Processing math: 100%
J. Semicond. > 2014, Volume 35 > Issue 1 > 015004

SEMICONDUCTOR INTEGRATED CIRCUITS

A low phase noise and low spur PLL frequency synthesizer for GNSS receivers

Sen Li1, Jinguang Jiang2, 3, , Xifeng Zhou1 and Jianghua Liu1

+ Author Affiliations

 Corresponding author: Jiang Jinguang, Email:jgjiang09@aliyun.com

DOI: 10.1088/1674-4926/35/1/015004

PDF

Abstract: A low phase noise and low spur phase locked loop (PLL) frequency synthesizer for use in global navigation satellite system (GNSS) receivers is proposed. To get a low spur, the symmetrical structure of the phase frequency detector (PFD) produces four control signals, which can reach the charge pump (CP) simultaneously, and an improved CP is realized to minimize the charge sharing and the charge injection and make the current matched. Additionally, the delay is controllable owing to the programmable PFD, so the dead zone of the CP can be eliminated. The output frequency of the VCO can be adjusted continuously and precisely by using a programmable LC-TANK. The phase noise of the VCO is lowered by using appropriate MOS sizes. The proposed PLL frequency synthesizer is fabricated in a 0.18 μm mixed-signal CMOS process. The measured phase noise at 1 MHz offset from the center frequency is -127.65 dBc/Hz and the reference spur is -73.58 dBc.

Key words: PLL frequency synthesizerphase noisespurPFDCPVCO



[1]
Yin Xizhen, Xiao Shimao, Jin Yuhua, et al. A constant loop bandwidth fractional-N frequency synthesizer for GNSS receivers. Journal of Semiconductors, 2012, 33(4):045007 doi: 10.1088/1674-4926/33/4/045007
[2]
Chi Baoyong, Zhu Xiaolei, Wang Ziqiang, et al. Low phase noise quadrature oscillators using new injection locked technique. Chinese Journal of Semiconductors, 2005, 26(9):1705
[3]
Di F K. Dual reference frequencies for low spur and low phase noise fractional-N frequency phase locked loop. 7th International Conference on ASICON, 2007:1357 http://ieeexplore.ieee.org/iel5/4415535/4415536/04415889.pdf
[4]
Yan D L, Khannur P B, Bin Z, et al. A UHF low-spur, low-phase noise fractional-N synthesizer in 0.18μm CMOS. IEEE International Symposium on Radio-Frequency Integration Technology, 2009:124 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005383704
[5]
Gierkink S L J. Low-spur, low-phase-noise clock multiplier based on a combination of PLL and recirculating DLL with dual-pulse ring oscillator and self-correcting charge pump. IEEE J Solid-State Circuits, 2008, 43(12):2967 doi: 10.1109/JSSC.2008.2006225
[6]
Shrestha B, Maharjan R K, Sungjin C, et al. A low phase noise oscillator using spur line resonator for I-band application. Microwave Conference Proceedings (APMC), 2010:469 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=5728661
[7]
Fouzar Y, Sawan M, Savaria Y. CMOS wide-swing differential VCO for fully integrated fast PLL. Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, 2000, 2:948 doi: 10.1109/MWSCAS.2000.952910
[8]
Li Zhiqun, Zheng Shuangshuang, Hou Ningbing. Design of a high performance CMOS charge pump for phase-locked loop synthesizers. Journal of Semiconductors, 2011, 32(7):075007 doi: 10.1088/1674-4926/32/7/075007
[9]
Yu Yunfeng, Yue Jianlian, Xiao Shimao, et al. A low-power frequency synthesizer for GPS receivers. Journal of Semiconductors, 2010, 31(6):065012 doi: 10.1088/1674-4926/31/6/065012
[10]
Jerng A, Sodini C G. The impact of device type and sizing on phase noise mechanisms. IEEE J Solid-State Circuits, 2002, 37(12):360 http://ieeexplore.ieee.org/document/1388625/keywords
[11]
Yu Peng, Yan Jun, Shi Yin, et al. A dual-band frequency synthesizer for CMMB application with low phase noise. Journal of Semiconductors, 2010, 31(9):095001 doi: 10.1088/1674-4926/31/9/095001
[12]
Andreani P, Bonfanti A, Romano L, et al. Analysis and design of a 1.8-GHz CMOS LC quadrature VCO. IEEE J Solid-State Circuits, 2002, 37(12):1737 doi: 10.1109/JSSC.2002.804352
[13]
Pamarti S, Janson L, Galton I. A wideband 2.4-GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation. IEEE J Solid-State Circuits, 2004, 39(1):49 doi: 10.1109/JSSC.2003.820858
[14]
Yang C Y, Dehng G K, Hsu J M, et al. New dynamic flip-flops for high-speed dual-modulus prescaler. IEEE J Solid-State Circuits, 1998, 33(10):1568 doi: 10.1109/4.720406
[15]
Lee T C, Lee W L. A spur suppression technique for phase-locked frequency synthesizers. IEEE International Solid-State Circuit Conference, 2006:2432 http://ieeexplore.ieee.org/document/1696307/
[16]
Fu Haipeng, Cai Deyun, Ren Junyan, et al. A low reference spur quadrature phase-locked loop for UWB systems. Journal of Semiconductors, 2011, 32(11):115012 doi: 10.1088/1674-4926/32/11/115012
[17]
Chen Danfeng, Li Wei, Li Ning, et al. A low-spurious fast-hopping MB-OFDM UWB synthesizer. Journal of Semiconductors, 2010, 31(6):065003 doi: 10.1088/1674-4926/31/6/065003
Fig. 1.  Simplified architecture of the PLL frequency synthesizer.

