J. A novel antifuse structure based on amorphous bismuth zinc niobate thin films[J]. J. Semicond., 2012, 33(8): 084002. doi: 10.1088/1674-4926/33/8/084002.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3779 Times PDF downloads: 1338 Times Cited by: 0 Times

    History

    Received: 20 August 2015 Revised: 11 April 2012 Online: Published: 01 August 2012

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wang Gang, Li Wei, Li Ping, Li Zuxiong, Fan Xue, Jiang Jing. A novel antifuse structure based on amorphous bismuth zinc niobate thin films[J]. Journal of Semiconductors, 2012, 33(8): 084002. doi: 10.1088/1674-4926/33/8/084002 ****Wang G, Li W, Li P, Li Z X, Fan X, Jiang J. A novel antifuse structure based on amorphous bismuth zinc niobate thin films[J]. J. Semicond., 2012, 33(8): 084002. doi: 10.1088/1674-4926/33/8/084002.
      Citation:
      Wang Gang, Li Wei, Li Ping, Li Zuxiong, Fan Xue, Jiang Jing. A novel antifuse structure based on amorphous bismuth zinc niobate thin films[J]. Journal of Semiconductors, 2012, 33(8): 084002. doi: 10.1088/1674-4926/33/8/084002 ****
      Wang G, Li W, Li P, Li Z X, Fan X, Jiang J. A novel antifuse structure based on amorphous bismuth zinc niobate thin films[J]. J. Semicond., 2012, 33(8): 084002. doi: 10.1088/1674-4926/33/8/084002.

      A novel antifuse structure based on amorphous bismuth zinc niobate thin films

      DOI: 10.1088/1674-4926/33/8/084002
      Funds:

      Opening Project of State Key Laboratory of Electronic Thin Films and Integrated Devices

      • Received Date: 2015-08-20
      • Accepted Date: 2012-02-10
      • Revised Date: 2012-04-11
      • Published Date: 2012-07-27

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return