Citation: |
Ran Fang, Wengao Lu, Guannan Wang, Tingting Tao, Yacong Zhang, Zhongjian Chen, Dunshan Yu. A low-noise high-linearity interface ASIC for MEMS gyroscopes[J]. Journal of Semiconductors, 2013, 34(12): 125009. doi: 10.1088/1674-4926/34/12/125009
****
R Fang, W G Lu, G N Wang, T T Tao, Y C Zhang, Z J Chen, D S Yu. A low-noise high-linearity interface ASIC for MEMS gyroscopes[J]. J. Semicond., 2013, 34(12): 125009. doi: 10.1088/1674-4926/34/12/125009.
|
A low-noise high-linearity interface ASIC for MEMS gyroscopes
DOI: 10.1088/1674-4926/34/12/125009
More Information
-
Abstract
This paper presents a continuous-time analog interface ASIC for use in MEMS gyroscopes. A charge sensitive amplifier with a chopper stabilization method is adopted to suppress the low-frequency noise. In order to cancel the effect caused by the gyroscope capacitive mismatch, a mismatch auto-compensation circuit is implemented. The gain and phase shift of the drive closed loop is controlled separately by an auto gain controller and an adjustable phase shifter. The chip is fabricated in a 0.35 μm CMOS process. The test of the chip is performed with a vibratory gyroscope, and the measurement shows that the noise floor is 0.003°/s/$\sqrt {{\rm{Hz}}}$, and the measured drift stability is 43°/h. Within -300 to 300°/s of rotation rate input range, the non-linearity is less than 0.1%.-
Keywords:
- capacitive interface circuit,
- MEMS gyroscope,
- low noise,
- ASIC
-
References
[1] Dong L, Avanesian D. Drive-mode control for vibrational MEMS gyroscopes. IEEE Trans Industrial Electron, 2009, 56(4):956 doi: 10.1109/TIE.2008.2010088[2] Sharma A, Zaman M F, Ayazi F. A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes. IEEE J Solid-State Circuits, 2007, 42(8):1790 doi: 10.1109/JSSC.2007.900282[3] Aaltonen L, Halonen K. Pseudo-continuous-time teadout circuit for a 300°/s capacitive 2-axis micro-gyroscope. IEEE J Solid-State Circuits, 2009, 44(12):3609 doi: 10.1109/JSSC.2009.2035554[4] Qu H, Fang D, Xie H K. A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier. IEEE J Sensors, 2008, 8(9):1511 doi: 10.1109/JSEN.2008.923582[5] Mikko S, Lasse A, Teemu S. Interface and control electronics for a bulk micromachined capacitive gyroscope. Sensors and Actuators A:Physical, 2008, 147:183 doi: 10.1016/j.sna.2008.03.023[6] Cui J, Guo Z, Zhao Q. Force rebalance controller synthesis for a micromachined vibratory gyroscope based on sensitivity margin specifications. J Microelectromechan Syst, 2011, 20(6):1382 doi: 10.1109/JMEMS.2011.2167663[7] Yuwono S, Bae J Y, Phan A T. A current-reused low-power four-quadrant multiplier with single-ended current output. IEEE International Symposium on Circuits and Systems, 2009:2114[8] Xiao Dingbang, Wu Xuezhong, Hou Zhanqiqng, et al. High-performance micromachined gyroscope with a slanted suspension cantilever. Journal of Semiconductors, 2009, 30(4):044012 doi: 10.1088/1674-4926/30/4/044012[9] Liu Yuntao, Liu Xiaowei, Chen Weiping, et al. Design and noise analysis of a sigma-delta capacitive micromachined accelerometer. Journal of Semiconductors, 2010, 31(5):055006 doi: 10.1088/1674-4926/31/5/055006 -
Proportional views