Fig. 2.  PLL frequency synthesizer linear model.

Fig. 3.  The architecture of the PFD.

Fig. 4.  The architecture of the delay circuit.

Fig. 5.  (a) The circuit of the CP and LPF. (b) The circuit of the control signals.

Fig. 6.  The circuit of the VCO.

Fig. 7.  The circuit of the divider.

Fig. 8.  The architecture of the CML.

Fig. 9.  Chip microphotograph of the PLL frequency synthesizer.

Fig. 10.  (a) The simulation characteristics of the PFD with eight unit delay. (b) The enlarged figure of Fig. 10. (a) Near 200 ns.

Fig. 11.  (a) The simulation characteristics of the PFD with two unit delay. (b) The enlarged figure of Fig. 11. (a) Near 200 ns.

Fig. 12.  The simulation characteristic of the CP and LPF.

Fig. 13.  The simulation output of the VCO divided by 2.

Fig. 14.  Measured spectrum of the PLL frequency synthesizer's output signal.

Fig. 15.  (a) Measured phase noise of the PLL frequency synthesizer's output signal. (b) The simulation results of the PLL frequency synthesizer's phase noise.

Fig. 16.  Measured spur of the PLL frequency synthesizer's output signal.

Table 1.   Four kinds of delay time.

Table 2.   The four kinds of Icp.

Table 3.   Comparison between this work and related frequency synthesizers

[1]
Yin Xizhen, Xiao Shimao, Jin Yuhua, et al. A constant loop bandwidth fractional-N frequency synthesizer for GNSS receivers. Journal of Semiconductors, 2012, 33(4):045007 doi: 10.1088/1674-4926/33/4/045007
[2]
Chi Baoyong, Zhu Xiaolei, Wang Ziqiang, et al. Low phase noise quadrature oscillators using new injection locked technique. Chinese Journal of Semiconductors, 2005, 26(9):1705
[3]
Di F K. Dual reference frequencies for low spur and low phase noise fractional-N frequency phase locked loop. 7th International Conference on ASICON, 2007:1357 http://ieeexplore.ieee.org/iel5/4415535/4415536/04415889.pdf
[4]
Yan D L, Khannur P B, Bin Z, et al. A UHF low-spur, low-phase noise fractional-N synthesizer in 0.18μm CMOS. IEEE International Symposium on Radio-Frequency Integration Technology, 2009:124 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005383704
[5]
Gierkink S L J. Low-spur, low-phase-noise clock multiplier based on a combination of PLL and recirculating DLL with dual-pulse ring oscillator and self-correcting charge pump. IEEE J Solid-State Circuits, 2008, 43(12):2967 doi: 10.1109/JSSC.2008.2006225
[6]
Shrestha B, Maharjan R K, Sungjin C, et al. A low phase noise oscillator using spur line resonator for I-band application. Microwave Conference Proceedings (APMC), 2010:469 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=5728661
[7]
Fouzar Y, Sawan M, Savaria Y. CMOS wide-swing differential VCO for fully integrated fast PLL. Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, 2000, 2:948 doi: 10.1109/MWSCAS.2000.952910
[8]
Li Zhiqun, Zheng Shuangshuang, Hou Ningbing. Design of a high performance CMOS charge pump for phase-locked loop synthesizers. Journal of Semiconductors, 2011, 32(7):075007 doi: 10.1088/1674-4926/32/7/075007
[9]
Yu Yunfeng, Yue Jianlian, Xiao Shimao, et al. A low-power frequency synthesizer for GPS receivers. Journal of Semiconductors, 2010, 31(6):065012 doi: 10.1088/1674-4926/31/6/065012
[10]
Jerng A, Sodini C G. The impact of device type and sizing on phase noise mechanisms. IEEE J Solid-State Circuits, 2002, 37(12):360 http://ieeexplore.ieee.org/document/1388625/keywords
[11]
Yu Peng, Yan Jun, Shi Yin, et al. A dual-band frequency synthesizer for CMMB application with low phase noise. Journal of Semiconductors, 2010, 31(9):095001 doi: 10.1088/1674-4926/31/9/095001
[12]
Andreani P, Bonfanti A, Romano L, et al. Analysis and design of a 1.8-GHz CMOS LC quadrature VCO. IEEE J Solid-State Circuits, 2002, 37(12):1737 doi: 10.1109/JSSC.2002.804352
[13]
Pamarti S, Janson L, Galton I. A wideband 2.4-GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation. IEEE J Solid-State Circuits, 2004, 39(1):49 doi: 10.1109/JSSC.2003.820858
[14]
Yang C Y, Dehng G K, Hsu J M, et al. New dynamic flip-flops for high-speed dual-modulus prescaler. IEEE J Solid-State Circuits, 1998, 33(10):1568 doi: 10.1109/4.720406
[15]
Lee T C, Lee W L. A spur suppression technique for phase-locked frequency synthesizers. IEEE International Solid-State Circuit Conference, 2006:2432 http://ieeexplore.ieee.org/document/1696307/
[16]
Fu Haipeng, Cai Deyun, Ren Junyan, et al. A low reference spur quadrature phase-locked loop for UWB systems. Journal of Semiconductors, 2011, 32(11):115012 doi: 10.1088/1674-4926/32/11/115012
[17]
Chen Danfeng, Li Wei, Li Ning, et al. A low-spurious fast-hopping MB-OFDM UWB synthesizer. Journal of Semiconductors, 2010, 31(6):065003 doi: 10.1088/1674-4926/31/6/065003
1

