Citation: |
Xuejiao Wang, Junqi Liu, Shenqiang Zhai, Fengqi Liu, Zhanguo Wang. Room temperature quantum cascade detector operating at 4.3 μm[J]. Journal of Semiconductors, 2014, 35(10): 104009. doi: 10.1088/1674-4926/35/10/104009
****
X J Wang, J Q Liu, S Q Zhai, F Q Liu, Z G Wang. Room temperature quantum cascade detector operating at 4.3 μm[J]. J. Semicond., 2014, 35(10): 104009. doi: 10.1088/1674-4926/35/10/104009.
|
Room temperature quantum cascade detector operating at 4.3 μm
DOI: 10.1088/1674-4926/35/10/104009
More Information
-
Abstract
A strain-compensated InP-based InGaAs/InAlAs quantum cascade detector grown by solid source molecular beam epitaxy is demonstrated. The device operates at 4.3 μm up to room temperature (300 K) with a responsivity of 1.27 mA/W and a Johnson noise limited detectivity of 1.02×107 cm·Hz1/2/W. At 80 K, the responsivity and detectivity are 14.55 mA/W and 1.26×1010 cm·Hz1/2/W, respectively. According to the response range, this detector is much suitable for greenhouse gas detection.-
Keywords:
- infrared detector,
- quantum cascade,
- molecular beam epitaxy
-
References
[1] Liu H C, Li J M, Brown J M, et al. Quantum well intersubband heterodyne infrared detection up to 82 GHz. Appl Phys Lett, 1995, 67:1594 doi: 10.1063/1.114950[2] Grant P D, Dudek R, Wolfson L, et al. Ultra-high frequency monolithically integrated quantum well infrared photodetector up to 75 GHz. Electron Lett, 2005, 41:214 doi: 10.1049/el:20057428[3] Li Hongwei, Li Wei, Huang Qi, et al. Development of broadband 3-5μm quantum well infrared photodetectors. Chinese Journal of Semiconductors, 2000, 21(12):1220 http://www.oalib.com/paper/1519499[4] Shi Yanli, Deng Jun, Du Jinyu, et al. Analysis of dark current characteristic of novel GaAs/AlGaAs quantum well infrared photodetectors. Journal of Semiconductors, 2001, 22(4):503 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=200591651257617&flag=1[5] Levine B F. Quantum-well infrared photodetectors. J Appl Phys, 1993, 74:R1 doi: 10.1063/1.354252[6] Liu H C, Dudek R, Shen A, et al. High absorption (>> 90%) quantum-well infrared photodetectors. Appl Phys Lett, 2001, 79:4237 doi: 10.1063/1.1425066[7] Sarusi G, Gunapala S D, Park J S, et al. Design and performance of very long-wavelength GaAs/AlxGa1-x As quantum-well infrared photodetectors. J Appl Phys, 1994, 76:6001 doi: 10.1063/1.358351[8] Gendron L, Carras M, Huynh A, et al. Quantum cascade photodetector. Appl Phys Lett, 2004, 85:2824 doi: 10.1063/1.1781731[9] Zhai S Q, Liu J Q, Liu F Q, et al. A normal incident quantum cascade detector enhanced by surface plasmons. Appl Phys Lett, 2012, 100:181104 doi: 10.1063/1.4710523[10] Kong N, Liu J Q, Li L, et al. A 10.7μm InGaAs/InAlAs quantum cascade detector. Chin Phys Lett, 2010, 27(12):128503 doi: 10.1088/0256-307X/27/12/128503[11] Koeniguer C, Gendron L, Berger V, et al. Analysis of performances of quantum cascade detectors. Proc SPIE, 2005, 5957:595704 doi: 10.1117/12.623790[12] Sakr S, Giraud E, Dussaigne A, et al. Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm. Appl Phys Lett, 2012, 100(18):181103 doi: 10.1063/1.4707904[13] Graf M, Scalari G, Hofstetter D, et al. Terahertz range quantum well infrared photodetector. Appl Phys Lett, 2004, 84(4):475 doi: 10.1063/1.1641165[14] Hofstetter D, Graf M, Aellen T, et al. 23 GHz operation of a room temperature photovoltaic quantum cascade detector at 5.35μm. Appl Phys Lett, 2006, 89:061119 doi: 10.1063/1.2269408[15] Hostut M, Alyoruk M, Ergun Y, et al. Three-color broadband asymmetric quantum well infrared photodetectors in long wavelength infrared range (LWIR). Appl Phys A, 2009, 98(2):269 http://cn.bing.com/academic/profile?id=35eb48f495a8557b1f74699275a7b84a&encoded=0&v=paper_preview&mkt=zh-cn[16] Cibella S, Ortolani M, Leoni R, et al. Wide dynamic range terahertz detector pixel for active spectroscopic imaging with quantum cascade lasers. Appl Phys Lett, 2009, 95(21):213501 doi: 10.1063/1.3265958[17] Kong N, Liu J Q, Li L, et al. Strain-compensated InGaAs/InAlAs quantum cascade detector of 4.5μm operating at room temperature. Chin Phys Lett, 2010, 27(3):038501 doi: 10.1088/0256-307X/27/3/038501[18] Hofstetter D, Di Francesco J, Hvozdara L, et al. CO2 isotope sensor using a broadband infrared source, a spectrally narrow 4.4μm quantum cascade detector, and a Fourier spectrometer. Appl Phys B:Lasers Opt, 2011, 103:967 doi: 10.1007/s00340-011-4532-1[19] Van de Walle C G. Band lineups and deformation potentials in the model-solid theory. Phys Rev B, 1989, 39:1871 doi: 10.1103/PhysRevB.39.1871[20] Giorgetta F R, Baumann E, Graf M, et al. Quantum cascade detectors. IEEE J Quantum Electron, 2009, 45:1039 doi: 10.1109/JQE.2009.2017929 -
Proportional views