Analytical model for the effects of the variation of ferrolectric material parameters on the minimum subthreshold swing in negative capacitance capacitor

Raheela Rasool, Najeeb-ud-Din, G. M. Rather

Journal of Semiconductors, 2019, 40(12): 122401. doi: 10.1088/1674-4926/40/12/122401

2

Hot electron effects on the operation of potential well barrier diodes

M. Akura, G. Dunn, M. Missous

Journal of Semiconductors, 2019, 40(12): 122101. doi: 10.1088/1674-4926/40/12/122101

3

Engineering in-plane silicon nanowire springs for highly stretchable electronics

Zhaoguo Xue, Taige Dong, Zhimin Zhu, Yaolong Zhao, Ying Sun, et al.

Journal of Semiconductors, 2018, 39(1): 011001. doi: 10.1088/1674-4926/39/1/011001

4

The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations

Azeem Nabi, Zarmeena Akhtar, Tahir Iqbal, Atif Ali, Arshad Javid, et al.

Journal of Semiconductors, 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001

5

Influences of ICP etching damages on the electronic properties of metal field plate 4H-SiC Schottky diodes

Hui Wang, Yingxi Niu, Fei Yang, Yong Cai, Zehong Zhang, et al.

Journal of Semiconductors, 2015, 36(10): 104006. doi: 10.1088/1674-4926/36/10/104006

6

The effects of drain scatterings on the electron transport properties of strained-Si diodes with ballistic and non-ballistic channels

Yasenjan Ghupur, Mamtimin Geni, Mamatrishat Mamat, Abudukelimu Abudureheman

Journal of Semiconductors, 2015, 36(4): 044004. doi: 10.1088/1674-4926/36/4/044004

7

Insights into channel potentials and electron quasi-Fermi potentials for DGtunnel FETs

Menka, Anand Bulusu, S. Dasgupta

Journal of Semiconductors, 2015, 36(1): 014005. doi: 10.1088/1674-4926/36/1/014005

8

Performance analysis of silicon nanowire transistors considering effective oxide thickness of high-k gate dielectric

S. Theodore Chandra, N. B. Balamurugan

Journal of Semiconductors, 2014, 35(4): 044001. doi: 10.1088/1674-4926/35/4/044001

9

In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip

Yuelin Wang, Tie Li, Xiao Zhang, Hongjiang Zeng, Qinhua Jin, et al.

Journal of Semiconductors, 2014, 35(8): 081001. doi: 10.1088/1674-4926/35/8/081001

10

Effects of defects on the electronic properties of WTe2 armchair nanoribbons

Bahniman Ghosh, Abhishek Gupta, Bhupesh Bishnoi

Journal of Semiconductors, 2014, 35(11): 113002. doi: 10.1088/1674-4926/35/11/113002

11

The effects of electron irradiation on the optical properties of the organic semiconductor polypyrrole

J. V. Thombare, M. C. Rath, S. H. Han, V. J. Fulari

Journal of Semiconductors, 2013, 34(9): 093001. doi: 10.1088/1674-4926/34/9/093001

12

AC-electronic and dielectric properties of semiconducting phthalocyanine compounds:a comparative study

Safa'a M. Hraibat, Rushdi M-L. Kitaneh, Mohammad M. Abu-Samreh, Abdelkarim M. Saleh

Journal of Semiconductors, 2013, 34(11): 112001. doi: 10.1088/1674-4926/34/11/112001

13

Structural, electronic, magnetic and optical properties of neodymium chalcogenides using LSDA+U method

A Shankar, D P Rai, Sandeep, R K Thapa

Journal of Semiconductors, 2012, 33(8): 082001. doi: 10.1088/1674-4926/33/8/082001

14

Giant magnetoresistance in a two-dimensional electron gas modulated by ferromagnetic and Schottky metal stripes

Lu Jianduo, Xu Bin

Journal of Semiconductors, 2012, 33(7): 074007. doi: 10.1088/1674-4926/33/7/074007

15

Structural and optoelectronic properties of sprayed Sb:SnO2 thin films: Effects of substrate temperature and nozzle-to-substrate distance

A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, K. Y. Rajpure, et al.

Journal of Semiconductors, 2011, 32(10): 102001. doi: 10.1088/1674-4926/32/10/102001

16

NTC and electrical properties of nickel and gold doped n-type silicon material

Dong Maojin, Chen Zhaoyang, Fan Yanwei, Wang Junhua, Tao Mingde, et al.

Journal of Semiconductors, 2009, 30(8): 083007. doi: 10.1088/1674-4926/30/8/083007

17

A novel fully differential telescopic operational transconductance amplifier

Li Tianwang, Ye Bo, Jiang Jinguang

Journal of Semiconductors, 2009, 30(8): 085002. doi: 10.1088/1674-4926/30/8/085002

18

Electronic Structure of Semiconductor Nanocrystals

Li Jingbo, Wang Linwang, Wei Suhuai

Chinese Journal of Semiconductors , 2006, 27(2): 191-196.

19

Effect of Relaxation Time on Electron Transport Properties in Double-Barrier Structures

Dai Zhenhong, Ni Jun

Chinese Journal of Semiconductors , 2006, 27(4): 604-608.

20

Full Band Monte Carlo Simulation of Electron Transport in Ge with Anisotropic Scattering Process

Chen, Yong, and, Ravaioli, Umberto, et al.

Chinese Journal of Semiconductors , 2005, 26(3): 465-471.

  • Search

    Advanced Search >>

    GET CITATION

    Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin, Zhang Zhiyong. Electronic transport properties of the armchair silicon carbide nanotube[J]. Journal of Semiconductors, 2010, 31(11): 114003. doi: 10.1088/1674-4926/31/11/114003
    Song J X, Yang Y T, Liu H X, Guo L X, Zhang Z Y. Electronic transport properties of the armchair silicon carbide nanotube[J]. J. Semicond., 2010, 31(11): 114003. doi: 10.1088/1674-4926/31/11/114003.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2680 Times PDF downloads: 33 Times Cited by: 0 Times

    History

    Received: 11 June 2013 Revised: 12 July 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin, Zhang Zhiyong. Electronic transport properties of the armchair silicon carbide nanotube[J]. Journal of Semiconductors, 2010, 31(11): 114003. doi: 10.1088/1674-4926/31/11/114003 ****Song J X, Yang Y T, Liu H X, Guo L X, Zhang Z Y. Electronic transport properties of the armchair silicon carbide nanotube[J]. J. Semicond., 2010, 31(11): 114003. doi: 10.1088/1674-4926/31/11/114003.
      Citation:
      Sen Li, Jinguang Jiang, Xifeng Zhou, Jianghua Liu. A low phase noise and low spur PLL frequency synthesizer for GNSS receivers[J]. Journal of Semiconductors, 2014, 35(1): 015004. doi: 10.1088/1674-4926/35/1/015004 ****
      S Li, J G Jiang, X F Zhou, J H Liu. A low phase noise and low spur PLL frequency synthesizer for GNSS receivers[J]. J. Semicond., 2014, 35(1): 015004. doi: 10.1088/1674-4926/35/1/015004.

      A low phase noise and low spur PLL frequency synthesizer for GNSS receivers

      DOI: 10.1088/1674-4926/35/1/015004
      Funds:

      the Foundation of Suzhou City SYG201135

      the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund BC2012121

      the National Natural Science Foundation of China 41274047

      Project supported by the National Natural Science Foundation of China (No.41274047), the Natural Science Foundation of Jiangsu Province (No.BK2012639), the Foundation of Suzhou City (No.SYG201135), the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund (No.BC2012121), and the Changzhou Science and Technology Support Program (Industrial)(No.CE20120074)

      the Natural Science Foundation of Jiangsu Province BK2012639

      the Changzhou Science and Technology Support Program (Industrial) CE20120074

      More Information
      • Corresponding author: Jiang Jinguang, Email:jgjiang09@aliyun.com
      • Received Date: 2013-06-11
      • Revised Date: 2013-07-12
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return